अंतरिक्ष यान विद्युत प्रणोदन: Difference between revisions

From Vigyanwiki
No edit summary
 
(7 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Type of space propulsion}}
{{Short description|Type of space propulsion}}


[[File:Xenon hall thruster.jpg|thumb|[[नासा]] [[जेट प्रणोदन प्रयोगशाला]] में 6 [[किलोवाट्ट]] [[हॉल-इफेक्ट थ्रस्टर|हॉल प्रभाव बल]] शल्य-कक्ष में]][[अंतरिक्ष यान]] विद्युत प्रणोदन या [[अंतरिक्ष यान प्रणोदन]] शैली का प्रकार है, जो विस्तार से उच्च गति में तेजी लाने के लिए विद्युत चुम्बकीय क्षेत्रों का उपयोग करता है और इस प्रकार कक्षा में अंतरिक्ष यान के वेग को संशोधित करने के लिए [[जोर|बल]] उत्पन्न करता है।<ref name="Choueiri" />प्रणोदन प्रणाली को [[बिजली के इलेक्ट्रॉनिक्स|बिजली के विद्युत]] द्वारा नियंत्रित किया जाता है।
[[File:Xenon hall thruster.jpg|thumb|[[नासा]] [[जेट प्रणोदन प्रयोगशाला]] में 6 [[किलोवाट्ट]] [[हॉल-इफेक्ट थ्रस्टर|हॉल प्रभाव बल]] शल्य-कक्ष में]][[अंतरिक्ष यान]] विद्युत प्रणोदन या [[अंतरिक्ष यान प्रणोदन]] शैली का प्रकार है, जो विस्तार से उच्च गति में तेजी लाने के लिए विद्युत चुम्बकीय क्षेत्रों का उपयोग करता है और इस प्रकार कक्षा में अंतरिक्ष यान के वेग को संशोधित करने के लिए [[जोर|बल]] उत्पन्न करता है।<ref name="Choueiri" />प्रणोदन प्रणाली को [[बिजली के इलेक्ट्रॉनिक्स|विद्युत]] द्वारा नियंत्रित किया जाता है।


विद्युत बल सामान्यतः रासायनिक रॉकेट की तुलना में बहुत कम प्रणोदक का उपयोग करते हैं क्योंकि उनके पास रासायनिक रॉकेट की तुलना में उच्च निकास गति उच्च [[विशिष्ट आवेग]] पर काम करती है।<ref name="Choueiri">Choueiri, Edgar Y. (2009) [http://www.nature.com/scientificamerican/journal/v300/n2/full/scientificamerican0209-58.html New dawn of electric rocket] ''[[Scientific American]]'' 300, 58–65 {{doi|10.1038/scientificamerican0209-58}}</ref> सीमित विद्युत शक्ति के कारण रासायनिक रॉकेट की तुलना में बल बहुत दुर्बल होता है, लेकिन विद्युत प्रणोदन लंबे समय तक बल दे सकता है।<ref name="esa_versus">{{cite web |url=http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=34201&fbodylongid=1535 |title=इलेक्ट्रिक बनाम रासायनिक प्रणोदन|work=Electric Spacecraft Propulsion |publisher=[[ESA]] |access-date=17 February 2007}}</ref>
विद्युत बल सामान्यतः रासायनिक रॉकेट की तुलना में बहुत अल्प प्रणोदक का उपयोग करते हैं क्योंकि उनके पास रासायनिक रॉकेट की तुलना में गति उच्च [[विशिष्ट आवेग]] पर कार्य करती है।<ref name="Choueiri">Choueiri, Edgar Y. (2009) [http://www.nature.com/scientificamerican/journal/v300/n2/full/scientificamerican0209-58.html New dawn of electric rocket] ''[[Scientific American]]'' 300, 58–65 {{doi|10.1038/scientificamerican0209-58}}</ref> सीमित विद्युत शक्ति के कारण रासायनिक रॉकेट की तुलना में बल बहुत दुर्बल होता है, लेकिन विद्युत प्रणोदन लंबे समय तक बल दे सकता है।<ref name="esa_versus">{{cite web |url=http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=34201&fbodylongid=1535 |title=इलेक्ट्रिक बनाम रासायनिक प्रणोदन|work=Electric Spacecraft Propulsion |publisher=[[ESA]] |access-date=17 February 2007}}</ref>


विद्युत प्रणोदन का प्रथम बार नासा द्वारा सफलतापूर्वक प्रदर्शन किया गया था और अब यह अंतरिक्ष यान पर एक परिपक्व और व्यापक रूप से इस्तेमाल की जाने वाली प्रविधि है। [[अमेरिका]] और [[रूस]] उपग्रहों ने दशकों से विद्युत प्रणोदन का उपयोग किया है।<ref>{{Cite web|url=http://fluid.ippt.gov.pl/sbarral/hall.html|title=इंस्टीट्यूट ऑफ फंडामेंटल टेक्नोलॉजिकल रिसर्च में इलेक्ट्रिक प्रोपल्शन रिसर्च|date=16 August 2011|archive-url=https://web.archive.org/web/20110816154150/http://fluid.ippt.gov.pl/sbarral/hall.html|archive-date=16 August 2011}}</रेफरी> {{As of|2019|}}, पूरे सौर मंडल में संचालित [[विद्युत प्रणोदन के साथ अंतरिक्ष यान की सूची]] [[कक्षीय स्टेशन-रखरखाव]], कक्षा उत्थान, या प्राथमिक प्रणोदन के लिए विद्युत प्रणोदन का उपयोग करती है।<ref{{Cite journal|last1=Lev|first1=Dan|last2=Myers|first2=Roger M.|last3=Lemmer|first3=Kristina M.|last4=Kolbeck|first4=Jonathan|last5=Koizumi|first5=Hiroyuki|last6=Polzin|first6=Kurt|date=June 2019|title=The technological and commercial expansion of electric propulsion|journal=Acta Astronautica|volume=159|pages=213–227|doi=10.1016/j.actaastro.2019.03.058|bibcode=2019AcAau.159..213L|s2cid=115682651}}</ref> भविष्य में सबसे उन्नत विद्युत बल् [[डेल्टा-सी|डेल्टा-C]] प्रदान करने में सक्षम हो सकते हैं।({{cvt|100|km/s}},जो अंतरिक्ष यान को सौर मंडल के बाहरी ग्रहों पर [[परमाणु शक्ति]] के साथ तक ले जाने के लिए पर्याप्त है लेकिन [[अंतरतारकीय यात्रा]] के लिए अपर्याप्त है।<ref name="Choueiri"/><ref>{{Cite web|url=http://alfven.princeton.edu/publications/choueiri-sciam-2009|title=Choueiri, Edgar Y. (2009). New dawn of electric rocket}}</ref> बाहरी शक्ति स्रोत के साथ विद्युत रॉकेट [[अंतरिक्ष यान पर सौर पैनल]] पर [[लेज़र]] के माध्यम से संचरित तारे के बीच की यात्रा के लिए सैद्धांतिक संभावना है।<ref>{{Cite web|url=https://scholar.google.com/scholar?cluster=13405813666529688188&hl=en&as_sdt=2005&sciodt=0,5|title=Google Scholar|website=scholar.google.com}}</ref><ref>[http://www.geoffreylandis.com/laser_ion.htp Geoffrey A. Landis. Laser-powered Interstellar Probe] {{webarchive|url=https://web.archive.org/web/20120722013713/http://www.geoffreylandis.com/laser_ion.htp |date=22 July 2012 }} on the [http://www.geoffreylandis.com/science.html Geoffrey A. Landis: Science. papers available on the web]</ref> चूंकि, विद्युत प्रणोदन पृथ्वी की सतह से प्रक्षेपण के लिए उपयुक्त नहीं है, क्योंकि यह बहुत कम बल प्रदान करता है।
विद्युत प्रणोदन का नासा द्वारा प्रथम बार सफलतापूर्वक प्रदर्शन किया गया था और अब यह अंतरिक्ष यान पर परिपक्व और व्यापक रूप से उपयोग की जाने वाली प्रविधि है। [[अमेरिका]] और [[रूस]] के उपग्रहों ने दशकों से विद्युत प्रणोदन का उपयोग किया है।<ref>{{Cite web|url=http://fluid.ippt.gov.pl/sbarral/hall.html|title=इंस्टीट्यूट ऑफ फंडामेंटल टेक्नोलॉजिकल रिसर्च में इलेक्ट्रिक प्रोपल्शन रिसर्च|date=16 August 2011|archive-url=https://web.archive.org/web/20110816154150/http://fluid.ippt.gov.pl/sbarral/hall.html|archive-date=16 August 2011}}</रेफरी> {{As of|2019|}}, पूरे सौर मंडल में संचालित [[विद्युत प्रणोदन के साथ अंतरिक्ष यान की सूची]] [[कक्षीय स्टेशन-रखरखाव]], कक्षा उत्थान, या प्राथमिक प्रणोदन के लिए विद्युत प्रणोदन का उपयोग करती है।<ref{{Cite journal|last1=Lev|first1=Dan|last2=Myers|first2=Roger M.|last3=Lemmer|first3=Kristina M.|last4=Kolbeck|first4=Jonathan|last5=Koizumi|first5=Hiroyuki|last6=Polzin|first6=Kurt|date=June 2019|title=The technological and commercial expansion of electric propulsion|journal=Acta Astronautica|volume=159|pages=213–227|doi=10.1016/j.actaastro.2019.03.058|bibcode=2019AcAau.159..213L|s2cid=115682651}}</ref> भविष्य में सबसे उन्नत विद्युत बल् [[डेल्टा-सी|डेल्टा-C]] प्रदान करने में सक्षम हो सकते हैं।जो अंतरिक्ष यान को सौर मंडल के बाहरी ग्रहों पर [[परमाणु शक्ति]] के साथ तक ले जाने के लिए पर्याप्त है लेकिन [[अंतरतारकीय यात्रा]] के लिए अपर्याप्त है।<ref name="Choueiri"/><ref>{{Cite web|url=http://alfven.princeton.edu/publications/choueiri-sciam-2009|title=Choueiri, Edgar Y. (2009). New dawn of electric rocket}}</ref> बाहरी शक्ति स्रोत के साथ विद्युत रॉकेट [[अंतरिक्ष यान पर सौर पैनल]] [[लेज़र]] के माध्यम से संचरित तारे के बीच की यात्रा के लिए सैद्धांतिक संभावना है।<ref>{{Cite web|url=https://scholar.google.com/scholar?cluster=13405813666529688188&hl=en&as_sdt=2005&sciodt=0,5|title=Google Scholar|website=scholar.google.com}}</ref><ref>[http://www.geoffreylandis.com/laser_ion.htp Geoffrey A. Landis. Laser-powered Interstellar Probe] {{webarchive|url=https://web.archive.org/web/20120722013713/http://www.geoffreylandis.com/laser_ion.htp |date=22 July 2012 }} on the [http://www.geoffreylandis.com/science.html Geoffrey A. Landis: Science. papers available on the web]</ref> चूंकि, विद्युत प्रणोदन पृथ्वी की सतह से प्रक्षेपण के लिए उपयुक्त नहीं है, क्योंकि यह बहुत अल्प बल प्रदान करता है।


मंगल ग्रह की यात्रा पर विद्युत चालित जहाज अपने प्रारंभिक द्रव्यमान का 70% गंतव्य तक ले जाने में सक्षम हो सकता है, किन्तु, रासायनिक रॉकेट केवल कुछ प्रतिशत ही ले जा सकता है।<ref>{{Cite web|last=Boyle|first=Alan|date=2017-06-29|title=MSNW's plasma thruster just might fire up Congress at hearing on space propulsion|url=https://www.geekwire.com/2017/msnws-plasma-thruster-just-might-fire-congress-hearing-space-propulsion/|url-status=live|access-date=2021-08-15|website=GeekWire|language=en-US}}</ref>
मंगल ग्रह की यात्रा पर विद्युत चालित जहाज अपने प्रारंभिक द्रव्यमान का 70% गंतव्य तक ले जाने में सक्षम हो सकता है, किन्तु, रासायनिक रॉकेट केवल कुछ प्रतिशत ही ले जा सकता है।<ref>{{Cite web|last=Boyle|first=Alan|date=2017-06-29|title=MSNW's plasma thruster just might fire up Congress at hearing on space propulsion|url=https://www.geekwire.com/2017/msnws-plasma-thruster-just-might-fire-congress-hearing-space-propulsion/|url-status=live|access-date=2021-08-15|website=GeekWire|language=en-US}}</ref>
Line 14: Line 14:
== इतिहास ==
== इतिहास ==
अंतरिक्ष यान के लिए विद्युत प्रणोदन का विचार 1911 में [[कॉन्स्टेंटिन त्सोल्कोवस्की]] द्वारा प्रस्तुत किया गया था।<ref>{{cite web|last=Palaszewski|title=Electric Propulsion for Future Space Missions (PowerPoint)|first=Bryan|url=http://www.grc.nasa.gov/WWW/K-12/DLN/descriptions/presentations/systemsengineering/SystemsEngPart1.ppt|work=Electric Propulsion for Future Space Missions|publisher=NASA Glenn Research Center|access-date=31 December 2011}}</ref> इससे पहले [[रॉबर्ट गोडार्ड (वैज्ञानिक)|रॉबर्ट गोडार्ड वैज्ञानिक]] ने अपनी व्यक्तिगत आलेख में ऐसी संभावना का उल्लेख किया था।<ref name="choueiri">{{cite journal |last = Choueiri|first = Edgar Y.|year = 2004|title = A Critical History of Electric Propulsion: The First 50 Years (1906–1956)|journal = Journal of Propulsion and Power
अंतरिक्ष यान के लिए विद्युत प्रणोदन का विचार 1911 में [[कॉन्स्टेंटिन त्सोल्कोवस्की]] द्वारा प्रस्तुत किया गया था।<ref>{{cite web|last=Palaszewski|title=Electric Propulsion for Future Space Missions (PowerPoint)|first=Bryan|url=http://www.grc.nasa.gov/WWW/K-12/DLN/descriptions/presentations/systemsengineering/SystemsEngPart1.ppt|work=Electric Propulsion for Future Space Missions|publisher=NASA Glenn Research Center|access-date=31 December 2011}}</ref> इससे पहले [[रॉबर्ट गोडार्ड (वैज्ञानिक)|रॉबर्ट गोडार्ड वैज्ञानिक]] ने अपनी व्यक्तिगत आलेख में ऐसी संभावना का उल्लेख किया था।<ref name="choueiri">{{cite journal |last = Choueiri|first = Edgar Y.|year = 2004|title = A Critical History of Electric Propulsion: The First 50 Years (1906–1956)|journal = Journal of Propulsion and Power
  |volume = 20|issue = 2|pages = 193–203|url = http://alfven.princeton.edu/publications/choueiri-jpp-2004|doi = 10.2514/1.9245 |citeseerx = 10.1.1.573.8519}}</ref>15 मई 1929 को, [[सोवियत संघ]] अनुसंधान प्रयोगशाला [[गैस डायनेमिक्स प्रयोगशाला|गैस गतिकी प्रयोगशाला]] (GDL) ने विद्युत रॉकेट इंजन का विकास शुरू किया। [[वैलेंटाइन ग्लुशको]] के नेतृत्व में<ref name = 'Siddiqi'>{{cite book |last1=Siddiqi |first1=Asif |title=Challenge to Apollo : the Soviet Union and the space race, 1945-1974 |date=2000 |publisher=National Aeronautics and Space Administration, NASA History Div. |page=6|location=Washington, D.C |url=https://history.nasa.gov/SP-4408pt1.pdf |access-date=11 June 2022}}</ref> 1930 के दशक की प्रारंभिक में उन्होंने अंतरिक्ष यान विद्युत प्रणोदन प्रकार रॉकेट इंजन को दुनिया का पहला उदाहरण बनाया।<ref name="kosm">{{cite web |title=Gas Dynamic Laboratory (in Russian) |url=http://www.space.hobby.ru/organizations/gdl_okb.html |website=History of Russian Soviet Cosmonautics |access-date=10 June 2022}}</ref><ref name="R&P_Vol1">{{cite book |last1=Chertok |first1=Boris |title=रॉकेट और लोग|date=31 January 2005 |publisher=National Aeronautics and Space Administration |page=164-165 |edition=Volume 1 |url=https://www.nasa.gov/connect/ebooks/rockets_people_vol1_detail.html |access-date=29 May 2022}}</ रेफ> जीडीएल द्वारा यह प्रारंभिक कार्य लगातार जारी रखा गया है और 1960 के दशक में [[वोसखोद 1]] अंतरिक्ष यान और जोंड -2 वीनस जांच पर इलेक्ट्रिक रॉकेट इंजन का उपयोग किया गया था। रेफरी नाम = ग्लुशको>{{cite book |last1=Glushko |first1=Valentin |title=यूएसएसआर में रॉकेटरी और अंतरिक्ष प्रौद्योगिकी का विकास|date=1 January 1973 |publisher=Novosti Press Pub. House |pages=12–13 |url=https://www.amazon.com/Development-rocketry-space-technology-USSR/dp/B0006CHI4I}}</रेफरी>
  |volume = 20|issue = 2|pages = 193–203|url = http://alfven.princeton.edu/publications/choueiri-jpp-2004|doi = 10.2514/1.9245 |citeseerx = 10.1.1.573.8519}}</ref>15 मई 1929 को, [[सोवियत संघ]] अनुसंधान प्रयोगशाला [[गैस डायनेमिक्स प्रयोगशाला|गैस गतिकी प्रयोगशाला]] (GDL) ने विद्युत रॉकेट इंजन का विकास शुरू किया। [[वैलेंटाइन ग्लुशको]] के नेतृत्व में<ref name = 'Siddiqi'>{{cite book |last1=Siddiqi |first1=Asif |title=Challenge to Apollo : the Soviet Union and the space race, 1945-1974 |date=2000 |publisher=National Aeronautics and Space Administration, NASA History Div. |page=6|location=Washington, D.C |url=https://history.nasa.gov/SP-4408pt1.pdf |access-date=11 June 2022}}</ref> 1930 के दशक के प्रारंभ में उन्होंने अंतरिक्ष यान विद्युत प्रणोदन रॉकेट इंजन को दुनिया का प्रथम उदाहरण बनाया।<ref name="kosm">{{cite web |title=Gas Dynamic Laboratory (in Russian) |url=http://www.space.hobby.ru/organizations/gdl_okb.html |website=History of Russian Soviet Cosmonautics |access-date=10 June 2022}}</ref><ref name="R&P_Vol1">{{cite book |last1=Chertok |first1=Boris |title=रॉकेट और लोग|date=31 January 2005 |publisher=National Aeronautics and Space Administration |page=164-165 |edition=Volume 1 |url=https://www.nasa.gov/connect/ebooks/rockets_people_vol1_detail.html |access-date=29 May 2022}}</ रेफ> जीडीएल द्वारा यह प्रारंभिक कार्य लगातार जारी रखा गया है और 1960 के दशक में [[वोसखोद 1]] अंतरिक्ष यान और जोंड -2 वीनस जांच पर इलेक्ट्रिक रॉकेट इंजन का उपयोग किया गया था। रेफरी नाम = ग्लुशको>{{cite book |last1=Glushko |first1=Valentin |title=यूएसएसआर में रॉकेटरी और अंतरिक्ष प्रौद्योगिकी का विकास|date=1 January 1973 |publisher=Novosti Press Pub. House |pages=12–13 |url=https://www.amazon.com/Development-rocketry-space-technology-USSR/dp/B0006CHI4I}}</रेफरी>


परमाणु रिएक्टर के साथ विद्युत संचालित प्रणोदन पर डोनाल्ड ए. मार्टिन ने 1973 में इंटरस्टेलर ट्रैवल [[प्रोजेक्ट डेडलस]] के लिए विचार किया था, लेकिन इसके थ्रस्ट प्रोफाइल, परमाणु ऊर्जा को बिजली में बदलने के लिए आवश्यक उपकरण के वजन और इसके परिणामस्वरूप एक दृष्टिकोण के कारण दृष्टिकोण को अस्वीकार कर दिया गया था। छोटा [[त्वरण]], जिसे वांछित गति प्राप्त करने में एक शताब्दी लगेगी।
परमाणु रिएक्टर के साथ विद्युत संचालित प्रणोदन पर डोनाल्ड ए. मार्टिन ने 1973 में इंटरस्टेलर ट्रैवल [[प्रोजेक्ट डेडलस]] के लिए विचार किया था, लेकिन इसके थ्रस्ट प्रोफाइल, परमाणु ऊर्जा को बिजली में बदलने के लिए आवश्यक उपकरण के वजन और इसके परिणामस्वरूप एक दृष्टिकोण के कारण दृष्टिकोण को अस्वीकार कर दिया गया था। छोटा [[त्वरण]], जिसे वांछित गति प्राप्त करने में एक शताब्दी लगेगी।
Line 20: Line 20:


विद्युत प्रणोदन का पहला प्रदर्शन नासा [[SERT-1]] (स्पेस इलेक्ट्रिक रॉकेट टेस्ट) अंतरिक्ष यान पर सवार एक [[आयन इंजन]] था।
विद्युत प्रणोदन का पहला प्रदर्शन नासा [[SERT-1]] (स्पेस इलेक्ट्रिक रॉकेट टेस्ट) अंतरिक्ष यान पर सवार एक [[आयन इंजन]] था।
रेफ नाम='आयन 1964'>{{Cite web|url=http://www.nasa.gov/centers/glenn/about/history/ds1.html|title=डीप स्पेस में ग्लेन का योगदान 1|first=NASA Content|last=Administrator|date=14 April 2015|website=NASA}}</रेफरी><ref name = "Cybulski">{{cite web |first1=Ronald J.|last1=Cybulski |first2=Daniel M.|last2=Shellhammer |first3=Robert R.|last3=Lovell |first4=Edward J.|last4=Domino |first5=Joseph T.|last5=Kotnik |url=https://ntrs.nasa.gov/api/citations/19650009681/downloads/19650009681.pdf |title=Results from SERT I Ion Rocket Flight Test| id=NASA-TN-D-2718 |publisher=[[NASA]] |date=1965}}</ref> यह 20 जुलाई 1964 को प्रारंभ हुआ और 31 मिनट तक चला।<ref name='Ion 1964'/>3 फरवरी 1970, SERT-2 को अनुवर्ती नियोग शुरू किया गया। इसमें दो आयन प्रणोदक लगे थे, जिनमें से पांच महीने से अधिक समय तक और दूसरा लगभग तीन महीने तक संचालित रहा।<ref name='Ion 1964'/><ref>NASA Glenn, [http://www.grc.nasa.gov/WWW/ion/past/70s/sert2.htm "SPACE ELECTRIC ROCKET TEST II (SERT II)"] {{Webarchive|url=https://web.archive.org/web/20110927004353/http://www.grc.nasa.gov/WWW/ion/past/70s/sert2.htm |date=27 September 2011 }} (Accessed 1 July 2010)</ref><ref>[http://www.astronautix.com/craft/sert.htm SERT] {{webarchive|url=https://web.archive.org/web/20101025005136/http://www.astronautix.com/craft/sert.htm |date=25 October 2010 }} page at Astronautix (Accessed 1 July 2010)</ref>2010 के प्रारंभ तक, कई [[उपग्रह]] निर्माता अपने उपग्रहों पर विद्युत प्रणोदन विकल्पों को प्रस्तुत कर रहे थे। अधिकांशतः कक्ष पर [[अंतरिक्ष यान रवैया नियंत्रण]] के लिए कुछ वाणिज्यिक संचार उपग्रह संचालक पारंपरिक [[रासायनिक रॉकेट]] [[अपॉजी किक मोटर|पराकाष्ठा किक मोटर]] के स्थान पर [[भू-समकालिक कक्षा]] सम्मिलन के लिए उनका उपयोग करने लगे थे। .<ref name=sn20130620>
रेफ नाम='आयन 1964'>{{Cite web|url=http://www.nasa.gov/centers/glenn/about/history/ds1.html|title=डीप स्पेस में ग्लेन का योगदान 1|first=NASA Content|last=Administrator|date=14 April 2015|website=NASA}}</रेफरी><ref name = "Cybulski">{{cite web |first1=Ronald J.|last1=Cybulski |first2=Daniel M.|last2=Shellhammer |first3=Robert R.|last3=Lovell |first4=Edward J.|last4=Domino |first5=Joseph T.|last5=Kotnik |url=https://ntrs.nasa.gov/api/citations/19650009681/downloads/19650009681.pdf |title=Results from SERT I Ion Rocket Flight Test| id=NASA-TN-D-2718 |publisher=[[NASA]] |date=1965}}</ref> विद्युत प्रणोदन रॉकेट इंजन 20 जुलाई 1964 को प्रारंभ हुआ और 31 मिनट तक चला।<ref name='Ion 1964'/>3 फरवरी 1970, SERT-2 को अनुवर्ती नियोग शुरू किया गया इसमें दो आयन प्रणोदक लगे थे, जिनमें से प्रथम पांच महीने से अधिक समय तक और दूसरा लगभग तीन महीने तक संचालित रहा।<ref name='Ion 1964'/><ref>NASA Glenn, [http://www.grc.nasa.gov/WWW/ion/past/70s/sert2.htm "SPACE ELECTRIC ROCKET TEST II (SERT II)"] {{Webarchive|url=https://web.archive.org/web/20110927004353/http://www.grc.nasa.gov/WWW/ion/past/70s/sert2.htm |date=27 September 2011 }} (Accessed 1 July 2010)</ref><ref>[http://www.astronautix.com/craft/sert.htm SERT] {{webarchive|url=https://web.archive.org/web/20101025005136/http://www.astronautix.com/craft/sert.htm |date=25 October 2010 }} page at Astronautix (Accessed 1 July 2010)</ref>2010 के प्रारंभ तक कई [[उपग्रह]] निर्माता अपने उपग्रहों पर विद्युत प्रणोदन विकल्पों को प्रस्तुत कर रहे थे। अधिकांशतः कक्ष पर [[अंतरिक्ष यान रवैया नियंत्रण|अंतरिक्ष यान स्वभाव नियंत्रण]] करने के लिए कुछ वाणिज्यिक संचार उपग्रह संचालक पारंपरिक [[रासायनिक रॉकेट]] [[अपॉजी किक मोटर|पराकाष्ठा किक मोटर]] के स्थान पर [[भू-समकालिक कक्षा]] सम्मिलन के लिए उनका उपयोग करने लगे थे। .<ref name=sn20130620>
{{cite news |last1=de Selding|first1=Peter B. |title=Electric-propulsion Satellites Are All the Rage |url=http://spacenews.com/35894electric-propulsion-satellites-are-all-the-rage/ |access-date=6 February 2015 |work=SpaceNews |date=20 June 2013 }}</ref>
{{cite news |last1=de Selding|first1=Peter B. |title=Electric-propulsion Satellites Are All the Rage |url=http://spacenews.com/35894electric-propulsion-satellites-are-all-the-rage/ |access-date=6 February 2015 |work=SpaceNews |date=20 June 2013 }}</ref>


Line 27: Line 27:


=== आयन और प्लाज्मा अभियान ===
=== आयन और प्लाज्मा अभियान ===
इस प्रकार के रॉकेट जैसे [[प्रतिक्रिया इंजन]] प्रणोदक से प्रणोद प्राप्त करने के लिए [[विद्युत ऊर्जा]] का उपयोग करते हैं। रॉकेट इंजनों के विपरीत, इस प्रकार के इंजनों को [[रॉकेट नोजल|रॉकेट नोक]] की आवश्यकता नहीं होती है, और इसलिए इन्हें वास्तविक रॉकेट नहीं माना जाता है।{{citation needed|date=December 2019}}अंतरिक्ष यान के लिए विद्युत प्रणोदन बल् को प्लाज्मा के आयनों को गति देने के लिए प्रयुक्त बल के प्रकार के आधार पर तीन परिवारों में विभाजित किया जा सकता है।
इस प्रकार के रॉकेट जैसे [[प्रतिक्रिया इंजन]] प्रणोदक से प्रणोद प्राप्त करने के लिए [[विद्युत ऊर्जा]] का उपयोग करते हैं। रॉकेट इंजनों के विपरीत, इस प्रकार के इंजनों को [[रॉकेट नोजल|रॉकेट नोक]] की आवश्यकता नहीं होती है और इसलिए इन्हें वास्तविक रॉकेट नहीं माना जाता है।अंतरिक्ष यान के लिए विद्युत प्रणोदन बल् को प्लाज्मा के आयनों को गति देने के लिए प्रयुक्त बल के आधार पर तीन परिवारों में विभाजित किया जा सकता है।


==== विद्युत स्थिति ====
==== विद्युत स्थिति ====
{{Main|आयन थ्रस्टर}}
{{Main|आयन बल}}
यदि त्वरण मुख्य रूप से [[कूलम्ब बल]] अर्थात् त्वरण की दिशा में स्थिर विद्युत क्षेत्र का अनुप्रयोग के कारण होता है, तो उपकरण को विद्युत स्थिति माना जाता है।  
यदि त्वरण मुख्य रूप से [[कूलम्ब बल]] अर्थात् त्वरण की दिशा में स्थिर विद्युत क्षेत्र का अनुप्रयोग के कारण होता है, तो उपकरण को विद्युत स्थिति माना जाता है।  


Line 43: Line 43:


==== विद्युत्तापीय ====
==== विद्युत्तापीय ====
विद्युत्तापीय श्रेणी समूह उपकरण जो ढेर प्रणोदक के तापमान को बढ़ाने के लिए और [[प्लाज्मा (भौतिकी)|प्लाज्मा भौतिकी]] उत्पन्न करने के लिए विद्युत चुम्बकीय क्षेत्र का उपयोग करते हैं। प्रणोदक गैस को प्रदान की जाने वाली तापीय ऊर्जा को ठोस सामग्री या चुंबकीय क्षेत्र के [[नोक]] द्वारा गतिज ऊर्जा में परिवर्तित किया जाता है। इस प्रकार की प्रणाली के लिए कम आणविक भार वाली गैसें जैसे हाइड्रोजन, हीलियम, अमोनिया रोचक प्रणोदक हैं।
विद्युत्तापीय श्रेणी समूह उपकरण जो ढेर प्रणोदक के तापमान में [[प्लाज्मा (भौतिकी)|प्लाज्मा भौतिकी]] उत्पन्न करने के लिए विद्युत चुम्बकीय क्षेत्र का उपयोग करते हैं। प्रणोदक गैस को प्रदान की जाने वाली तापीय ऊर्जा को ठोस सामग्री या चुंबकीय क्षेत्र के [[नोक]] द्वारा गतिज ऊर्जा में परिवर्तित किया जाता है। इस प्रकार की प्रणाली के लिए अल्प आणविक भार वाली गैसें जैसे हाइड्रोजन, हीलियम, अमोनिया रोचक प्रणोदक हैं।


विद्युत्तापीय इंजन गर्मी को रैखिक गति में परिवर्तित करने के लिए नोक का उपयोग करता है, इसलिए यह वास्तविक रॉकेट है, यदि गर्मी उत्पन्न करने वाली ऊर्जा बाहरी स्रोत से आती है।
विद्युत्तापीय इंजन गर्मी को रैखिक गति में परिवर्तित करने के लिए नोक का उपयोग करता है, इसलिए यह वास्तविक रॉकेट है यदि गर्मी उत्पन्न करने वाली ऊर्जा बाहरी स्रोत से आती है।


विशिष्ट आवेग (ISP) के मामले में विद्युत्तापीय प्रणाली का प्रदर्शन 500 से ~ 1000 सेकेंड है, लेकिन [[ठंडा गैस थ्रस्टर|ठंडा गैस बल]] [[मोनोप्रोपेलेंट रॉकेट|एक उत्तेजक रॉकेट]] और यहां तक ​​​​कि सबसे [[बाइप्रोपेलेंट रॉकेट|द्वि प्रणोदक रॉकेट]] से भी अधिक है। USSR में विद्युत्तापीय इंजन ने 1971 में उपयोग में प्रवेश किया। [[सोवियत संघ]] [[उल्का (उपग्रह)|उल्का उपग्रह]], उल्का-3, उल्का पिंड, संसाधन-O उपग्रह श्रृंखला और रूसी वैद्यत् उपग्रह उनसे सुसज्जित हैं।<ref>{{cite web|url=http://novosti-kosmonavtiki.ru/content/numbers/198/35.shtml|title=Native Electric Propulsion Engines Today|publisher=Novosti Kosmonavtiki|year=1999|issue=7|archive-url=https://web.archive.org/web/20110606033558/http://www.novosti-kosmonavtiki.ru/content/numbers/198/35.shtml|archive-date=6 June 2011|language=ru}}</ref> [[Aerojet|हवाई-जेट से चलने वाला]] (MR-510) द्वारा विद्युत्त प्रणाली वर्तमान में [[लॉकहीड मार्टिन]] A2100 उपग्रहों पर प्रणोदक के रूप में [[हाइड्राज़ीन]] का उपयोग किया जाता है।
विशिष्ट आवेग (ISP) के मामले में विद्युत्तापीय प्रणाली का प्रदर्शन 500 से ~ 1000 सेकेंड है। [[ठंडा गैस थ्रस्टर|ठंडा गैस बल]] [[मोनोप्रोपेलेंट रॉकेट|उत्तेजक रॉकेट]] और यहां तक ​​​​कि सबसे [[बाइप्रोपेलेंट रॉकेट|द्वि प्रणोदक रॉकेट]] से भी अधिक है। USSR में विद्युत्तापीय इंजन ने 1971 में उपयोग में आया। [[सोवियत संघ]] [[उल्का (उपग्रह)|उल्का उपग्रह]], उल्का-3, उल्का पिंड, संसाधन-O उपग्रह श्रृंखला और रूसी वैद्यत् उपग्रह उनसे सुसज्जित हैं।<ref>{{cite web|url=http://novosti-kosmonavtiki.ru/content/numbers/198/35.shtml|title=Native Electric Propulsion Engines Today|publisher=Novosti Kosmonavtiki|year=1999|issue=7|archive-url=https://web.archive.org/web/20110606033558/http://www.novosti-kosmonavtiki.ru/content/numbers/198/35.shtml|archive-date=6 June 2011|language=ru}}</ref> [[Aerojet|हवाई-जेट से चलने वाला]] (MR-510) द्वारा विद्युत्त प्रणाली वर्तमान में [[लॉकहीड मार्टिन]] A2100 उपग्रहों पर प्रणोदक के रूप में [[हाइड्राज़ीन]] का उपयोग किया जाता है।


'''प्रकार,'''
'''प्रकार,'''
Line 65: Line 65:
* [[इलेक्ट्रोडलेस प्लाज्मा थ्रस्टर|वैद्यत्डलेस प्लाज्मा बल]]
* [[इलेक्ट्रोडलेस प्लाज्मा थ्रस्टर|वैद्यत्डलेस प्लाज्मा बल]]
* [[मैग्नेटोप्लाज्माडायनामिक थ्रस्टर|मैग्नेटो प्लाज्मा गतिकी बल]]
* [[मैग्नेटोप्लाज्माडायनामिक थ्रस्टर|मैग्नेटो प्लाज्मा गतिकी बल]]
* [[स्पंदित आगमनात्मक थ्रस्टर|pulsed आगमनात्मक बल]]
* [[स्पंदित आगमनात्मक थ्रस्टर|स्पंदित आगमनात्मक बल]]
* [[स्पंदित प्लाज्मा थ्रस्टर|pulsed प्लाज्मा बल]]
* [[स्पंदित प्लाज्मा थ्रस्टर|स्पंदित प्लाज्मा बल]]
* [[हेलिकॉन डबल लेयर थ्रस्टर|हेलिकॉन दोहरी परत बल]]
* [[हेलिकॉन डबल लेयर थ्रस्टर|हेलिकॉन दोहरी परत बल]]


Line 79: Line 79:
{{Main|वैद्यत् गतिशील तार}}
{{Main|वैद्यत् गतिशील तार}}


विद्युत तार लंबे समय तक चलने वाले तार होते हैं, जैसे कि तार उपग्रह से नियत किया जाता है, जो विद्युत चुम्बकीय सिद्धांतों पर विद्युत जनित्र के रूप में काम कर सकता है।अपनी [[गतिज ऊर्जा]] को विद्युत ऊर्जा में परिवर्तित करके या विद्युत मोटर के रूप में विद्युत ऊर्जा को गतिज ऊर्जा में परिवर्तित कर सकता है।<ref name="handbook">NASA, [https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19980018321_1998056794.pdf Tethers In Space Handbook], edited by M.L. Cosmo and E.C. Lorenzini, Third Edition December 1997 (accessed 20 October 2010); see also version at [http://www.nasa.gov/centers/marshall/pdf/337451main_Tethers_In_Space_Handbook_Section_1_2.pdf NASA MSFC];
विद्युत तार लंबे समय तक चलने वाले तार होते हैं। जो विद्युत चुम्बकीय सिद्धांतों पर विद्युत जनित्र के रूप में कार्य कर सकते है। [[गतिज ऊर्जा]] को विद्युत ऊर्जा में परिवर्तित करके या विद्युत मोटर के रूप में विद्युत ऊर्जा को गतिज ऊर्जा में परिवर्तित कर सकते है।<ref name="handbook">NASA, [https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19980018321_1998056794.pdf Tethers In Space Handbook], edited by M.L. Cosmo and E.C. Lorenzini, Third Edition December 1997 (accessed 20 October 2010); see also version at [http://www.nasa.gov/centers/marshall/pdf/337451main_Tethers_In_Space_Handbook_Section_1_2.pdf NASA MSFC];
available on [https://www.scribd.com/doc/13841374/Tethers-in-Space-Handbook-3rd-Ed scribd]</ref> पृथ्वी के चुंबकीय क्षेत्र के माध्यम से इसकी गति से प्रवाहकीय तार में विद्युत क्षमता उत्पन्न होती है। विद्युत तार में उपयोग किए जाने वाले धातु विद्युत संवाहक की पसंद [[विद्युत चालकता]] और [[घनत्व]] जैसे कारकों द्वारा निर्धारित की जाती है। आवेदन के आधार पर द्वितीयक कारकों में लागत शक्ति और गलनांक सम्मलित हैं।
available on [https://www.scribd.com/doc/13841374/Tethers-in-Space-Handbook-3rd-Ed scribd]</ref> पृथ्वी के चुंबकीय क्षेत्र के माध्यम से इसकी गति से प्रवाहकीय तार में विद्युत क्षमता उत्पन्न होती है। विद्युत तार में उपयोग किए जाने वाले धातु विद्युत संवाहक [[विद्युत चालकता]] और [[घनत्व]] जैसे कारकों द्वारा निर्धारित की जाती है। आवेदन के आधार पर द्वितीयक कारकों में लागत शक्ति और गलनांक सम्मलित हैं।


====विवादास्पद ====
====विवादास्पद ====
Line 93: Line 93:
{{Further|प्रतिक्रिया इंजन ऊर्जा का उपयोग}}
{{Further|प्रतिक्रिया इंजन ऊर्जा का उपयोग}}


अंतरिक्ष यान में उपलब्ध सीमित विद्युत शक्ति के कारण विद्युत चालित रॉकेट इंजन परिमाण के कई आदेशों द्वारा रासायनिक रॉकेट की तुलना में कम बल प्रदान करते हैं।<ref name="esa_versus"/> रासायनिक रॉकेट दहन उत्पादों को सीधे ऊर्जा प्रदान करता है, किन्तु विद्युत प्रणाली को कई चरणों की आवश्यकता होती है। चूंकि, बल के लिए व्यय किए गए उच्च वेग और कम [[प्रतिक्रिया द्रव्यमान]] विद्युत रॉकेट को कम ईंधन पर चलाने की अनुमति देता है। यह विशिष्ट रासायनिक-संचालित अंतरिक्ष यान से अलग है, जहां इंजनों को अधिक ईंधन की आवश्यकता होती है जिसके लिए अंतरिक्ष यान को अधिकतर [[मुक्त गति समीकरण]] का पालन करने की आवश्यकता होती है। किसी ग्रह के पास होने पर कम बल वाला प्रणोदन गुरुत्वाकर्षण बल को पूरा नहीं कर सकता है। विद्युत रॉकेट इंजन किसी ग्रह की सतह से यान को ऊपर उठाने के लिए पर्याप्त बल नहीं दे सकता है लेकिन लंबे अंतराल के लिए लगाया गया कम बल अंतरिक्ष यान को ग्रह के पास कुशलता करने की अनुमति दे सकता है।
अंतरिक्ष यान में उपलब्ध सीमित विद्युत शक्ति के कारण विद्युत चालित रॉकेट इंजन परिमाण के कई आदेशों द्वारा रासायनिक रॉकेट की तुलना में अल्प बल प्रदान करते हैं।<ref name="esa_versus"/> रासायनिक रॉकेट दहन उत्पादों को सीधे ऊर्जा प्रदान करता है, किन्तु विद्युत प्रणाली को कई चरणों की आवश्यकता होती है। चूंकि, बल के लिए व्यय किए गए उच्च वेग और अल्प [[प्रतिक्रिया द्रव्यमान]] विद्युत रॉकेट को अल्प ईंधन पर चलाने की अनुमति देता है। यह विशिष्ट रासायनिक-संचालित अंतरिक्ष यान से अलग है, जहां इंजनों को अधिक ईंधन की आवश्यकता होती है जिसके लिए अंतरिक्ष यान को अधिकतर [[मुक्त गति समीकरण]] का पालन करने की आवश्यकता होती है। किसी ग्रह के पास होने पर अल्प बल वाला प्रणोदन गुरुत्वाकर्षण बल को पूरा नहीं कर सकता है। विद्युत रॉकेट इंजन किसी ग्रह की सतह से यान को ऊपर उठाने के लिए पर्याप्त बल नहीं दे सकता है लेकिन लंबे अंतराल के लिए लगाया गया अल्प बल अंतरिक्ष यान को ग्रह के पास कुशलता करने की अनुमति दे सकता है।


== यह भी देखें ==
== यह भी देखें ==
Line 116: Line 116:
*[http://mae.princeton.edu/sites/default/files/ChoueiriHistJPC04.pdf A Critical History of Electric Propulsion,The First Fifty Years (1906–1956) - AIAA-2004-3334]
*[http://mae.princeton.edu/sites/default/files/ChoueiriHistJPC04.pdf A Critical History of Electric Propulsion,The First Fifty Years (1906–1956) - AIAA-2004-3334]
*Aerospace America, AIAA publication, December 2005, Propulsion and Energy section, pp.&nbsp;54–55, written by Mitchell Walker.
*Aerospace America, AIAA publication, December 2005, Propulsion and Energy section, pp.&nbsp;54–55, written by Mitchell Walker.
{{Spacecraft propulsion}}


[[Category:All articles containing potentially dated statements]]
[[Category:All articles containing potentially dated statements]]
Line 125: Line 123:
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with unsourced statements from December 2019]]
[[Category:Articles with unsourced statements from December 2019]]
[[Category:CS1 English-language sources (en)]]
[[Category:CS1 maint]]
[[Category:CS1 maint]]
[[Category:CS1 русский-language sources (ru)]]
[[Category:CS1 русский-language sources (ru)]]
[[Category:Collapse templates]]
[[Category:Collapse templates]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with reference errors]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Webarchive template wayback links]]
[[Category:Wikipedia metatemplates]]

Latest revision as of 15:48, 18 September 2023

अंतरिक्ष यान विद्युत प्रणोदन या अंतरिक्ष यान प्रणोदन शैली का प्रकार है, जो विस्तार से उच्च गति में तेजी लाने के लिए विद्युत चुम्बकीय क्षेत्रों का उपयोग करता है और इस प्रकार कक्षा में अंतरिक्ष यान के वेग को संशोधित करने के लिए बल उत्पन्न करता है।[1]प्रणोदन प्रणाली को विद्युत द्वारा नियंत्रित किया जाता है।

विद्युत बल सामान्यतः रासायनिक रॉकेट की तुलना में बहुत अल्प प्रणोदक का उपयोग करते हैं क्योंकि उनके पास रासायनिक रॉकेट की तुलना में गति उच्च विशिष्ट आवेग पर कार्य करती है।[1] सीमित विद्युत शक्ति के कारण रासायनिक रॉकेट की तुलना में बल बहुत दुर्बल होता है, लेकिन विद्युत प्रणोदन लंबे समय तक बल दे सकता है।[2]

विद्युत प्रणोदन का नासा द्वारा प्रथम बार सफलतापूर्वक प्रदर्शन किया गया था और अब यह अंतरिक्ष यान पर परिपक्व और व्यापक रूप से उपयोग की जाने वाली प्रविधि है। अमेरिका और रूस के उपग्रहों ने दशकों से विद्युत प्रणोदन का उपयोग किया है।[3] भविष्य में सबसे उन्नत विद्युत बल् डेल्टा-C प्रदान करने में सक्षम हो सकते हैं।जो अंतरिक्ष यान को सौर मंडल के बाहरी ग्रहों पर परमाणु शक्ति के साथ तक ले जाने के लिए पर्याप्त है लेकिन अंतरतारकीय यात्रा के लिए अपर्याप्त है।[1][4] बाहरी शक्ति स्रोत के साथ विद्युत रॉकेट अंतरिक्ष यान पर सौर पैनल लेज़र के माध्यम से संचरित तारे के बीच की यात्रा के लिए सैद्धांतिक संभावना है।[5][6] चूंकि, विद्युत प्रणोदन पृथ्वी की सतह से प्रक्षेपण के लिए उपयुक्त नहीं है, क्योंकि यह बहुत अल्प बल प्रदान करता है।

मंगल ग्रह की यात्रा पर विद्युत चालित जहाज अपने प्रारंभिक द्रव्यमान का 70% गंतव्य तक ले जाने में सक्षम हो सकता है, किन्तु, रासायनिक रॉकेट केवल कुछ प्रतिशत ही ले जा सकता है।[7]


इतिहास

अंतरिक्ष यान के लिए विद्युत प्रणोदन का विचार 1911 में कॉन्स्टेंटिन त्सोल्कोवस्की द्वारा प्रस्तुत किया गया था।[8] इससे पहले रॉबर्ट गोडार्ड वैज्ञानिक ने अपनी व्यक्तिगत आलेख में ऐसी संभावना का उल्लेख किया था।[9]15 मई 1929 को, सोवियत संघ अनुसंधान प्रयोगशाला गैस गतिकी प्रयोगशाला (GDL) ने विद्युत रॉकेट इंजन का विकास शुरू किया। वैलेंटाइन ग्लुशको के नेतृत्व में[10] 1930 के दशक के प्रारंभ में उन्होंने अंतरिक्ष यान विद्युत प्रणोदन रॉकेट इंजन को दुनिया का प्रथम उदाहरण बनाया।[11]Cite error: Closing </ref> missing for <ref> tag विद्युत प्रणोदन रॉकेट इंजन 20 जुलाई 1964 को प्रारंभ हुआ और 31 मिनट तक चला।[12]3 फरवरी 1970, SERT-2 को अनुवर्ती नियोग शुरू किया गया इसमें दो आयन प्रणोदक लगे थे, जिनमें से प्रथम पांच महीने से अधिक समय तक और दूसरा लगभग तीन महीने तक संचालित रहा।[12][13][14]2010 के प्रारंभ तक कई उपग्रह निर्माता अपने उपग्रहों पर विद्युत प्रणोदन विकल्पों को प्रस्तुत कर रहे थे। अधिकांशतः कक्ष पर अंतरिक्ष यान स्वभाव नियंत्रण करने के लिए कुछ वाणिज्यिक संचार उपग्रह संचालक पारंपरिक रासायनिक रॉकेट पराकाष्ठा किक मोटर के स्थान पर भू-समकालिक कक्षा सम्मिलन के लिए उनका उपयोग करने लगे थे। .[15]


प्रकार

आयन और प्लाज्मा अभियान

इस प्रकार के रॉकेट जैसे प्रतिक्रिया इंजन प्रणोदक से प्रणोद प्राप्त करने के लिए विद्युत ऊर्जा का उपयोग करते हैं। रॉकेट इंजनों के विपरीत, इस प्रकार के इंजनों को रॉकेट नोक की आवश्यकता नहीं होती है और इसलिए इन्हें वास्तविक रॉकेट नहीं माना जाता है।अंतरिक्ष यान के लिए विद्युत प्रणोदन बल् को प्लाज्मा के आयनों को गति देने के लिए प्रयुक्त बल के आधार पर तीन परिवारों में विभाजित किया जा सकता है।

विद्युत स्थिति

यदि त्वरण मुख्य रूप से कूलम्ब बल अर्थात् त्वरण की दिशा में स्थिर विद्युत क्षेत्र का अनुप्रयोग के कारण होता है, तो उपकरण को विद्युत स्थिति माना जाता है।

विद्युत्तापीय

विद्युत्तापीय श्रेणी समूह उपकरण जो ढेर प्रणोदक के तापमान में प्लाज्मा भौतिकी उत्पन्न करने के लिए विद्युत चुम्बकीय क्षेत्र का उपयोग करते हैं। प्रणोदक गैस को प्रदान की जाने वाली तापीय ऊर्जा को ठोस सामग्री या चुंबकीय क्षेत्र के नोक द्वारा गतिज ऊर्जा में परिवर्तित किया जाता है। इस प्रकार की प्रणाली के लिए अल्प आणविक भार वाली गैसें जैसे हाइड्रोजन, हीलियम, अमोनिया रोचक प्रणोदक हैं।

विद्युत्तापीय इंजन गर्मी को रैखिक गति में परिवर्तित करने के लिए नोक का उपयोग करता है, इसलिए यह वास्तविक रॉकेट है यदि गर्मी उत्पन्न करने वाली ऊर्जा बाहरी स्रोत से आती है।

विशिष्ट आवेग (ISP) के मामले में विद्युत्तापीय प्रणाली का प्रदर्शन 500 से ~ 1000 सेकेंड है। ठंडा गैस बल उत्तेजक रॉकेट और यहां तक ​​​​कि सबसे द्वि प्रणोदक रॉकेट से भी अधिक है। USSR में विद्युत्तापीय इंजन ने 1971 में उपयोग में आया। सोवियत संघ उल्का उपग्रह, उल्का-3, उल्का पिंड, संसाधन-O उपग्रह श्रृंखला और रूसी वैद्यत् उपग्रह उनसे सुसज्जित हैं।[16] हवाई-जेट से चलने वाला (MR-510) द्वारा विद्युत्त प्रणाली वर्तमान में लॉकहीड मार्टिन A2100 उपग्रहों पर प्रणोदक के रूप में हाइड्राज़ीन का उपयोग किया जाता है।

प्रकार,

विद्युत चुम्बकीय

वैद्यत् चुंबकीय बल आयनों को लोरेंत्ज़ बल द्वारा या विद्युत चुम्बकीय क्षेत्रों के प्रभाव से गति देते हैं जहाँ विद्युत क्षेत्र त्वरण की दिशा में नहीं है।

प्रकार,

गैर-आयन अभियान

फोटोनिक

फोटोनिक अभियान केवल फोटॉन के साथ संवाद करता है।

विद्युत तार

विद्युत तार लंबे समय तक चलने वाले तार होते हैं। जो विद्युत चुम्बकीय सिद्धांतों पर विद्युत जनित्र के रूप में कार्य कर सकते है। गतिज ऊर्जा को विद्युत ऊर्जा में परिवर्तित करके या विद्युत मोटर के रूप में विद्युत ऊर्जा को गतिज ऊर्जा में परिवर्तित कर सकते है।[17] पृथ्वी के चुंबकीय क्षेत्र के माध्यम से इसकी गति से प्रवाहकीय तार में विद्युत क्षमता उत्पन्न होती है। विद्युत तार में उपयोग किए जाने वाले धातु विद्युत संवाहक विद्युत चालकता और घनत्व जैसे कारकों द्वारा निर्धारित की जाती है। आवेदन के आधार पर द्वितीयक कारकों में लागत शक्ति और गलनांक सम्मलित हैं।

विवादास्पद

कुछ प्रस्तावित प्रणोदन विधियाँ स्पष्ट रूप से भौतिकी के वर्तमान-समझे गए नियमों का उल्लंघन करती हैं,[18]

स्थिर विरूद्ध अस्थिर

विद्युत संचालक शक्ति प्रणाली को निर्धारित अवधि के लिए निरंतर अस्थिर वांछित आवेग भौतिकी के लिए स्पंदित वांछित के रूप में चित्रित किया जा सकता है। इन वर्गीकरणों को सभी प्रकार के प्रणोदन इंजनों पर लागू किया जा सकता है।

गतिशील गुण

अंतरिक्ष यान में उपलब्ध सीमित विद्युत शक्ति के कारण विद्युत चालित रॉकेट इंजन परिमाण के कई आदेशों द्वारा रासायनिक रॉकेट की तुलना में अल्प बल प्रदान करते हैं।[2] रासायनिक रॉकेट दहन उत्पादों को सीधे ऊर्जा प्रदान करता है, किन्तु विद्युत प्रणाली को कई चरणों की आवश्यकता होती है। चूंकि, बल के लिए व्यय किए गए उच्च वेग और अल्प प्रतिक्रिया द्रव्यमान विद्युत रॉकेट को अल्प ईंधन पर चलाने की अनुमति देता है। यह विशिष्ट रासायनिक-संचालित अंतरिक्ष यान से अलग है, जहां इंजनों को अधिक ईंधन की आवश्यकता होती है जिसके लिए अंतरिक्ष यान को अधिकतर मुक्त गति समीकरण का पालन करने की आवश्यकता होती है। किसी ग्रह के पास होने पर अल्प बल वाला प्रणोदन गुरुत्वाकर्षण बल को पूरा नहीं कर सकता है। विद्युत रॉकेट इंजन किसी ग्रह की सतह से यान को ऊपर उठाने के लिए पर्याप्त बल नहीं दे सकता है लेकिन लंबे अंतराल के लिए लगाया गया अल्प बल अंतरिक्ष यान को ग्रह के पास कुशलता करने की अनुमति दे सकता है।

यह भी देखें

  • चुंबकीय पाल, सूर्य या किसी तारे से सौर पवन द्वारा संचालित प्रस्तावित प्रणाली
  • विद्युत प्रणोदन वाले अंतरिक्ष यान की सूची, अतीत और प्रस्तावित अंतरिक्ष यान की सूची जिसमें विद्युत प्रणोदन का उपयोग किया गया था

संदर्भ

  1. 1.0 1.1 1.2 Choueiri, Edgar Y. (2009) New dawn of electric rocket Scientific American 300, 58–65 doi:10.1038/scientificamerican0209-58
  2. 2.0 2.1 "इलेक्ट्रिक बनाम रासायनिक प्रणोदन". Electric Spacecraft Propulsion. ESA. Retrieved 17 February 2007.
  3. "इंस्टीट्यूट ऑफ फंडामेंटल टेक्नोलॉजिकल रिसर्च में इलेक्ट्रिक प्रोपल्शन रिसर्च". 16 August 2011. Archived from the original on 16 August 2011.</रेफरी> As of 2019, पूरे सौर मंडल में संचालित विद्युत प्रणोदन के साथ अंतरिक्ष यान की सूची कक्षीय स्टेशन-रखरखाव, कक्षा उत्थान, या प्राथमिक प्रणोदन के लिए विद्युत प्रणोदन का उपयोग करती है।<refLev, Dan; Myers, Roger M.; Lemmer, Kristina M.; Kolbeck, Jonathan; Koizumi, Hiroyuki; Polzin, Kurt (June 2019). "The technological and commercial expansion of electric propulsion". Acta Astronautica. 159: 213–227. Bibcode:2019AcAau.159..213L. doi:10.1016/j.actaastro.2019.03.058. S2CID 115682651.
  4. "Choueiri, Edgar Y. (2009). New dawn of electric rocket".
  5. "Google Scholar". scholar.google.com.
  6. Geoffrey A. Landis. Laser-powered Interstellar Probe Archived 22 July 2012 at the Wayback Machine on the Geoffrey A. Landis: Science. papers available on the web
  7. Boyle, Alan (2017-06-29). "MSNW's plasma thruster just might fire up Congress at hearing on space propulsion". GeekWire (in English). Retrieved 2021-08-15.{{cite web}}: CS1 maint: url-status (link)
  8. Palaszewski, Bryan. "Electric Propulsion for Future Space Missions (PowerPoint)". Electric Propulsion for Future Space Missions. NASA Glenn Research Center. Retrieved 31 December 2011.
  9. Choueiri, Edgar Y. (2004). "A Critical History of Electric Propulsion: The First 50 Years (1906–1956)". Journal of Propulsion and Power. 20 (2): 193–203. CiteSeerX 10.1.1.573.8519. doi:10.2514/1.9245.
  10. Siddiqi, Asif (2000). Challenge to Apollo : the Soviet Union and the space race, 1945-1974 (PDF). Washington, D.C: National Aeronautics and Space Administration, NASA History Div. p. 6. Retrieved 11 June 2022.
  11. "Gas Dynamic Laboratory (in Russian)". History of Russian Soviet Cosmonautics. Retrieved 10 June 2022.
  12. 12.0 12.1 Cite error: Invalid <ref> tag; no text was provided for refs named Ion 1964
  13. NASA Glenn, "SPACE ELECTRIC ROCKET TEST II (SERT II)" Archived 27 September 2011 at the Wayback Machine (Accessed 1 July 2010)
  14. SERT Archived 25 October 2010 at the Wayback Machine page at Astronautix (Accessed 1 July 2010)
  15. de Selding, Peter B. (20 June 2013). "Electric-propulsion Satellites Are All the Rage". SpaceNews. Retrieved 6 February 2015.
  16. "Native Electric Propulsion Engines Today" (in русский). Novosti Kosmonavtiki. 1999. Archived from the original on 6 June 2011.
  17. NASA, Tethers In Space Handbook, edited by M.L. Cosmo and E.C. Lorenzini, Third Edition December 1997 (accessed 20 October 2010); see also version at NASA MSFC; available on scribd
  18. "Why Shawyer's 'electromagnetic relativity drive' is a fraud" (PDF). Archived from the original (PDF) on 25 August 2014.


बाहरी कड़ियाँ