लेबेस्ग माप: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Concept of area in any dimension}}
{{Short description|Concept of area in any dimension}}
माप सिद्धांत में, गणित की एक शाखा, [[फ्रांस]] के गणितज्ञ [[ हेनरी लेबेस्ग्यू | हेनरी लेबेस्ग]] के नाम पर लेबेस्ग माप, ''n''-आयामी [[यूक्लिडियन अंतरिक्ष]] के [[सबसेट]] के लिए '''एक''' माप ('''गणित''') निर्दिष्ट करने की मानक विधि है। ''n'' = 1, 2, या 3 के लिए, यह [[लंबाई]], [[क्षेत्र|क्षेत्रफल]] '''फल''', या [[आयतन]] के मानक माप के साथ मेल खाता है। सामान्यतः '''तौर पर''', इसे ''n''-आयामी आयतन, ''n''-आयतन, या केवल आयतन भी कहा जाता है।<ref>The term ''[[volume]]'' is also used, more strictly, as a [[synonym]] of 3-dimensional volume</ref> इसका उपयोग पूरे [[वास्तविक विश्लेषण]] '''में किया जाता है''', विशेष रूप से [[लेबेसेग एकीकरण|लेबेस्ग एकीकरण]] को परिभाषित करने में किया जाता है '''के लिए'''। ऐसे समुच्चय जिन्हें लेबेस्ग माप निर्दिष्ट किया जा सकता है, लेबेस्ग-मापने योग्य कहलाते हैं; लेबेस्ग-मापने योग्य समुच्चय ''A'' का माप यहाँ ''λ''(''A'') द्वारा दर्शाया गया है।
माप सिद्धांत में, गणित की एक शाखा, [[फ्रांस]] के गणितज्ञ [[ हेनरी लेबेस्ग्यू |हेनरी लेबेस्ग]] के नाम पर लेबेस्ग माप, ''n''-आयामी [[यूक्लिडियन अंतरिक्ष]] के [[सबसेट]] के लिए माप निर्दिष्ट करने की मानक विधि है। ''n'' = 1, 2, या 3 के लिए, यह [[लंबाई]], [[क्षेत्र|क्षेत्रफल]], या [[आयतन]] के मानक माप के साथ मेल खाता है। सामान्यतः, इसे ''n''-आयामी आयतन, ''n''-आयतन, या केवल आयतन भी कहा जाता है।<ref>The term ''[[volume]]'' is also used, more strictly, as a [[synonym]] of 3-dimensional volume</ref> इसका उपयोग पूरे [[वास्तविक विश्लेषण]], विशेष रूप से [[लेबेसेग एकीकरण|लेबेस्ग एकीकरण]] को परिभाषित करने में किया जाता है। ऐसे समुच्चय जिन्हें लेबेस्ग माप निर्दिष्ट किया जा सकता है, लेबेस्ग-मापने योग्य कहलाते हैं; लेबेस्ग-मापने योग्य समुच्चय ''A'' का माप यहाँ ''λ''(''A'') द्वारा दर्शाया गया है।


हेनरी लेबेस्ग ने इस माप का वर्णन वर्ष 1901 में किया, उसके बाद अगले वर्ष [[लेबेस्ग इंटीग्रल]] के अपने विवरण के द्वारा वर्णन किया गया। दोनों को 1902 में उनके शोध प्रबंध के हिस्से के रूप में प्रकाशित किया गया था।<ref>{{cite journal |doi=10.1007/BF02420592|title=Intégrale, Longueur, Aire |year=1902 |last1=Lebesgue |first1=H. |journal=Annali di Matematica Pura ed Applicata |volume=7 |pages=231–359 |s2cid=121256884 |url=https://zenodo.org/record/2313710 }}</ref>
हेनरी लेबेस्ग ने इस माप का वर्णन वर्ष 1901 में किया, उसके बाद अगले वर्ष [[लेबेस्ग इंटीग्रल]] के अपने विवरण के द्वारा वर्णन किया गया। दोनों को 1902 में उनके शोध प्रबंध के हिस्से के रूप में प्रकाशित किया गया था।<ref>{{cite journal |doi=10.1007/BF02420592|title=Intégrale, Longueur, Aire |year=1902 |last1=Lebesgue |first1=H. |journal=Annali di Matematica Pura ed Applicata |volume=7 |pages=231–359 |s2cid=121256884 |url=https://zenodo.org/record/2313710 }}</ref>
Line 7: Line 7:
== परिभाषा ==
== परिभाषा ==


किसी भी अंतराल के लिए ('''गणित''') <math>I = [a,b]</math>, या <math>I = (a, b)</math>, समुच्चय <math>\mathbb{R}</math> की वास्तविक संख्याओं में, माना <math>\ell(I)= b - a</math> इसकी लंबाई को निरूपित करें। किसी उपसमुच्चय के लिए <math>E\subseteq\mathbb{R}</math>, लेबेस्ग की [[बाहरी माप]]<ref>{{cite book |title=वास्तविक विश्लेषण|last1=Royden |first1=H. L. |author-link=Halsey Royden |date=1988 |publisher=Macmillan |isbn=0-02-404151-3 |edition=3rd |location=New York |page=56 }}</ref> <math>\lambda^{\!*\!}(E)</math> को [[सबसे कम|इन्फिनमम]] के रूप में परिभाषित किया गया है: '''के रूप में परिभाषित किया गया है'''
किसी भी अंतराल के लिए ('''गणित''') <math>I = [a,b]</math>, या <math>I = (a, b)</math>, समुच्चय <math>\mathbb{R}</math> की वास्तविक संख्याओं में, माना <math>\ell(I)= b - a</math> इसकी लंबाई को निरूपित करें। किसी उपसमुच्चय के लिए <math>E\subseteq\mathbb{R}</math>, लेबेस्ग की [[बाहरी माप]]<ref>{{cite book |title=वास्तविक विश्लेषण|last1=Royden |first1=H. L. |author-link=Halsey Royden |date=1988 |publisher=Macmillan |isbn=0-02-404151-3 |edition=3rd |location=New York |page=56 }}</ref> <math>\lambda^{\!*\!}(E)</math> को [[सबसे कम|इन्फिनमम]] के रूप में परिभाषित किया गया है:
:<math>\lambda^{\!*\!}(E) = \inf \left\{\sum_{k=1}^\infty \ell(I_k) : {(I_k)_{k \in \mathbb N}} \text{ is a sequence of open intervals with } E\subset \bigcup_{k=1}^\infty I_k\right\}.</math>
:<math>\lambda^{\!*\!}(E) = \inf \left\{\sum_{k=1}^\infty \ell(I_k) : {(I_k)_{k \in \mathbb N}} \text{ is a sequence of open intervals with } E\subset \bigcup_{k=1}^\infty I_k\right\}.</math>
उपरोक्त परिभाषा को निम्नानुसार उच्च आयामों के लिए सामान्यीकृत किया जा सकता है।<ref>https://de.wikipedia.org/wiki/Lebesgue-Ma%C3%9F</ref> किसी भी [[आयताकार घनाभ]] के लिए <math>C</math> जो एक खुले अंतराल <math>C=I_1\times\cdots\times I_n</math> का, माना गुणा है, माना<math>\operatorname{vol}(C)=\ell(I_1)\times\cdots\times \ell(I_n)</math> इसकी मात्रा को निरूपित करता है। किसी उपसमुच्चय <math>E\subseteq\mathbb{R^n}</math> के लिए,
उपरोक्त परिभाषा को निम्नानुसार उच्च आयामों के लिए सामान्यीकृत किया जा सकता है।<ref>https://de.wikipedia.org/wiki/Lebesgue-Ma%C3%9F</ref> किसी भी [[आयताकार घनाभ]] के लिए <math>C</math> जो एक खुले अंतराल <math>C=I_1\times\cdots\times I_n</math> का, माना गुणा है, माना<math>\operatorname{vol}(C)=\ell(I_1)\times\cdots\times \ell(I_n)</math> इसकी मात्रा को निरूपित करता है। किसी उपसमुच्चय <math>E\subseteq\mathbb{R^n}</math> के लिए,
:<math>\lambda^{\!*\!}(E) = \inf \left\{\sum_{k=1}^\infty \operatorname{vol}(C_k) : {(C_k)_{k \in \mathbb N}} \text{ is a sequence of products of open intervals with } E\subset \bigcup_{k=1}^\infty C_k\right\}.</math>
:<math>\lambda^{\!*\!}(E) = \inf \left\{\sum_{k=1}^\infty \operatorname{vol}(C_k) : {(C_k)_{k \in \mathbb N}} \text{ is a sequence of products of open intervals with } E\subset \bigcup_{k=1}^\infty C_k\right\}.</math>
कुछ समुच्चय <math>E</math> कैराथियोडोरी कसौटी पर खरे उतरते हैं, जो '''लिए''' प्रत्येक <math> A\subseteq \mathbb{R}</math> के लिए यह आवश्यक है '''कैराथियोडोरी की कसौटी पर खरे ,'''
कुछ समुच्चय <math>E</math> कैराथियोडोरी कसौटी पर खरे उतरते हैं, जो प्रत्येक <math> A\subseteq \mathbb{R}</math> के लिए यह आवश्यक है:
:<math>\lambda^{\!*\!}(A) = \lambda^{\!*\!}(A \cap E) + \lambda^{\!*\!}(A \cap E^c).</math>
:<math>\lambda^{\!*\!}(A) = \lambda^{\!*\!}(A \cap E) + \lambda^{\!*\!}(A \cap E^c).</math>
ऐसे सभी <math>E</math> का समुच्चय σ-बीजगणित बनाता है। ऐसे किसी भी <math>E</math> के लिए , इसके लेबेस्ग माप को इसके लेबेस्ग बाहरी माप के रूप में परिभाषित किया गया है: <math>\lambda(E) = \lambda^{\!*\!}(E)</math>.
ऐसे सभी <math>E</math> का समुच्चय σ-बीजगणित बनाता है। ऐसे किसी भी <math>E</math> के लिए , इसके लेबेस्ग माप को इसके लेबेस्ग बाहरी माप के रूप में परिभाषित किया गया है: <math>\lambda(E) = \lambda^{\!*\!}(E)</math>.
Line 19: Line 19:
=== अंतर्ज्ञान ===
=== अंतर्ज्ञान ===


परिभाषा के पहले भाग में कहा गया है कि सबसेट <math>E</math> खुले अंतराल के समुच्चय द्वारा कवरेज द्वारा वास्तविक संख्याओं को इसके बाहरी माप में घटा दिया जाता है। अंतराल के इन समुच्चयों में से प्रत्येक अर्थ में <math>I</math>, <math>E</math> को कवर करता है, चूंकि इन अंतरालों के मिलन में <math>E</math> सम्मिलित होता है। किसी भी कवरिंग अंतराल समुच्चय की कुल लंबाई के माप को <math>E</math> अधिक अनुमानित कर सकती है, क्योंकि <math>E</math> अंतरालों के मिलन का एक उपसमुच्चय है, और इसलिए अंतरालों में वे बिंदु सम्मिलित हो सकते हैं जो <math>E</math> के अंदर नहीं हैं। लेबेस्ग बाहरी माप [[निम्नतम और उच्चतम]] के रूप में उभर कर आता है। ऐसे सभी संभावित समुच्चयों में से लंबाई की सबसे निचली सीमा (इन्फिनिमम) सहज रूप से, यह उन अंतराल समुच्चयों की कुल लंबाई है जो <math>E</math> को सबसे अधिक कसकर फिट करते हैं '''सबसे कसकर''' और ओवरलैप नहीं करते हैं।
परिभाषा के पहले भाग में कहा गया है कि सबसेट <math>E</math> खुले अंतराल के समुच्चय द्वारा कवरेज द्वारा वास्तविक संख्याओं को इसके बाहरी माप में घटा दिया जाता है। अंतराल के इन समुच्चयों में से प्रत्येक अर्थ में <math>I</math>, <math>E</math> को कवर करता है, चूंकि इन अंतरालों के मिलन में <math>E</math> सम्मिलित होता है। किसी भी कवरिंग अंतराल समुच्चय की कुल लंबाई के माप को <math>E</math> अधिक अनुमानित कर सकती है, क्योंकि <math>E</math> अंतरालों के मिलन का एक उपसमुच्चय है, और इसलिए अंतरालों में वे बिंदु सम्मिलित हो सकते हैं जो <math>E</math> के अंदर नहीं हैं। लेबेस्ग बाहरी माप [[निम्नतम और उच्चतम]] के रूप में उभर कर आता है। ऐसे सभी संभावित समुच्चयों में से लंबाई की सबसे निचली सीमा (इन्फिनिमम) सहज रूप से, यह उन अंतराल समुच्चयों की कुल लंबाई है जो <math>E</math> को सबसे अधिक कसकर फिट करते हैं और ओवरलैप नहीं करते हैं।


यह लेबेस्ग बाहरी माप की विशेषता है। क्या यह बाहरी माप लेबेस्ग माप में उचित अनुवाद करता है, यह एक अतिरिक्त नियम पर निर्भर करता है। <math>A</math> उपसमुच्चय लेकर इस स्थिति का परीक्षण किया जाता है, वास्तविक संख्याओं <math>E</math> का उपयोग करके <math>A</math> को दो भागों में विभाजित करने के साधन के रूप '''में  दो भागों में''': <math>A</math> का हिस्सा जो <math>E</math> के साथ प्रतिच्छेद करता है और <math>A</math> का शेष भाग जो <math>E</math> में नहीं है। इन समुच्चयों का अंतर <math>A</math> और <math>E</math> है। ये विभाजन <math>A</math> बाहरी माप के अधीन हैं। यदि संभव हो तो वास्तविक संख्याओं के ऐसे सभी उपसमुच्चयों के लिए, <math>E</math> द्वारा काटे गए <math>A</math> के विभाजन में बाहरी माप हैं, जिनका योग <math>A</math> का बाहरी माप है, तो <math>E</math> का बाहरी लेबेस्ग्यू माप इसका लेबेस्ग माप देता है। '''# <math>A</math> वास्तविक संख्याओं का, का विभाजन  द्वारा अलग करना  बाहरी माप हैं जिनका योग बाहरी माप है , फिर बाहरी लेबेस्ग माप  इसका लेबेस्ग माप देता है।''' सहजता से, इस स्थिति का अर्थ है कि समुच्चय <math>E</math> में कुछ विचित्र गुण नहीं होने चाहिए जो दूसरे समुच्चय के माप में विसंगति का कारण बनते हैं, जब   '''को''' '''"मास्क" के रूप में''' उस समुच्चय को क्लिप करने के लिए एक मास्क के रूप में <math>E</math> का उपयोग किया जाता है, जो समुच्चय के अस्तित्व पर संकेत देता है '''समुच्चय के अस्तित्व पर इशारा करते हुए''' जिसके लिए लेबेस्ग्यू बाहरी माप लेबेस्ग माप नहीं देता है। (इस तरह के समुच्चय, वास्तव में, लेबेस्ग-मापने योग्य नहीं हैं।)
यह लेबेस्ग बाहरी माप की विशेषता है। क्या यह बाहरी माप लेबेस्ग माप में उचित अनुवाद करता है, यह एक अतिरिक्त नियम पर निर्भर करता है। <math>A</math> उपसमुच्चय लेकर इस स्थिति का परीक्षण किया जाता है, वास्तविक संख्याओं <math>E</math> का उपयोग करके <math>A</math> को दो भागों में विभाजित करने के साधन के रूप: <math>A</math> का हिस्सा जो <math>E</math> के साथ प्रतिच्छेद करता है और <math>A</math> का शेष भाग जो <math>E</math> में नहीं है। इन समुच्चयों का अंतर <math>A</math> और <math>E</math> है। ये विभाजन <math>A</math> बाहरी माप के अधीन हैं। यदि संभव हो तो वास्तविक संख्याओं के ऐसे सभी उपसमुच्चयों के लिए, <math>E</math> द्वारा काटे गए <math>A</math> के विभाजन में बाहरी माप हैं, जिनका योग <math>A</math> का बाहरी माप है, तो <math>E</math> का बाहरी लेबेस्ग्यू माप इसका लेबेस्ग माप देता है। सहजता से, इस स्थिति का अर्थ है कि समुच्चय <math>E</math> में कुछ विचित्र गुण नहीं होने चाहिए जो दूसरे समुच्चय के माप में विसंगति का कारण बनते हैं, जब उस समुच्चय को क्लिप करने के लिए एक मास्क के रूप में <math>E</math> का उपयोग किया जाता है, जो समुच्चय के अस्तित्व पर संकेत देता है जिसके लिए लेबेस्ग्यू बाहरी माप लेबेस्ग माप नहीं देता है। (इस तरह के समुच्चय, वास्तव में, लेबेस्ग-मापने योग्य नहीं हैं।)


== उदाहरण ==
== उदाहरण ==


* कोई बंद अंतराल (गणित) {{nowrap|[''a'', ''b'']}[[वास्तविक संख्या]]ओं का } लेबेस्ग-मापने योग्य है, और इसका लेबेस्ग माप लंबाई है {{nowrap|''b'' &minus; ''a''}}. [[खुला अंतराल]] {{nowrap|(''a'', ''b'')}} का एक ही माप है, क्योंकि दो समुच्चयों के बीच समुच्चय अंतर में केवल अंतिम बिंदु a और b होते हैं, जिनमें से प्रत्येक का माप शून्य होता है।
* <nowiki>कोई बंद अंतराल {{nowrap|[</nowiki>''a'', ''b'']}[[वास्तविक संख्या]]ओं का } लेबेस्ग-मापने योग्य है, और इसका लेबेस्ग माप लंबाई है {{nowrap|''b'' &minus; ''a''}}. [[खुला अंतराल]] {{nowrap|(''a'', ''b'')}} का एक ही माप है, क्योंकि दो समुच्चयों के बीच समुच्चय अंतर में केवल अंतिम बिंदु a और b होते हैं, जिनमें से प्रत्येक का माप शून्य होता है।
* अंतराल का कोई कार्टेशियन उत्पाद {{nowrap|[''a'', ''b'']}} और {{nowrap|[''c'', ''d'']}} लेबेस्ग-measurable है, और इसका लेबेस्ग माप है {{nowrap|(''b'' &minus; ''a'')(''d'' &minus; ''c'')}}, संगत [[आयत]] का क्षेत्रफल।
* अंतराल का कोई कार्टेशियन उत्पाद {{nowrap|[''a'', ''b'']}} और {{nowrap|[''c'', ''d'']}} लेबेस्ग-measurable है, और इसका लेबेस्ग माप है {{nowrap|(''b'' &minus; ''a'')(''d'' &minus; ''c'')}}, संगत [[आयत]] का क्षेत्रफल।
* इसके अलावा, हर [[बोरेल सेट|बोरेल समुच्चय]] लेबेस्ग-मापने योग्य है। हालांकि, लेबेस्ग-मापने योग्य समुच्चय हैं जो बोरेल समुच्चय नहीं हैं।<ref>{{cite web | url=https://math.stackexchange.com/q/556756 | title=What sets are Lebesgue-measurable? | publisher=math stack exchange | access-date=26 September 2015 | author=Asaf Karagila}}</ref><ref>{{cite web | url=https://math.stackexchange.com/q/142385 | title=Is there a sigma-algebra on R strictly between the Borel and Lebesgue algebras? | publisher=math stack exchange | access-date=26 September 2015 | author=Asaf Karagila}}</ref>
* इसके अलावा, हर [[बोरेल सेट|बोरेल समुच्चय]] लेबेस्ग-मापने योग्य है। हालांकि, लेबेस्ग-मापने योग्य समुच्चय हैं जो बोरेल समुच्चय नहीं हैं।<ref>{{cite web | url=https://math.stackexchange.com/q/556756 | title=What sets are Lebesgue-measurable? | publisher=math stack exchange | access-date=26 September 2015 | author=Asaf Karagila}}</ref><ref>{{cite web | url=https://math.stackexchange.com/q/142385 | title=Is there a sigma-algebra on R strictly between the Borel and Lebesgue algebras? | publisher=math stack exchange | access-date=26 September 2015 | author=Asaf Karagila}}</ref>
Line 33: Line 33:
* विटाली समुच्चय उन समुच्चयों के उदाहरण हैं जो लेबेस्ग माप के संबंध में गैर-मापने योग्य समुच्चय हैं। उनका अस्तित्व पसंद के स्वयंसिद्ध पर निर्भर करता है।
* विटाली समुच्चय उन समुच्चयों के उदाहरण हैं जो लेबेस्ग माप के संबंध में गैर-मापने योग्य समुच्चय हैं। उनका अस्तित्व पसंद के स्वयंसिद्ध पर निर्भर करता है।
* ओस्गुड [[वक्र]] [[सकारात्मक संख्या]] लेबेस्ग माप के साथ सरल समतल वक्र हैं<ref>{{cite journal|last=Osgood|first=William F.|date=January 1903|title=धनात्मक क्षेत्र का जॉर्डन वक्र|journal=Transactions of the American Mathematical Society|publisher=American Mathematical Society|volume=4|issue=1|pages=107–112|doi=10.2307/1986455|issn=0002-9947|jstor=1986455|author-link1=William Fogg Osgood|doi-access=free}}<!--|access-date=2008-06-04--></ref> (इसे पीनो वक्र निर्माण के छोटे बदलाव से प्राप्त किया जा सकता है)। [[ड्रैगन वक्र]] एक और असामान्य उदाहरण है।
* ओस्गुड [[वक्र]] [[सकारात्मक संख्या]] लेबेस्ग माप के साथ सरल समतल वक्र हैं<ref>{{cite journal|last=Osgood|first=William F.|date=January 1903|title=धनात्मक क्षेत्र का जॉर्डन वक्र|journal=Transactions of the American Mathematical Society|publisher=American Mathematical Society|volume=4|issue=1|pages=107–112|doi=10.2307/1986455|issn=0002-9947|jstor=1986455|author-link1=William Fogg Osgood|doi-access=free}}<!--|access-date=2008-06-04--></ref> (इसे पीनो वक्र निर्माण के छोटे बदलाव से प्राप्त किया जा सकता है)। [[ड्रैगन वक्र]] एक और असामान्य उदाहरण है।
* कोई भी लाइन <math>\mathbb{R}^n</math>, के लिए <math>n \geq 2</math>, एक शून्य लेबेस्ग माप है। सामान्य तौर पर, प्रत्येक उचित [[ hyperplane ]] के [[परिवेश स्थान]] में एक शून्य लेबेस्ग माप होता है।
* कोई भी लाइन <math>\mathbb{R}^n</math>, के लिए <math>n \geq 2</math>, एक शून्य लेबेस्ग माप है। सामान्य तौर पर, प्रत्येक उचित [[ hyperplane |hyperplane]] के [[परिवेश स्थान]] में एक शून्य लेबेस्ग माप होता है।


== गुण ==
== गुण ==
[[File:Translation of a set.svg|thumb|300px|ट्रांसलेशन इनवेरिएंस: द लेबेस्ग माप <math>A</math> और <math>A+t</math> समान हैं।]]आर पर लेबेस्ग माप के निम्नलिखित गुण हैं:
[[File:Translation of a set.svg|thumb|300px|ट्रांसलेशन इनवेरिएंस: द लेबेस्ग माप <math>A</math> और <math>A+t</math> समान हैं।]]आर पर लेबेस्ग माप के निम्नलिखित गुण हैं:


# यदि A अंतराल (गणित) I का कार्टेशियन उत्पाद है<sub>1</sub> × मैं<sub>2</sub> × ⋯ × मैं<sub>''n''</sub>, तो A लेबेस्ग-measurable and है <math>\lambda (A)=|I_1|\cdot |I_2|\cdots |I_n|.</math>
# यदि A अंतराल I का कार्टेशियन उत्पाद है<sub>1</sub> × मैं<sub>2</sub> × ⋯ × मैं<sub>''n''</sub>, तो A लेबेस्ग-measurable and है <math>\lambda (A)=|I_1|\cdot |I_2|\cdots |I_n|.</math>
# यदि A गणनीय असंयुक्त लेबेस्ग-मापने योग्य समुच्चयों का एक असंयुक्त संघ है, तो A स्वयं लेबेस्ग-मापने योग्य है और λ(A) सम्मिलित मापन योग्य समुच्चयों के मापों के योग (या [[अनंत श्रृंखला]]) के बराबर है।
# यदि A गणनीय असंयुक्त लेबेस्ग-मापने योग्य समुच्चयों का एक असंयुक्त संघ है, तो A स्वयं लेबेस्ग-मापने योग्य है और λ(A) सम्मिलित मापन योग्य समुच्चयों के मापों के योग (या [[अनंत श्रृंखला]]) के बराबर है।
# यदि A लेबेस्ग-मापने योग्य है, तो इसका [[पूरक (सेट सिद्धांत)]] भी है।
# यदि A लेबेस्ग-मापने योग्य है, तो इसका [[पूरक (सेट सिद्धांत)]] भी है।
# λ(A) ≥ 0 प्रत्येक लेबेस्ग-मापने योग्य समुच्चय A के लिए।
# λ(A) ≥ 0 प्रत्येक लेबेस्ग-मापने योग्य समुच्चय A के लिए।
# यदि A और B लेबेस्ग-मापने योग्य हैं और A, B का उपसमुच्चय है, तो λ(A) ≤ λ(B). (2. का परिणाम)
# यदि A और B लेबेस्ग-मापने योग्य हैं और A, B का उपसमुच्चय है, तो λ(A) ≤ λ(B). (2. का परिणाम)
# लेबेस्ग-measurable समुच्चय के काउंटेबल [[ संघ (सेट सिद्धांत) ]] और [[ चौराहा (सेट सिद्धांत) ]] लेबेस्ग-measurable हैं। (2 और 3 का परिणाम नहीं है, क्योंकि समुच्चय का एक परिवार जो पूरक और असंबद्ध गणनीय यूनियनों के तहत बंद है, को गणनीय यूनियनों के तहत बंद करने की आवश्यकता नहीं है: <math>\{\emptyset, \{1,2,3,4\}, \{1,2\}, \{3,4\}, \{1,3\}, \{2,4\}\}</math>.)
# लेबेस्ग-measurable समुच्चय के काउंटेबल [[ संघ (सेट सिद्धांत) |संघ (सेट सिद्धांत)]] और [[ चौराहा (सेट सिद्धांत) |चौराहा (सेट सिद्धांत)]] लेबेस्ग-measurable हैं। (2 और 3 का परिणाम नहीं है, क्योंकि समुच्चय का एक परिवार जो पूरक और असंबद्ध गणनीय यूनियनों के तहत बंद है, को गणनीय यूनियनों के तहत बंद करने की आवश्यकता नहीं है: <math>\{\emptyset, \{1,2,3,4\}, \{1,2\}, \{3,4\}, \{1,3\}, \{2,4\}\}</math>.)
# यदि A 'R' का एक [[खुला सेट|खुला]] समुच्चय या [[बंद सेट|बंद]] समुच्चय सबसेट है<sup>n</sup> (या यहां तक ​​कि बोरेल समुच्चय, [[मीट्रिक स्थान]] देखें), तो A लेबेस्ग-मापने योग्य है।
# यदि A 'R' का एक [[खुला सेट|खुला]] समुच्चय या [[बंद सेट|बंद]] समुच्चय सबसेट है<sup>n</sup> (या यहां तक ​​कि बोरेल समुच्चय, [[मीट्रिक स्थान]] देखें), तो A लेबेस्ग-मापने योग्य है।
# यदि ए एक लेबेस्ग-मापने योग्य समुच्चय है, तो यह लेबेस्ग माप के अर्थ में लगभग खुला और लगभग बंद है।
# यदि ए एक लेबेस्ग-मापने योग्य समुच्चय है, तो यह लेबेस्ग माप के अर्थ में लगभग खुला और लगभग बंद है।
Line 66: Line 66:
यदि 'R' का उपसमुच्चय<sup>n</sup> का हौसडॉर्फ आयाम n से कम है तो यह n-आयामी लेबेस्ग माप के संबंध में एक शून्य समुच्चय है। यहाँ [[हॉसडॉर्फ आयाम]] 'आर' पर [[यूक्लिडियन मीट्रिक]] के सापेक्ष है<sup>n</sup> (या इसके समतुल्य कोई मीट्रिक [[रूडोल्फ लिपशिट्ज]])। दूसरी ओर, एक समुच्चय में एन से कम [[टोपोलॉजिकल आयाम]] हो सकता है और सकारात्मक एन-आयामी लेबेस्ग माप हो सकता है। इसका एक उदाहरण स्मिथ-वोल्तेरा-कैंटर समुच्चय है, जिसका सामयिक आयाम 0 है, फिर भी सकारात्मक 1-आयामी लेबेस्ग माप है।
यदि 'R' का उपसमुच्चय<sup>n</sup> का हौसडॉर्फ आयाम n से कम है तो यह n-आयामी लेबेस्ग माप के संबंध में एक शून्य समुच्चय है। यहाँ [[हॉसडॉर्फ आयाम]] 'आर' पर [[यूक्लिडियन मीट्रिक]] के सापेक्ष है<sup>n</sup> (या इसके समतुल्य कोई मीट्रिक [[रूडोल्फ लिपशिट्ज]])। दूसरी ओर, एक समुच्चय में एन से कम [[टोपोलॉजिकल आयाम]] हो सकता है और सकारात्मक एन-आयामी लेबेस्ग माप हो सकता है। इसका एक उदाहरण स्मिथ-वोल्तेरा-कैंटर समुच्चय है, जिसका सामयिक आयाम 0 है, फिर भी सकारात्मक 1-आयामी लेबेस्ग माप है।


यह दिखाने के लिए कि दिया गया समुच्चय A लेबेस्ग-मापने योग्य है, आमतौर पर एक अच्छे समुच्चय B को खोजने का प्रयास किया जाता है जो A से केवल एक शून्य समुच्चय से भिन्न होता है (इस अर्थ में कि [[सममित अंतर]] (A − B) ∪ (B − A) ) एक शून्य समुच्चय है) और फिर दिखाएं कि खुले या बंद समुच्चयों से काउंटेबल यूनियनों और चौराहों का उपयोग करके बी उत्पन्न किया जा सकता है।
यह दिखाने के लिए कि दिया गया समुच्चय A लेबेस्ग-मापने योग्य है, सामान्यतः एक अच्छे समुच्चय B को खोजने का प्रयास किया जाता है जो A से केवल एक शून्य समुच्चय से भिन्न होता है (इस अर्थ में कि [[सममित अंतर]] (A − B) ∪ (B − A) ) एक शून्य समुच्चय है) और फिर दिखाएं कि खुले या बंद समुच्चयों से काउंटेबल यूनियनों और चौराहों का उपयोग करके बी उत्पन्न किया जा सकता है।


== लेबेस्ग माप का निर्माण ==
== लेबेस्ग माप का निर्माण ==
Line 92: Line 92:
हार माप को किसी भी स्थानीय रूप से कॉम्पैक्ट समूह पर परिभाषित किया जा सकता है और यह लेबेस्ग माप (आर<sup>n</sup> जोड़ के साथ एक स्थानीय रूप से कॉम्पैक्ट समूह है)।
हार माप को किसी भी स्थानीय रूप से कॉम्पैक्ट समूह पर परिभाषित किया जा सकता है और यह लेबेस्ग माप (आर<sup>n</sup> जोड़ के साथ एक स्थानीय रूप से कॉम्पैक्ट समूह है)।


हॉसडॉर्फ माप, लेबेस्ग माप का एक सामान्यीकरण है जो 'आर' के सबसेट को मापने के लिए उपयोगी है।<sup>n से कम आयामों का n</sup>, जैसे कि [[सबमेनिफोल्ड]], उदाहरण के लिए, 'R' में सतहें या वक्र<sup>3</sup> और [[ भग्न ]] समुच्चय। हॉसडॉर्फ माप को हॉसडॉर्फ आयाम की धारणा से भ्रमित नहीं होना चाहिए।
हॉसडॉर्फ माप, लेबेस्ग माप का एक सामान्यीकरण है जो 'आर' के सबसेट को मापने के लिए उपयोगी है।<sup>n से कम आयामों का n</sup>, जैसे कि [[सबमेनिफोल्ड]], उदाहरण के लिए, 'R' में सतहें या वक्र<sup>3</sup> और [[ भग्न |भग्न]] समुच्चय। हॉसडॉर्फ माप को हॉसडॉर्फ आयाम की धारणा से भ्रमित नहीं होना चाहिए।


यह दिखाया जा सकता है कि कोई अनंत-आयामी लेबेस्ग माप नहीं है | लेबेस्ग माप का कोई अनंत-आयामी एनालॉग नहीं है।
यह दिखाया जा सकता है कि कोई अनंत-आयामी लेबेस्ग माप नहीं है | लेबेस्ग माप का कोई अनंत-आयामी एनालॉग नहीं है।
Line 99: Line 99:


* लेबेस्ग का घनत्व प्रमेय
* लेबेस्ग का घनत्व प्रमेय
* लिउविल संख्या # लिउविल संख्याएं और माप
* लिउविल संख्याएं और माप
* गैर-मापने योग्य समुच्चय
* गैर-मापने योग्य समुच्चय
** विटाली समुच्चय
*विटाली समुच्चय


== संदर्भ ==
== संदर्भ ==

Revision as of 01:27, 13 March 2023

माप सिद्धांत में, गणित की एक शाखा, फ्रांस के गणितज्ञ हेनरी लेबेस्ग के नाम पर लेबेस्ग माप, n-आयामी यूक्लिडियन अंतरिक्ष के सबसेट के लिए माप निर्दिष्ट करने की मानक विधि है। n = 1, 2, या 3 के लिए, यह लंबाई, क्षेत्रफल, या आयतन के मानक माप के साथ मेल खाता है। सामान्यतः, इसे n-आयामी आयतन, n-आयतन, या केवल आयतन भी कहा जाता है।[1] इसका उपयोग पूरे वास्तविक विश्लेषण, विशेष रूप से लेबेस्ग एकीकरण को परिभाषित करने में किया जाता है। ऐसे समुच्चय जिन्हें लेबेस्ग माप निर्दिष्ट किया जा सकता है, लेबेस्ग-मापने योग्य कहलाते हैं; लेबेस्ग-मापने योग्य समुच्चय A का माप यहाँ λ(A) द्वारा दर्शाया गया है।

हेनरी लेबेस्ग ने इस माप का वर्णन वर्ष 1901 में किया, उसके बाद अगले वर्ष लेबेस्ग इंटीग्रल के अपने विवरण के द्वारा वर्णन किया गया। दोनों को 1902 में उनके शोध प्रबंध के हिस्से के रूप में प्रकाशित किया गया था।[2]


परिभाषा

किसी भी अंतराल के लिए (गणित) , या , समुच्चय की वास्तविक संख्याओं में, माना इसकी लंबाई को निरूपित करें। किसी उपसमुच्चय के लिए , लेबेस्ग की बाहरी माप[3] को इन्फिनमम के रूप में परिभाषित किया गया है:

उपरोक्त परिभाषा को निम्नानुसार उच्च आयामों के लिए सामान्यीकृत किया जा सकता है।[4] किसी भी आयताकार घनाभ के लिए जो एक खुले अंतराल का, माना गुणा है, माना इसकी मात्रा को निरूपित करता है। किसी उपसमुच्चय के लिए,

कुछ समुच्चय कैराथियोडोरी कसौटी पर खरे उतरते हैं, जो प्रत्येक के लिए यह आवश्यक है:

ऐसे सभी का समुच्चय σ-बीजगणित बनाता है। ऐसे किसी भी के लिए , इसके लेबेस्ग माप को इसके लेबेस्ग बाहरी माप के रूप में परिभाषित किया गया है: .

एक समुच्चय जो कैराथियोडोरी कसौटी पर खरा नहीं उतरता है वह लेबेस्ग-मापने योग्य नहीं है। जेडएफसी सिद्ध करता है कि गैर-मापने योग्य समुच्चय उपस्थित हैं; उदाहरण विटाली समुच्चय है।

अंतर्ज्ञान

परिभाषा के पहले भाग में कहा गया है कि सबसेट खुले अंतराल के समुच्चय द्वारा कवरेज द्वारा वास्तविक संख्याओं को इसके बाहरी माप में घटा दिया जाता है। अंतराल के इन समुच्चयों में से प्रत्येक अर्थ में , को कवर करता है, चूंकि इन अंतरालों के मिलन में सम्मिलित होता है। किसी भी कवरिंग अंतराल समुच्चय की कुल लंबाई के माप को अधिक अनुमानित कर सकती है, क्योंकि अंतरालों के मिलन का एक उपसमुच्चय है, और इसलिए अंतरालों में वे बिंदु सम्मिलित हो सकते हैं जो के अंदर नहीं हैं। लेबेस्ग बाहरी माप निम्नतम और उच्चतम के रूप में उभर कर आता है। ऐसे सभी संभावित समुच्चयों में से लंबाई की सबसे निचली सीमा (इन्फिनिमम) सहज रूप से, यह उन अंतराल समुच्चयों की कुल लंबाई है जो को सबसे अधिक कसकर फिट करते हैं और ओवरलैप नहीं करते हैं।

यह लेबेस्ग बाहरी माप की विशेषता है। क्या यह बाहरी माप लेबेस्ग माप में उचित अनुवाद करता है, यह एक अतिरिक्त नियम पर निर्भर करता है। उपसमुच्चय लेकर इस स्थिति का परीक्षण किया जाता है, वास्तविक संख्याओं का उपयोग करके को दो भागों में विभाजित करने के साधन के रूप: का हिस्सा जो के साथ प्रतिच्छेद करता है और का शेष भाग जो में नहीं है। इन समुच्चयों का अंतर और है। ये विभाजन बाहरी माप के अधीन हैं। यदि संभव हो तो वास्तविक संख्याओं के ऐसे सभी उपसमुच्चयों के लिए, द्वारा काटे गए के विभाजन में बाहरी माप हैं, जिनका योग का बाहरी माप है, तो का बाहरी लेबेस्ग्यू माप इसका लेबेस्ग माप देता है। सहजता से, इस स्थिति का अर्थ है कि समुच्चय में कुछ विचित्र गुण नहीं होने चाहिए जो दूसरे समुच्चय के माप में विसंगति का कारण बनते हैं, जब उस समुच्चय को क्लिप करने के लिए एक मास्क के रूप में का उपयोग किया जाता है, जो समुच्चय के अस्तित्व पर संकेत देता है जिसके लिए लेबेस्ग्यू बाहरी माप लेबेस्ग माप नहीं देता है। (इस तरह के समुच्चय, वास्तव में, लेबेस्ग-मापने योग्य नहीं हैं।)

उदाहरण

  • कोई बंद अंतराल {{nowrap|[a, b]}वास्तविक संख्याओं का } लेबेस्ग-मापने योग्य है, और इसका लेबेस्ग माप लंबाई है ba. खुला अंतराल (a, b) का एक ही माप है, क्योंकि दो समुच्चयों के बीच समुच्चय अंतर में केवल अंतिम बिंदु a और b होते हैं, जिनमें से प्रत्येक का माप शून्य होता है।
  • अंतराल का कोई कार्टेशियन उत्पाद [a, b] और [c, d] लेबेस्ग-measurable है, और इसका लेबेस्ग माप है (ba)(dc), संगत आयत का क्षेत्रफल।
  • इसके अलावा, हर बोरेल समुच्चय लेबेस्ग-मापने योग्य है। हालांकि, लेबेस्ग-मापने योग्य समुच्चय हैं जो बोरेल समुच्चय नहीं हैं।[5][6]
  • वास्तविक संख्याओं के किसी भी गणनीय समुच्चय का लेबेस्ग माप 0 है। विशेष रूप से, बीजगणितीय संख्याओं के समुच्चय का लेबेस्ग माप 0 है, भले ही समुच्चय R में Dense समुच्चय है।
  • कैंटर समुच्चय और लिउविल संख्या का समुच्चय बेशुमार समुच्चयों के उदाहरण हैं जिनमें लेबेस्ग माप 0 है।
  • यदि नियतत्व का स्वयंसिद्ध सिद्धांत मान्य है तो वास्तविक के सभी समुच्चय लेबेस्ग-मापने योग्य हैं। हालांकि निर्धारण पसंद के स्वयंसिद्ध के साथ संगत नहीं है।
  • विटाली समुच्चय उन समुच्चयों के उदाहरण हैं जो लेबेस्ग माप के संबंध में गैर-मापने योग्य समुच्चय हैं। उनका अस्तित्व पसंद के स्वयंसिद्ध पर निर्भर करता है।
  • ओस्गुड वक्र सकारात्मक संख्या लेबेस्ग माप के साथ सरल समतल वक्र हैं[7] (इसे पीनो वक्र निर्माण के छोटे बदलाव से प्राप्त किया जा सकता है)। ड्रैगन वक्र एक और असामान्य उदाहरण है।
  • कोई भी लाइन , के लिए , एक शून्य लेबेस्ग माप है। सामान्य तौर पर, प्रत्येक उचित hyperplane के परिवेश स्थान में एक शून्य लेबेस्ग माप होता है।

गुण

ट्रांसलेशन इनवेरिएंस: द लेबेस्ग माप और समान हैं।

आर पर लेबेस्ग माप के निम्नलिखित गुण हैं:

  1. यदि A अंतराल I का कार्टेशियन उत्पाद है1 × मैं2 × ⋯ × मैंn, तो A लेबेस्ग-measurable and है
  2. यदि A गणनीय असंयुक्त लेबेस्ग-मापने योग्य समुच्चयों का एक असंयुक्त संघ है, तो A स्वयं लेबेस्ग-मापने योग्य है और λ(A) सम्मिलित मापन योग्य समुच्चयों के मापों के योग (या अनंत श्रृंखला) के बराबर है।
  3. यदि A लेबेस्ग-मापने योग्य है, तो इसका पूरक (सेट सिद्धांत) भी है।
  4. λ(A) ≥ 0 प्रत्येक लेबेस्ग-मापने योग्य समुच्चय A के लिए।
  5. यदि A और B लेबेस्ग-मापने योग्य हैं और A, B का उपसमुच्चय है, तो λ(A) ≤ λ(B). (2. का परिणाम)
  6. लेबेस्ग-measurable समुच्चय के काउंटेबल संघ (सेट सिद्धांत) और चौराहा (सेट सिद्धांत) लेबेस्ग-measurable हैं। (2 और 3 का परिणाम नहीं है, क्योंकि समुच्चय का एक परिवार जो पूरक और असंबद्ध गणनीय यूनियनों के तहत बंद है, को गणनीय यूनियनों के तहत बंद करने की आवश्यकता नहीं है: .)
  7. यदि A 'R' का एक खुला समुच्चय या बंद समुच्चय सबसेट हैn (या यहां तक ​​कि बोरेल समुच्चय, मीट्रिक स्थान देखें), तो A लेबेस्ग-मापने योग्य है।
  8. यदि ए एक लेबेस्ग-मापने योग्य समुच्चय है, तो यह लेबेस्ग माप के अर्थ में लगभग खुला और लगभग बंद है।
  9. एक लेबेस्ग-मापने योग्य समुच्चय को एक खुले समुच्चय और एक निहित बंद समुच्चय के बीच निचोड़ा जा सकता है। इस संपत्ति का उपयोग लेबेस्ग मापनीयता की वैकल्पिक परिभाषा के रूप में किया गया है। ज्यादा ठीक, लेबेस्ग-मापने योग्य है अगर और केवल अगर सबके लिए वहाँ एक खुला समुच्चय उपस्थित है और एक बंद समुच्चय ऐसा है कि और .[8]
  10. एक लेबेस्ग-मापने योग्य समुच्चय को युक्त Gδ समुच्चय के बीच निचोड़ा जा सकता है|Gδ समुच्चय और एक निहित Fσ समुच्चय | एफσ. यानी, अगर A लेबेस्ग-measurable है तो Gδ समुच्चय उपस्थित है | Gδ समुच्चय G और एक Fσ समुच्चय|FσF ऐसा कि G ⊇ A ⊇ F और λ(G \ A) = λ(A \ F) = 0।
  11. लेबेस्ग माप स्थानीय रूप से परिमित माप और आंतरिक नियमित माप दोनों है, और इसलिए यह एक रेडॉन माप है।
  12. लेबेस्ग माप गैर-खाली खुले समुच्चयों पर सख्ती से सकारात्मक माप है, और इसलिए इसका समर्थन (माप सिद्धांत) संपूर्ण 'R' हैएन.
  13. यदि A λ(A) = 0 (एक अशक्त समुच्चय) के साथ एक लेबेस्ग-मापने योग्य समुच्चय है, तो A का प्रत्येक उपसमुच्चय भी एक अशक्त समुच्चय है। ए फोर्टियोरी, ए का प्रत्येक उपसमुच्चय औसत दर्जे का है।
  14. यदि A लेबेस्ग-मापने योग्य है और x 'R' का एक तत्व हैn, तो A + x = {a + x : a ∈ A} द्वारा परिभाषित x द्वारा A का अनुवाद भी लेबेस्ग-मापने योग्य है और A के समान माप है।
  15. यदि ए लेबेस्ग-मापने योग्य है और , फिर का फैलाव द्वारा द्वारा परिभाषित लेबेस्ग-measurable भी है और इसका माप है
  16. अधिक आम तौर पर, यदि टी एक रैखिक परिवर्तन है और ए 'आर' का मापनीय उपसमुच्चय हैn, तो T(A) भी लेबेस्ग-measurable है और इसका माप है .

उपरोक्त सभी को संक्षेप में संक्षेप में प्रस्तुत किया जा सकता है (हालांकि पिछले दो दावे गैर-तुच्छ रूप से निम्नलिखित से जुड़े हुए हैं):

लेबेस्ग-measurable समुच्चय एक sigma-algebra|σ-बीजगणित बनाते हैं जिसमें अंतराल के सभी उत्पाद होते हैं, और λ अद्वितीय पूर्ण माप अनुवाद संबंधी व्युत्क्रम है। अनुवाद-अपरिवर्तनीय माप (गणित) उस σ-बीजगणित पर

लेबेस्ग माप में सिग्मा-परिमित माप|σ-परिमित होने का गुण भी है।

अशक्त समुच्चय

R का एक उपसमुच्चयn एक रिक्त समुच्चय है, यदि प्रत्येक ε > 0 के लिए, इसे n अंतरालों के गिने-चुने कई उत्पादों से कवर किया जा सकता है, जिनकी कुल मात्रा अधिकतम ε है। सभी गणनीय समुच्चय अशक्त समुच्चय होते हैं।

यदि 'R' का उपसमुच्चयn का हौसडॉर्फ आयाम n से कम है तो यह n-आयामी लेबेस्ग माप के संबंध में एक शून्य समुच्चय है। यहाँ हॉसडॉर्फ आयाम 'आर' पर यूक्लिडियन मीट्रिक के सापेक्ष हैn (या इसके समतुल्य कोई मीट्रिक रूडोल्फ लिपशिट्ज)। दूसरी ओर, एक समुच्चय में एन से कम टोपोलॉजिकल आयाम हो सकता है और सकारात्मक एन-आयामी लेबेस्ग माप हो सकता है। इसका एक उदाहरण स्मिथ-वोल्तेरा-कैंटर समुच्चय है, जिसका सामयिक आयाम 0 है, फिर भी सकारात्मक 1-आयामी लेबेस्ग माप है।

यह दिखाने के लिए कि दिया गया समुच्चय A लेबेस्ग-मापने योग्य है, सामान्यतः एक अच्छे समुच्चय B को खोजने का प्रयास किया जाता है जो A से केवल एक शून्य समुच्चय से भिन्न होता है (इस अर्थ में कि सममित अंतर (A − B) ∪ (B − A) ) एक शून्य समुच्चय है) और फिर दिखाएं कि खुले या बंद समुच्चयों से काउंटेबल यूनियनों और चौराहों का उपयोग करके बी उत्पन्न किया जा सकता है।

लेबेस्ग माप का निर्माण

लेबेस्ग माप का आधुनिक निर्माण कैराथोडोरी के विस्तार प्रमेय का एक अनुप्रयोग है। यह निम्नानुसार आगे बढ़ता है।

हल करना nN. आर में एक बॉक्सn फॉर्म का एक समुच्चय है

कहाँ biai, और यहां उत्पाद प्रतीक कार्टेशियन उत्पाद का प्रतिनिधित्व करता है। इस बॉक्स की मात्रा को परिभाषित किया गया है

'R' के किसी उपसमुच्चय A के लिएn, हम इसके बाहरी माप λ*(A) को निम्न द्वारा परिभाषित कर सकते हैं:

फिर हम समुच्चय A को लेबेस्ग-मापने योग्य के रूप में परिभाषित करते हैं यदि 'R' के प्रत्येक उपसमुच्चय S के लिएएन,

ये लेबेस्ग-measurable समुच्चय एक σ-algebra|σ-algebra बनाते हैं, और लेबेस्ग माप द्वारा परिभाषित किया गया है λ(A) = λ*(A) किसी भी लेबेस्ग-मापने योग्य समुच्चय ए के लिए।

सेट का अस्तित्व जो लेबेस्ग-मापने योग्य नहीं हैं, पसंद के समुच्चय-सैद्धांतिक सिद्धांत का परिणाम है, जो समुच्चय सिद्धांत के लिए स्वयंसिद्धों के कई पारंपरिक प्रणालियों से स्वतंत्र है। विटाली समुच्चय, जो स्वयंसिद्ध से अनुसरण करता है, कहता है कि 'आर' के उपसमुच्चय उपस्थित हैं जो लेबेस्ग-मापने योग्य नहीं हैं। पसंद के स्वयंसिद्ध को मानते हुए, कई आश्चर्यजनक गुणों के साथ गैर-मापने योग्य समुच्चय प्रदर्शित किए गए हैं, जैसे कि बनच-टार्स्की विरोधाभास।

1970 में, रॉबर्ट एम. सोलोवे ने दिखाया कि पसंद के स्वयंसिद्ध के अभाव में ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत के ढांचे के भीतर लेबेस्ग-मापने योग्य नहीं होने वाले समुच्चय का अस्तित्व सिद्ध नहीं होता है (सोलोवे का मॉडल देखें)।[9]


अन्य मापों से संबंध

बोरेल माप उन समुच्चयों पर लेबेस्ग माप से सहमत है जिसके लिए इसे परिभाषित किया गया है; हालांकि, बोरल माप योग्य समुच्चयों की तुलना में कई अधिक लेबेस्ग-मापने योग्य समुच्चय हैं। बोरेल माप अनुवाद-अपरिवर्तनीय है, लेकिन पूर्ण माप नहीं है।

हार माप को किसी भी स्थानीय रूप से कॉम्पैक्ट समूह पर परिभाषित किया जा सकता है और यह लेबेस्ग माप (आरn जोड़ के साथ एक स्थानीय रूप से कॉम्पैक्ट समूह है)।

हॉसडॉर्फ माप, लेबेस्ग माप का एक सामान्यीकरण है जो 'आर' के सबसेट को मापने के लिए उपयोगी है।n से कम आयामों का n, जैसे कि सबमेनिफोल्ड, उदाहरण के लिए, 'R' में सतहें या वक्र3 और भग्न समुच्चय। हॉसडॉर्फ माप को हॉसडॉर्फ आयाम की धारणा से भ्रमित नहीं होना चाहिए।

यह दिखाया जा सकता है कि कोई अनंत-आयामी लेबेस्ग माप नहीं है | लेबेस्ग माप का कोई अनंत-आयामी एनालॉग नहीं है।

यह भी देखें

  • लेबेस्ग का घनत्व प्रमेय
  • लिउविल संख्याएं और माप
  • गैर-मापने योग्य समुच्चय
  • विटाली समुच्चय

संदर्भ

  1. The term volume is also used, more strictly, as a synonym of 3-dimensional volume
  2. Lebesgue, H. (1902). "Intégrale, Longueur, Aire". Annali di Matematica Pura ed Applicata. 7: 231–359. doi:10.1007/BF02420592. S2CID 121256884.
  3. Royden, H. L. (1988). वास्तविक विश्लेषण (3rd ed.). New York: Macmillan. p. 56. ISBN 0-02-404151-3.
  4. https://de.wikipedia.org/wiki/Lebesgue-Ma%C3%9F
  5. Asaf Karagila. "What sets are Lebesgue-measurable?". math stack exchange. Retrieved 26 September 2015.
  6. Asaf Karagila. "Is there a sigma-algebra on R strictly between the Borel and Lebesgue algebras?". math stack exchange. Retrieved 26 September 2015.
  7. Osgood, William F. (January 1903). "धनात्मक क्षेत्र का जॉर्डन वक्र". Transactions of the American Mathematical Society. American Mathematical Society. 4 (1): 107–112. doi:10.2307/1986455. ISSN 0002-9947. JSTOR 1986455.
  8. Carothers, N. L. (2000). वास्तविक विश्लेषण. Cambridge: Cambridge University Press. pp. 293. ISBN 9780521497565.
  9. Solovay, Robert M. (1970). "समुच्चय-सिद्धांत का एक मॉडल जिसमें वास्तविकताओं का प्रत्येक समुच्चय Lebesgue-मापने योग्य है". Annals of Mathematics. Second Series. 92 (1): 1–56. doi:10.2307/1970696. JSTOR 1970696.