एन्सेम्बल (गणितीय भौतिकी): Difference between revisions
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
== भौतिक विचार == | == भौतिक विचार == | ||
समुच्चय इस धारणा को औपचारिक रूप देता है कि प्रयोगकर्ता समान [[स्थूल]] स्थितियों के अंतर्गत बार-बार प्रयोग करता है, लेकिन सूक्ष्म विवरणों को नियंत्रित करने में असमर्थ, विभिन्न परिणामों की एक श्रृंखला का निरीक्षण करने की उपेक्षा कर सकता है। | समुच्चय इस धारणा को औपचारिक रूप देता है कि प्रयोगकर्ता समान [[स्थूल]] स्थितियों के अंतर्गत बार-बार प्रयोग पुनरावृत करता है, लेकिन सूक्ष्म विवरणों को नियंत्रित करने में असमर्थ, विभिन्न परिणामों की एक श्रृंखला का निरीक्षण करने की उपेक्षा कर सकता है। | ||
ऊष्मप्रवैगिकी, सांख्यिकीय यांत्रिकी और [[क्वांटम सांख्यिकीय यांत्रिकी]] में समुच्चय का अनुमानित आकार बहुत बड़ा हो सकता है, जिसमें प्रत्येक संभव [[माइक्रोस्टेट (सांख्यिकीय यांत्रिकी)|सूक्ष्मपरिमापी | ऊष्मप्रवैगिकी, सांख्यिकीय यांत्रिकी और [[क्वांटम सांख्यिकीय यांत्रिकी]] में समुच्चय का अनुमानित आकार बहुत बड़ा हो सकता है, जिसमें प्रत्येक संभव [[माइक्रोस्टेट (सांख्यिकीय यांत्रिकी)|सूक्ष्मपरिमापी अवस्था (सांख्यिकीय यांत्रिकी)]] सम्मिलित हो सकता है, जो प्रणाली अपने देखे गए स्थूलदर्शीय गुणों के अनुरूप हो सकता है। कई महत्वपूर्ण भौतिक अवस्थाओ के लिए, उपयुक्त [[विभाजन समारोह (गणित)|विभाजन फलन (गणित)]] के संदर्भ में, संपूर्णत: की कई उष्मागतिक मात्राओं के लिए स्पष्ट सूत्र प्राप्त करने के लिए, पूरे ऊष्मप्रवैगिकी समुच्चय पर प्रत्यक्ष रूप से औसत की गणना करना संभव है। | ||
संतुलन या स्थिर समुच्चय की अवधारणा सांख्यिकीय समुच्चय के कई अनुप्रयोगों के लिए महत्वपूर्ण है। हालांकि एक यांत्रिक प्रणाली निश्चित रूप से समय के साथ विकसित होती है, यह आवश्यक नहीं कि समुच्चय विकसित हो। वास्तव में, समुच्चय विकसित नहीं होगा यदि इसमें प्रणाली के सभी पूर्व और भविष्य के चरण सम्मिलित हैं। इस तरह के सांख्यिकीय समुच्चय, जो समय के साथ नहीं | संतुलन या स्थिर समुच्चय की अवधारणा सांख्यिकीय समुच्चय के कई अनुप्रयोगों के लिए महत्वपूर्ण है। हालांकि एक यांत्रिक प्रणाली निश्चित रूप से समय के साथ विकसित होती है, यह आवश्यक नहीं कि समुच्चय विकसित हो। वास्तव में, समुच्चय विकसित नहीं होगा यदि इसमें प्रणाली के सभी पूर्व और भविष्य के चरण सम्मिलित हैं। इस तरह के सांख्यिकीय समुच्चय, जो समय के साथ परिवर्तित नहीं करता है, अतः अवर्द्धमान कहलाता है और इसे सांख्यिकीय संतुलन में कहा जा सकता है।<ref name="gibbs"/> | ||
Line 23: | Line 23: | ||
[[File:Statistical Ensembles.png|600px|thumb|right|पांच सांख्यिकीय समुच्चय का दृश्य प्रतिनिधित्व (बाएं से दाएं): [[माइक्रोकैनोनिकल पहनावा|बृहत् विहित समुच्चय]], [[विहित पहनावा|विहित समुच्चय]], [[भव्य विहित पहनावा|बृहत् विहित समुच्चय]], [[आइसोबैरिक-इज़ोटेर्मल पहनावा|आइसोबैरिक-इज़ोटेर्मल समुच्चय]], [[आइसोथेल्पिक-आइसोबैरिक पहनावा|आइसोथेल्पिक-आइसोबैरिक समुच्चय]]]]ऊष्मप्रवैगिकी का अध्ययन उन प्रणालियों से संबंधित है जो मानव धारणा को स्थिर (उनके आंतरिक भागों की गति के होने के बाद भी) प्रतीत होते हैं, और जिन्हें स्थूलदर्शीय रूप से देखने योग्य चर के समुच्चय द्वारा वर्णित किया जा सकता है। इन प्रणालियों को सांख्यिकीय समूहों द्वारा वर्णित किया जा सकता है जो कुछ अवलोकन योग्य मापदंडों पर निर्भर करते हैं, और जो सांख्यिकीय संतुलन में हैं। गिब्स ने ध्यान दिया कि विभिन्न स्थूलदर्शीय नियंत्रण विशेष सांख्यिकीय विशेषताओं के साथ विभिन्न प्रकार के समुच्चय की ओर ले जाती हैं। गिब्स द्वारा तीन महत्वपूर्ण ऊष्मप्रवैगिकी समूहों को परिभाषित किया गया था:<ref name="gibbs"/> | [[File:Statistical Ensembles.png|600px|thumb|right|पांच सांख्यिकीय समुच्चय का दृश्य प्रतिनिधित्व (बाएं से दाएं): [[माइक्रोकैनोनिकल पहनावा|बृहत् विहित समुच्चय]], [[विहित पहनावा|विहित समुच्चय]], [[भव्य विहित पहनावा|बृहत् विहित समुच्चय]], [[आइसोबैरिक-इज़ोटेर्मल पहनावा|आइसोबैरिक-इज़ोटेर्मल समुच्चय]], [[आइसोथेल्पिक-आइसोबैरिक पहनावा|आइसोथेल्पिक-आइसोबैरिक समुच्चय]]]]ऊष्मप्रवैगिकी का अध्ययन उन प्रणालियों से संबंधित है जो मानव धारणा को स्थिर (उनके आंतरिक भागों की गति के होने के बाद भी) प्रतीत होते हैं, और जिन्हें स्थूलदर्शीय रूप से देखने योग्य चर के समुच्चय द्वारा वर्णित किया जा सकता है। इन प्रणालियों को सांख्यिकीय समूहों द्वारा वर्णित किया जा सकता है जो कुछ अवलोकन योग्य मापदंडों पर निर्भर करते हैं, और जो सांख्यिकीय संतुलन में हैं। गिब्स ने ध्यान दिया कि विभिन्न स्थूलदर्शीय नियंत्रण विशेष सांख्यिकीय विशेषताओं के साथ विभिन्न प्रकार के समुच्चय की ओर ले जाती हैं। गिब्स द्वारा तीन महत्वपूर्ण ऊष्मप्रवैगिकी समूहों को परिभाषित किया गया था:<ref name="gibbs"/> | ||
* सूक्ष्मविहित समुच्चय (या एनवीई समुच्चय) - सांख्यिकीय समुच्चय जहां प्रणाली की समग्र ऊर्जा और प्रणाली में कणों की संख्या प्रत्येक विशेष मानो के लिए निर्धारित होती है; समुच्चय के प्रत्येक सदस्य के लिए समान समग्र ऊर्जा और कण संख्या होना आवश्यक है। सांख्यिकीय संतुलन में रहने के लिए प्रणाली को (अपने पर्यावरण के साथ ऊर्जा या कणों का आदान-प्रदान करने में असमर्थ) | * सूक्ष्मविहित समुच्चय (या एनवीई समुच्चय) - सांख्यिकीय समुच्चय जहां प्रणाली की समग्र ऊर्जा और प्रणाली में कणों की संख्या प्रत्येक विशेष मानो के लिए निर्धारित होती है; समुच्चय के प्रत्येक सदस्य के लिए समान समग्र ऊर्जा और कण संख्या होना आवश्यक है। सांख्यिकीय संतुलन में रहने के लिए प्रणाली को (अपने पर्यावरण के साथ ऊर्जा या कणों का आदान-प्रदान करने में असमर्थ) पूर्ण रूप से अलग रहना चाहिए।<ref name="gibbs"/> | ||
*प्रामाणिक समुच्चय (या एनवीटी समुच्चय) - सांख्यिकीय समुच्चय जहाँ ऊर्जा सही से ज्ञात नहीं है लेकिन कणों की संख्या निश्चित है। ऊर्जा के स्थान पर, [[तापमान]] निर्दिष्ट किया गया है। विहित समुच्चय एक संवृत प्रणाली का वर्णन करने के लिए उपयुक्त है जो ऊष्मा अवगाह के साथ दुर्बल [[थर्मल संपर्क|तापीय संपर्क]] में है या रहा है। सांख्यिकीय संतुलन में रहने के लिए, प्रणाली को | *प्रामाणिक समुच्चय (या एनवीटी समुच्चय) - सांख्यिकीय समुच्चय जहाँ ऊर्जा सही से ज्ञात नहीं है लेकिन कणों की संख्या निश्चित है। ऊर्जा के स्थान पर, [[तापमान]] निर्दिष्ट किया गया है। विहित समुच्चय एक संवृत प्रणाली का वर्णन करने के लिए उपयुक्त है जो ऊष्मा अवगाह के साथ दुर्बल [[थर्मल संपर्क|तापीय संपर्क]] में है या रहा है। सांख्यिकीय संतुलन में रहने के लिए, प्रणाली को पूर्ण रूप से बंद रहना चाहिए (अपने पर्यावरण के साथ कणों का आदान-प्रदान करने में असमर्थ) और अन्य प्रणालियों के साथ दुर्बल तापीय संपर्क में आ सकता है जो समान तापमान वाले समुच्चय द्वारा वर्णित हैं।<ref name="gibbs" /> | ||
*बृहत् विहित समुच्चय (या μVT समुच्चय) - सांख्यिकीय समुच्चय जहां न तो ऊर्जा और न ही कण संख्या निश्चित होती है। उनके स्थान पर, तापमान और [[रासायनिक क्षमता]] निर्दिष्ट की जाती है। विवृत प्रणाली का वर्णन करने के लिए बृहत् विहित समुच्चय उपयुक्त है: जो द्रवाशय (तापीय संपर्क, रासायनिक संपर्क, विकिरण संपर्क, विद्युत संपर्क, आदि) के साथ दुर्बल संपर्क में है या रहा है। समुच्चय सांख्यिकीय संतुलन में रहता है यदि प्रणाली अन्य प्रणालियों के साथ दुर्बल संपर्क में आता है जो समान तापमान और रासायनिक क्षमता वाले समुच्चय द्वारा वर्णित हैं।<ref name="gibbs" /> | *बृहत् विहित समुच्चय (या μVT समुच्चय) - सांख्यिकीय समुच्चय जहां न तो ऊर्जा और न ही कण संख्या निश्चित होती है। उनके स्थान पर, तापमान और [[रासायनिक क्षमता]] निर्दिष्ट की जाती है। विवृत प्रणाली का वर्णन करने के लिए बृहत् विहित समुच्चय उपयुक्त है: जो द्रवाशय (तापीय संपर्क, रासायनिक संपर्क, विकिरण संपर्क, विद्युत संपर्क, आदि) के साथ दुर्बल संपर्क में है या रहा है। समुच्चय सांख्यिकीय संतुलन में रहता है यदि प्रणाली अन्य प्रणालियों के साथ दुर्बल संपर्क में आता है जो समान तापमान और रासायनिक क्षमता वाले समुच्चय द्वारा वर्णित हैं।<ref name="gibbs" /> | ||
Line 32: | Line 32: | ||
== प्रतिनिधित्व == | == प्रतिनिधित्व == | ||
सांख्यिकीय समुच्चय के लिए परिशुद्ध गणितीय अभिव्यक्ति का विचाराधीन यांत्रिकी के प्रकार (क्वांटम या उत्कृष्ट) के आधार पर एक अलग रूप है। उत्कृष्ट स्थिति में, समुच्चय सूक्ष्म अवस्था पर एक प्रायिकता | सांख्यिकीय समुच्चय के लिए परिशुद्ध गणितीय अभिव्यक्ति का विचाराधीन यांत्रिकी के प्रकार (क्वांटम या उत्कृष्ट) के आधार पर एक अलग रूप है। उत्कृष्ट स्थिति में, समुच्चय सूक्ष्म अवस्था पर एक प्रायिकता बंटन है। क्वांटम यांत्रिकी में, यह धारणा, वॉन न्यूमैन के कारण, आने-जाने वाले प्रेक्षणों के प्रत्येक पूर्ण समुच्चय के परिणामों पर प्रायिकता बंटन प्रदान करने का एक तरीका है। उत्कृष्ट यांत्रिकी में, समुच्चय को [[चरण स्थान|प्रावस्था-समष्टि]] में प्रायिकता बंटन के रूप में लिखा जाता है; सूक्ष्म अवस्था आकार की इकाइयों में विभाजन प्रावस्था-समष्टि का परिणाम हैं, हालांकि इन इकाइयों का आकार अधिकांश सीमा तक व्यवस्थित रूप से चयन किया जा सकता है। | ||
=== प्रतिनिधित्व के लिए आवश्यकताएँ === | === प्रतिनिधित्व के लिए आवश्यकताएँ === | ||
Line 46: | Line 46: | ||
{{main|घनत्व मैट्रिक्स}} | {{main|घनत्व मैट्रिक्स}} | ||
क्वांटम यांत्रिकी (एक मिश्रित अवस्था के रूप में भी जाना जाता है) में सांख्यिकीय समुच्चय प्रायः एक [[घनत्व मैट्रिक्स|घनत्व आव्यूह]] द्वारा दर्शाया जाता है, जिसे <math>\hat{\rho}</math> द्वारा निरूपित किया जाता है। घनत्व आव्यूह एक | क्वांटम यांत्रिकी (एक मिश्रित अवस्था के रूप में भी जाना जाता है) में सांख्यिकीय समुच्चय प्रायः एक [[घनत्व मैट्रिक्स|घनत्व आव्यूह]] द्वारा दर्शाया जाता है, जिसे <math>\hat{\rho}</math> द्वारा निरूपित किया जाता है। घनत्व आव्यूह एक पूर्ण रूप से सामान्य उपकरण प्रदान करता है जो क्वांटम अनिश्चितताओं (वर्तमान में तथापि प्रणाली की स्थिति पूर्ण रूप से ज्ञात हो) और उत्कृष्ट अनिश्चितताओं (ज्ञान की कमी के कारण) को एकीकृत तरीके से सम्मिलित कर सकता है। कोई भौतिक अवलोकन योग्य {{math|''X''}} क्वांटम यांत्रिकी में {{math|''X̂''}} संक्रियक के रूप में लिखा जा सकता है, सांख्यिकीय समुच्चय पर इस संक्रियक <math> \rho </math> पर अपेक्षित मान निम्नलिखित संकेत [[ट्रेस (रैखिक बीजगणित)|(रैखिक बीजगणित)]] द्वारा दिया गया है: | ||
:<math>\langle X \rangle = \operatorname{Tr}(\hat X \rho).</math> | :<math>\langle X \rangle = \operatorname{Tr}(\hat X \rho).</math> | ||
इसका उपयोग औसत का मूल्यांकन करने (संक्रियक {{math|''X̂''}}), प्रसरण (संक्रियक {{math|''X̂''<sup> 2</sup>}}), [[सहप्रसरण]] (संक्रियक का उपयोग करके {{math|''X̂Ŷ''}}), आदि के लिए किया जा सकता है। सदैव घनत्व आव्यूह में <math>\operatorname{Tr}{\hat{\rho}}=1</math> संकेत होना चाहिए (यह अनिवार्य रूप से शर्त है कि संभावनाओं को एक में जोड़ना चाहिए)। | इसका उपयोग औसत का मूल्यांकन करने (संक्रियक {{math|''X̂''}}), प्रसरण (संक्रियक {{math|''X̂''<sup> 2</sup>}}), [[सहप्रसरण]] (संक्रियक का उपयोग करके {{math|''X̂Ŷ''}}), आदि के लिए किया जा सकता है। सदैव घनत्व आव्यूह में <math>\operatorname{Tr}{\hat{\rho}}=1</math> संकेत होना चाहिए (यह अनिवार्य रूप से शर्त है कि संभावनाओं को एक में जोड़ना चाहिए)। | ||
Line 58: | Line 58: | ||
=== उत्कृष्ट यांत्रिक === | === उत्कृष्ट यांत्रिक === | ||
[[File:Hamiltonian flow classical.gif|frame|प्रावस्था-समष्टि (शीर्ष) में [[हैमिल्टनियन यांत्रिकी]] प्रणालियों के एक समूह का विकास। प्रत्येक प्रणाली में एक-आयामी | [[File:Hamiltonian flow classical.gif|frame|प्रावस्था-समष्टि (शीर्ष) में [[हैमिल्टनियन यांत्रिकी]] प्रणालियों के एक समूह का विकास। प्रत्येक प्रणाली में एक-आयामी विभव कूप (लाल वक्र, निचला आंकड़ा) में एक विशाल कण होता है। प्रारंभिक रूप से सुसंहत समुच्चय समय के साथ घूर्णन करता है।]]उत्कृष्ट यांत्रिकी में, समुच्चय प्रणाली के प्रावस्था-समष्टि पर परिभाषित प्रायिकता घनत्व फलन द्वारा दर्शाया जाता है।<ref name="gibbs"/> जबकि एक व्यक्तिगत प्रणाली हैमिल्टन के समीकरणों के अनुसार विकसित होती है, लिउविले के समीकरण (हैमिल्टनियन) के अनुसार समय के साथ घनत्व फलन (समुच्चय) विकसित होता है। | ||
हैमिल्टनियन यांत्रिकी में भागों की एक परिभाषित संख्या के साथ, प्रावस्था-समष्टि {{math|''n''}} होता है [[सामान्यीकृत निर्देशांक]] {{math|''q''<sub>1</sub>, ... ''q''<sub>''n''</sub>}}, और {{math|''n''}} संबंधित [[विहित गति]] कहा जाता है तब {{math|''p''<sub>1</sub>, ... ''p''<sub>''n''</sub>}}. समुच्चय संयुक्त प्रायिकता घनत्व फलन {{math|''ρ''(''p''<sub>1</sub>, ... ''p''<sub>''n''</sub>, ''q''<sub>1</sub>, ... ''q''<sub>''n''</sub>)}} द्वारा दर्शाया जाता है। | हैमिल्टनियन यांत्रिकी में भागों की एक परिभाषित संख्या के साथ, प्रावस्था-समष्टि {{math|''n''}} होता है [[सामान्यीकृत निर्देशांक]] {{math|''q''<sub>1</sub>, ... ''q''<sub>''n''</sub>}}, और {{math|''n''}} संबंधित [[विहित गति]] कहा जाता है तब {{math|''p''<sub>1</sub>, ... ''p''<sub>''n''</sub>}}. समुच्चय संयुक्त प्रायिकता घनत्व फलन {{math|''ρ''(''p''<sub>1</sub>, ... ''p''<sub>''n''</sub>, ''q''<sub>1</sub>, ... ''q''<sub>''n''</sub>)}} द्वारा दर्शाया जाता है। | ||
यदि प्रणाली में भागों की संख्या को समुच्चय में प्रणाली के बीच भिन्न होने की स्वीकृति है (जैसा कि एक बृहत् समुच्चय में जहां कणों की संख्या एक यादृच्छिक मात्रा है), तो यह एक विस्तारित प्रावस्था-समष्टि पर एक प्रायिकता | यदि प्रणाली में भागों की संख्या को समुच्चय में प्रणाली के बीच भिन्न होने की स्वीकृति है (जैसा कि एक बृहत् समुच्चय में जहां कणों की संख्या एक यादृच्छिक मात्रा है), तो यह एक विस्तारित प्रावस्था-समष्टि पर एक प्रायिकता बंटन है जिसमें आगे के चर सम्मिलित हैं जैसे कण संख्या {{math|''N''<sub>1</sub>}} (पहली तरह का कण), {{math|''N''<sub>2</sub>}} (द्वितीय प्रकार का कण), और इतने पर {{math|''N''<sub>''s''</sub>}} (अंतिम प्रकार का कण; {{math|''s''}} कितने विभिन्न प्रकार के कण हैं)। समुच्चय तब एक संयुक्त प्रायिकता घनत्व फलन {{math|''ρ''(''N''<sub>1</sub>, ... ''N''<sub>''s''</sub>, ''p''<sub>1</sub>, ... ''p''<sub>''n''</sub>, ''q''<sub>1</sub>, ... ''q''<sub>''n''</sub>)}} द्वारा दर्शाया जाता है। निर्देशांक की संख्या {{math|''n''}} कणों की संख्या के साथ परिवर्तित होता रहता है। | ||
कोई यांत्रिक मात्रा {{math|''X''}} को प्रणाली के चरण के फलन के रूप में लिखा जा सकता है। इस तरह की किसी भी मात्रा का अपेक्षित मान इस मात्रा के पूरे प्रावस्था-समष्टि {{math|''ρ''}} पर एक अभिन्न द्वारा भारित द्वारा दिया जाता है: | कोई यांत्रिक मात्रा {{math|''X''}} को प्रणाली के चरण के फलन के रूप में लिखा जा सकता है। इस तरह की किसी भी मात्रा का अपेक्षित मान इस मात्रा के पूरे प्रावस्था-समष्टि {{math|''ρ''}} पर एक अभिन्न द्वारा भारित द्वारा दिया जाता है: | ||
Line 68: | Line 68: | ||
प्रायिकता सामान्यीकरण की स्थिति प्रयुक्त होती है, आवश्यकता होती है | प्रायिकता सामान्यीकरण की स्थिति प्रयुक्त होती है, आवश्यकता होती है | ||
:<math>\sum_{N_1 = 0}^{\infty} \ldots \sum_{N_s = 0}^{\infty} \int \ldots \int \rho \, dp_1 \ldots dq_n = 1.</math> | :<math>\sum_{N_1 = 0}^{\infty} \ldots \sum_{N_s = 0}^{\infty} \int \ldots \int \rho \, dp_1 \ldots dq_n = 1.</math> | ||
प्रावस्था-समष्टि एक सतत स्थान है जिसमें किसी भी छोटे क्षेत्र के अंदर अनंत संख्या में अलग-अलग भौतिक अवस्थाएँ होती हैं। प्रावस्था-समष्टि में प्रायिकता घनत्व को सूक्ष्म अवस्था पर प्रायिकता | प्रावस्था-समष्टि एक सतत स्थान है जिसमें किसी भी छोटे क्षेत्र के अंदर अनंत संख्या में अलग-अलग भौतिक अवस्थाएँ होती हैं। प्रावस्था-समष्टि में प्रायिकता घनत्व को सूक्ष्म अवस्था पर प्रायिकता बंटन से जोड़ने के लिए, यह आवश्यक है कि किसी तरह प्रावस्था-समष्टि को उन ब्लॉकों में विभाजित किया जाए जो प्रणाली के विभिन्न अवस्थाओ का निष्पक्ष तरीके से प्रतिनिधित्व करते हुए वितरित किए जाते हैं। यह पता चला है कि ऐसा करने का सही तरीका विहित प्रावस्था-समष्टि के समान आकार के ब्लॉक में परिणाम देता है, और इसलिए उत्कृष्ट यांत्रिकी में एक सूक्ष्म अवस्था विहित निर्देशांक के प्रावस्था-समष्टि में एक विस्तारित क्षेत्र है जिसमें एक विशेष मात्रा होती है।<ref group=note>This equal-volume partitioning is a consequence of [[Liouville's theorem (Hamiltonian)|Liouville's theorem]], i. e., the principle of conservation of extension in canonical phase space for Hamiltonian mechanics. This can also be demonstrated starting with the conception of an ensemble as a multitude of systems. See Gibbs' ''Elementary Principles'', Chapter I.</ref> विशेष रूप से, प्रायिकता घनत्व फलन प्रावस्था-समष्टि में, {{math|''ρ''}}, सूक्ष्म अवस्था पर प्रायिकता बंटन से संबंधित है, {{math|''P''}} कारक द्वारा | ||
:<math>\rho = \frac{1}{h^n C} P,</math> | :<math>\rho = \frac{1}{h^n C} P,</math> | ||
जहाँ | जहाँ | ||
Line 77: | Line 77: | ||
==== प्रावस्था-समष्टि में अधि-गणना को सही करना ==== | ==== प्रावस्था-समष्टि में अधि-गणना को सही करना ==== | ||
सामान्य रूप से, प्रावस्था-समष्टि में कई अलग-अलग समष्टि में समान भौतिक स्थिति के प्रतिदर्श होते हैं। यह इस बात का परिणाम है कि भौतिक अवस्था को गणितीय निर्देशांकों में कूटबद्ध किया जाता है; समन्वय प्रणाली का सबसे सरल विकल्प प्रायः एक अवस्था को कई तरीकों से एन्कोड करने की स्वीकृति देता है। इसका एक उदाहरण समान कणों की एक गैस है जिसका अवस्था कणों की व्यक्तिगत स्थिति और संवेग के संदर्भ में लिखा जाता है: जब दो कणों का आदान-प्रदान होता है, प्रावस्था-समष्टि में परिणामी बिंदु अलग होता है, और फिर भी यह एक समान भौतिक स्थिति प्रणाली से अनुरूप है। सांख्यिकीय यांत्रिकी (भौतिक अवस्थाओं के बारे में एक सिद्धांत) में यह पहचानना महत्वपूर्ण है कि प्रावस्था-समष्टि सिर्फ एक गणितीय निर्माण है, और प्रावस्था-समष्टि पर एकीकृत करते समय वास्तविक भौतिक अवस्थाओं से अधिक गणना नहीं करना है। अधि-गणना से | सामान्य रूप से, प्रावस्था-समष्टि में कई अलग-अलग समष्टि में समान भौतिक स्थिति के प्रतिदर्श होते हैं। यह इस बात का परिणाम है कि भौतिक अवस्था को गणितीय निर्देशांकों में कूटबद्ध किया जाता है; समन्वय प्रणाली का सबसे सरल विकल्प प्रायः एक अवस्था को कई तरीकों से एन्कोड करने की स्वीकृति देता है। इसका एक उदाहरण समान कणों की एक गैस है जिसका अवस्था कणों की व्यक्तिगत स्थिति और संवेग के संदर्भ में लिखा जाता है: जब दो कणों का आदान-प्रदान होता है, प्रावस्था-समष्टि में परिणामी बिंदु अलग होता है, और फिर भी यह एक समान भौतिक स्थिति प्रणाली से अनुरूप है। सांख्यिकीय यांत्रिकी (भौतिक अवस्थाओं के बारे में एक सिद्धांत) में यह पहचानना महत्वपूर्ण है कि प्रावस्था-समष्टि सिर्फ एक गणितीय निर्माण है, और प्रावस्था-समष्टि पर एकीकृत करते समय वास्तविक भौतिक अवस्थाओं से अधिक गणना नहीं करना है। अधि-गणना से महत्वपूर्ण समस्याएं हो सकती हैं: | ||
* समन्वय प्रणाली के चयन पर व्युत्पन्न मात्राओं (जैसे एन्ट्रापी और रासायनिक क्षमता) की निर्भरता, क्योंकि एक समन्वय प्रणाली दूसरे की तुलना में अधिक या कम अधिक दिखा सकती है।<ref group="note">In some cases the overcounting error is benign. An example is the [[Charts on SO(3)|choice of coordinate system used for representing orientations of three-dimensional objects]]. A simple encoding is the [[3-sphere]] (e. g., unit [[quaternion]]s) which is a [[double covering group|double cover]]—each physical orientation can be encoded in two ways. If this encoding is used without correcting the overcounting, then the entropy will be higher by {{math|''k'' log 2}} per rotatable object and the chemical potential lower by {{math|''kT'' log 2}}. This does not actually lead to any observable error since it only causes unobservable offsets.</ref> | * समन्वय प्रणाली के चयन पर व्युत्पन्न मात्राओं (जैसे एन्ट्रापी और रासायनिक क्षमता) की निर्भरता, क्योंकि एक समन्वय प्रणाली दूसरे की तुलना में अधिक या कम अधिक दिखा सकती है।<ref group="note">In some cases the overcounting error is benign. An example is the [[Charts on SO(3)|choice of coordinate system used for representing orientations of three-dimensional objects]]. A simple encoding is the [[3-sphere]] (e. g., unit [[quaternion]]s) which is a [[double covering group|double cover]]—each physical orientation can be encoded in two ways. If this encoding is used without correcting the overcounting, then the entropy will be higher by {{math|''k'' log 2}} per rotatable object and the chemical potential lower by {{math|''kT'' log 2}}. This does not actually lead to any observable error since it only causes unobservable offsets.</ref> | ||
* गलत निष्कर्ष जो भौतिक अनुभव के साथ असंगत हैं, जैसा कि [[मिश्रण विरोधाभास]] में है।<ref name="gibbs"/> | * गलत निष्कर्ष जो भौतिक अनुभव के साथ असंगत हैं, जैसा कि [[मिश्रण विरोधाभास]] में है।<ref name="gibbs"/> | ||
*रासायनिक क्षमता और बृहत् विहित समुच्चय को परिभाषित करने में मूलभूत समस्या है।<ref name="gibbs" /> | *रासायनिक क्षमता और बृहत् विहित समुच्चय को परिभाषित करने में मूलभूत समस्या है।<ref name="gibbs" /> | ||
समन्वय प्रणाली को | समन्वय प्रणाली को अन्वेषण करना सामान्य रूप से कठिन है जो प्रत्येक भौतिक अवस्था को विशिष्ट रूप से कूटबद्ध करता है। परिणामस्वरूप, सामान्य रूप से प्रत्येक अवस्था की कई प्रतियों के साथ एक समन्वय प्रणाली का उपयोग करना और फिर अधि-गणना को पहचानना और निकालना आवश्यक होता है। | ||
अधि-गणना को हटाने का एक अशुद्ध तरीका प्रावस्था-समष्टि के उप-क्षेत्र को मैन्युअल (नियमावली) रूप से परिभाषित करना होगा जिसमें प्रत्येक भौतिक अवस्था को सिर्फ एक बार सम्मिलित किया जाता है और फिर प्रावस्था-समष्टि के अन्य सभी भागों को बाहर कर दिया जाता है। गैस में, उदाहरण के लिए, कोई सिर्फ उन चरणों को सम्मिलित कर सकता है जहां कण ' {{math|''x''}} निर्देशांक आरोही क्रम में क्रमबद्ध हैं। हालांकि यह समस्या को संशोधित कर देगा, परिणामी एकीकरण पर प्रावस्था-समष्टि अपने असामान्य सीमा आकार के कारण प्रदर्शन करने के लिए अनुपयुक्त होगा। (इस स्थिति में, कारक <math>{C}</math> को {{math|''C'' {{=}} 1}},पर संस्थापित किया जाएगा और अभिन्न प्रावस्था-समष्टि के चयनित उपक्षेत्र तक ही सीमित रहेगा।) | अधि-गणना को हटाने का एक अशुद्ध तरीका प्रावस्था-समष्टि के उप-क्षेत्र को मैन्युअल (नियमावली) रूप से परिभाषित करना होगा जिसमें प्रत्येक भौतिक अवस्था को सिर्फ एक बार सम्मिलित किया जाता है और फिर प्रावस्था-समष्टि के अन्य सभी भागों को बाहर कर दिया जाता है। गैस में, उदाहरण के लिए, कोई सिर्फ उन चरणों को सम्मिलित कर सकता है जहां कण ' {{math|''x''}} निर्देशांक आरोही क्रम में क्रमबद्ध हैं। हालांकि यह समस्या को संशोधित कर देगा, परिणामी एकीकरण पर प्रावस्था-समष्टि अपने असामान्य सीमा आकार के कारण प्रदर्शन करने के लिए अनुपयुक्त होगा। (इस स्थिति में, कारक <math>{C}</math> को {{math|''C'' {{=}} 1}},पर संस्थापित किया जाएगा और अभिन्न प्रावस्था-समष्टि के चयनित उपक्षेत्र तक ही सीमित रहेगा।) | ||
Line 87: | Line 87: | ||
अधि-गणना को सही करने का एक सरल तरीका है कि सभी प्रावस्था-समष्टि को एकीकृत किया जाए, लेकिन अधि-गणना की पूरा करने के लिए प्रत्येक प्रावस्था के भार को कम किया जाए। यह कारक {{math|''C''}} द्वारा ऊपर प्रस्तुत किया गया है, जो एक पूर्ण संख्या है जो दर्शाती है कि प्रावस्था-समष्टि में भौतिक स्थिति को कितने तरीकों से दर्शाया जा सकता है। निरंतर विहित निर्देशांक के साथ इसका मान भिन्न नहीं होता है,<ref group="note">Technically, there are some phases where the permutation of particles does not even yield a distinct specific phase: for example, two similar particles can share the exact same trajectory, internal state, etc.. However, in classical mechanics these phases only make up an infinitesimal fraction of the phase space (they have [[measure (mathematics)|measure]] zero) and so they do not contribute to any volume integral in phase space.</ref> इसलिए अधि-गणना को विहित निर्देशांक की पूरी शृंखला को एकीकृत करके, फिर अधि-गणना कारक से परिणाम को विभाजित करके सही किया जा सकता है। हालाँकि, {{math|''C''}} असतत चर जैसे कणों की संख्या के साथ दृढ़ता से भिन्न होता है, और इसलिए इसे कण संख्याओं पर योग करने से पहले प्रयुक्त किया जाना चाहिए। | अधि-गणना को सही करने का एक सरल तरीका है कि सभी प्रावस्था-समष्टि को एकीकृत किया जाए, लेकिन अधि-गणना की पूरा करने के लिए प्रत्येक प्रावस्था के भार को कम किया जाए। यह कारक {{math|''C''}} द्वारा ऊपर प्रस्तुत किया गया है, जो एक पूर्ण संख्या है जो दर्शाती है कि प्रावस्था-समष्टि में भौतिक स्थिति को कितने तरीकों से दर्शाया जा सकता है। निरंतर विहित निर्देशांक के साथ इसका मान भिन्न नहीं होता है,<ref group="note">Technically, there are some phases where the permutation of particles does not even yield a distinct specific phase: for example, two similar particles can share the exact same trajectory, internal state, etc.. However, in classical mechanics these phases only make up an infinitesimal fraction of the phase space (they have [[measure (mathematics)|measure]] zero) and so they do not contribute to any volume integral in phase space.</ref> इसलिए अधि-गणना को विहित निर्देशांक की पूरी शृंखला को एकीकृत करके, फिर अधि-गणना कारक से परिणाम को विभाजित करके सही किया जा सकता है। हालाँकि, {{math|''C''}} असतत चर जैसे कणों की संख्या के साथ दृढ़ता से भिन्न होता है, और इसलिए इसे कण संख्याओं पर योग करने से पहले प्रयुक्त किया जाना चाहिए। | ||
जैसा कि ऊपर उल्लेख किया गया है, इस अधि-गणना का उत्कृष्ट उदाहरण एक द्रव प्रणाली के लिए है जिसमें विभिन्न प्रकार के कण होते हैं, जहाँ समान प्रकार के दो कण | जैसा कि ऊपर उल्लेख किया गया है, इस अधि-गणना का उत्कृष्ट उदाहरण एक द्रव प्रणाली के लिए है जिसमें विभिन्न प्रकार के कण होते हैं, जहाँ समान प्रकार के दो कण अविशेषणीय और विनिमेय होते हैं। जब स्थिति को कणों की अलग-अलग स्थिति और संवेग के संदर्भ में लिखा जाता है, तो समान कणों के आदान-प्रदान से संबंधित अधि-गणना का उपयोग करके सही किया जाता है।<ref name="gibbs" /> | ||
<math>C = N_1! N_2! \ldots N_s!.</math> | |||
इसे सही बोल्ट्जमैन गणना के रूप में जाना जाता है। | |||
== सांख्यिकी में समुच्चय == | == सांख्यिकी में समुच्चय == |
Revision as of 15:37, 22 March 2023
भौतिकी में, विशेष रूप से सांख्यिकीय यांत्रिकी, समुच्चय (सांख्यिकीय समुच्चय भी) एक आदर्शीकरण है जिसमें एक प्रणाली की बड़ी संख्या में आभासी प्रतिलिपियां (कभी कभी अपरिमित रूप से अनेक) होती हैं, जिनमें से प्रत्येक एक संभावित स्थिति का प्रतिनिधित्व करती है जो वास्तविक प्रणाली में हो सकती है। दूसरे शब्दों में, सांख्यिकीय समुच्चय एकल प्रणाली का वर्णन करने के लिए सांख्यिकीय यांत्रिकी में प्रयुक्त कणों की प्रणालियों का एक समूह है।[1] समुच्चय की अवधारणा 1902 में जे. विलार्ड गिब्स द्वारा द्वारा प्रस्तुत की गई थी।[2]
ऊष्मागतिकीय समुच्चय एक विशिष्ट वर्ग का सांख्यिकीय समुच्चय है, जो अन्य गुणों के बीच, सांख्यिकीय संतुलन (नीचे परिभाषित) में है, और उत्कृष्ट या क्वांटम यांत्रिकी के नियमों से ऊष्मागतिकीय प्रणालियों के गुणों को प्राप्त करने के लिए उपयोग किया जाता है।[3][4]
भौतिक विचार
समुच्चय इस धारणा को औपचारिक रूप देता है कि प्रयोगकर्ता समान स्थूल स्थितियों के अंतर्गत बार-बार प्रयोग पुनरावृत करता है, लेकिन सूक्ष्म विवरणों को नियंत्रित करने में असमर्थ, विभिन्न परिणामों की एक श्रृंखला का निरीक्षण करने की उपेक्षा कर सकता है।
ऊष्मप्रवैगिकी, सांख्यिकीय यांत्रिकी और क्वांटम सांख्यिकीय यांत्रिकी में समुच्चय का अनुमानित आकार बहुत बड़ा हो सकता है, जिसमें प्रत्येक संभव सूक्ष्मपरिमापी अवस्था (सांख्यिकीय यांत्रिकी) सम्मिलित हो सकता है, जो प्रणाली अपने देखे गए स्थूलदर्शीय गुणों के अनुरूप हो सकता है। कई महत्वपूर्ण भौतिक अवस्थाओ के लिए, उपयुक्त विभाजन फलन (गणित) के संदर्भ में, संपूर्णत: की कई उष्मागतिक मात्राओं के लिए स्पष्ट सूत्र प्राप्त करने के लिए, पूरे ऊष्मप्रवैगिकी समुच्चय पर प्रत्यक्ष रूप से औसत की गणना करना संभव है।
संतुलन या स्थिर समुच्चय की अवधारणा सांख्यिकीय समुच्चय के कई अनुप्रयोगों के लिए महत्वपूर्ण है। हालांकि एक यांत्रिक प्रणाली निश्चित रूप से समय के साथ विकसित होती है, यह आवश्यक नहीं कि समुच्चय विकसित हो। वास्तव में, समुच्चय विकसित नहीं होगा यदि इसमें प्रणाली के सभी पूर्व और भविष्य के चरण सम्मिलित हैं। इस तरह के सांख्यिकीय समुच्चय, जो समय के साथ परिवर्तित नहीं करता है, अतः अवर्द्धमान कहलाता है और इसे सांख्यिकीय संतुलन में कहा जा सकता है।[2]
शब्दावली
- संभावित अवस्थाओ के पूर्ण समुच्चय से सम्भावित प्रतिदर्श (सांख्यिकी) के एक छोटे समुच्चय के लिए समुच्चय शब्द का भी उपयोग किया जाता है। उदाहरण के लिए, मार्कोव चेन मोंटे कार्लो पुनरावृत्ति में यादृच्छिक संक्रामक संग्रह को कुछ साहित्य में एक समुच्चय कहा जाता है।
- समुच्चय शब्द का प्रयोग प्रायः भौतिकी और भौतिकी-प्रभावित साहित्य में किया जाता है। प्रायिकता सिद्धांत में, शब्द प्रायिकता समष्टि शब्द अधिक प्रचलित है।
मुख्य प्रकार
ऊष्मप्रवैगिकी का अध्ययन उन प्रणालियों से संबंधित है जो मानव धारणा को स्थिर (उनके आंतरिक भागों की गति के होने के बाद भी) प्रतीत होते हैं, और जिन्हें स्थूलदर्शीय रूप से देखने योग्य चर के समुच्चय द्वारा वर्णित किया जा सकता है। इन प्रणालियों को सांख्यिकीय समूहों द्वारा वर्णित किया जा सकता है जो कुछ अवलोकन योग्य मापदंडों पर निर्भर करते हैं, और जो सांख्यिकीय संतुलन में हैं। गिब्स ने ध्यान दिया कि विभिन्न स्थूलदर्शीय नियंत्रण विशेष सांख्यिकीय विशेषताओं के साथ विभिन्न प्रकार के समुच्चय की ओर ले जाती हैं। गिब्स द्वारा तीन महत्वपूर्ण ऊष्मप्रवैगिकी समूहों को परिभाषित किया गया था:[2]
- सूक्ष्मविहित समुच्चय (या एनवीई समुच्चय) - सांख्यिकीय समुच्चय जहां प्रणाली की समग्र ऊर्जा और प्रणाली में कणों की संख्या प्रत्येक विशेष मानो के लिए निर्धारित होती है; समुच्चय के प्रत्येक सदस्य के लिए समान समग्र ऊर्जा और कण संख्या होना आवश्यक है। सांख्यिकीय संतुलन में रहने के लिए प्रणाली को (अपने पर्यावरण के साथ ऊर्जा या कणों का आदान-प्रदान करने में असमर्थ) पूर्ण रूप से अलग रहना चाहिए।[2]
- प्रामाणिक समुच्चय (या एनवीटी समुच्चय) - सांख्यिकीय समुच्चय जहाँ ऊर्जा सही से ज्ञात नहीं है लेकिन कणों की संख्या निश्चित है। ऊर्जा के स्थान पर, तापमान निर्दिष्ट किया गया है। विहित समुच्चय एक संवृत प्रणाली का वर्णन करने के लिए उपयुक्त है जो ऊष्मा अवगाह के साथ दुर्बल तापीय संपर्क में है या रहा है। सांख्यिकीय संतुलन में रहने के लिए, प्रणाली को पूर्ण रूप से बंद रहना चाहिए (अपने पर्यावरण के साथ कणों का आदान-प्रदान करने में असमर्थ) और अन्य प्रणालियों के साथ दुर्बल तापीय संपर्क में आ सकता है जो समान तापमान वाले समुच्चय द्वारा वर्णित हैं।[2]
- बृहत् विहित समुच्चय (या μVT समुच्चय) - सांख्यिकीय समुच्चय जहां न तो ऊर्जा और न ही कण संख्या निश्चित होती है। उनके स्थान पर, तापमान और रासायनिक क्षमता निर्दिष्ट की जाती है। विवृत प्रणाली का वर्णन करने के लिए बृहत् विहित समुच्चय उपयुक्त है: जो द्रवाशय (तापीय संपर्क, रासायनिक संपर्क, विकिरण संपर्क, विद्युत संपर्क, आदि) के साथ दुर्बल संपर्क में है या रहा है। समुच्चय सांख्यिकीय संतुलन में रहता है यदि प्रणाली अन्य प्रणालियों के साथ दुर्बल संपर्क में आता है जो समान तापमान और रासायनिक क्षमता वाले समुच्चय द्वारा वर्णित हैं।[2]
इनमें से प्रत्येक समुच्चय का उपयोग करके की जा सकने वाली गणनाओं को उनके संबंधित लेखों में आगे पता लगाया गया है। अन्य ऊष्मप्रवैगिकी समुच्चय को भी परिभाषित किया जा सकता है, विभिन्न भौतिक आवश्यकताओं के अनुरूप, जिसके लिए समान सूत्र प्रायः समान रूप से प्राप्त किए जा सकते हैं। उदाहरण के लिए, प्रतिक्रिया समुच्चय में, कण संख्या में अस्थिरता सिर्फ प्रणाली में सम्मिलित रासायनिक प्रतिक्रियाओं के उपयुक्त-तत्वानुपातिकी के अनुसार होने की स्वीकृति है।[5]
प्रतिनिधित्व
सांख्यिकीय समुच्चय के लिए परिशुद्ध गणितीय अभिव्यक्ति का विचाराधीन यांत्रिकी के प्रकार (क्वांटम या उत्कृष्ट) के आधार पर एक अलग रूप है। उत्कृष्ट स्थिति में, समुच्चय सूक्ष्म अवस्था पर एक प्रायिकता बंटन है। क्वांटम यांत्रिकी में, यह धारणा, वॉन न्यूमैन के कारण, आने-जाने वाले प्रेक्षणों के प्रत्येक पूर्ण समुच्चय के परिणामों पर प्रायिकता बंटन प्रदान करने का एक तरीका है। उत्कृष्ट यांत्रिकी में, समुच्चय को प्रावस्था-समष्टि में प्रायिकता बंटन के रूप में लिखा जाता है; सूक्ष्म अवस्था आकार की इकाइयों में विभाजन प्रावस्था-समष्टि का परिणाम हैं, हालांकि इन इकाइयों का आकार अधिकांश सीमा तक व्यवस्थित रूप से चयन किया जा सकता है।
प्रतिनिधित्व के लिए आवश्यकताएँ
पल भर के लिए यह सवाल कि कैसे सांख्यिकीय समुच्चय परिचालन की परिभाषा उत्पन्न करता है, हमें समान प्रणाली के A, B के समुच्चय पर निम्नलिखित दो संचालन करने में सक्षम होना चाहिए:
- परीक्षण करें कि A, B सांख्यिकीय रूप से समकक्ष हैं या नहीं है।
- यदि p वास्तविक संख्या है जैसे कि 0 <p <1, तो A से प्रायिकता p के साथ और B से प्रायिकता 1 - p के साथ संभाव्य नमूने द्वारा एक नया समुच्चय निर्मित करें।
कुछ शर्तों के अंतर्गत, इसलिए, सांख्यिकीय समुच्चय के समतुल्य वर्गों में एक उत्तल समुच्चय की संरचना होती है।
क्वांटम यांत्रिक
क्वांटम यांत्रिकी (एक मिश्रित अवस्था के रूप में भी जाना जाता है) में सांख्यिकीय समुच्चय प्रायः एक घनत्व आव्यूह द्वारा दर्शाया जाता है, जिसे द्वारा निरूपित किया जाता है। घनत्व आव्यूह एक पूर्ण रूप से सामान्य उपकरण प्रदान करता है जो क्वांटम अनिश्चितताओं (वर्तमान में तथापि प्रणाली की स्थिति पूर्ण रूप से ज्ञात हो) और उत्कृष्ट अनिश्चितताओं (ज्ञान की कमी के कारण) को एकीकृत तरीके से सम्मिलित कर सकता है। कोई भौतिक अवलोकन योग्य X क्वांटम यांत्रिकी में X̂ संक्रियक के रूप में लिखा जा सकता है, सांख्यिकीय समुच्चय पर इस संक्रियक पर अपेक्षित मान निम्नलिखित संकेत (रैखिक बीजगणित) द्वारा दिया गया है:
इसका उपयोग औसत का मूल्यांकन करने (संक्रियक X̂), प्रसरण (संक्रियक X̂ 2), सहप्रसरण (संक्रियक का उपयोग करके X̂Ŷ), आदि के लिए किया जा सकता है। सदैव घनत्व आव्यूह में संकेत होना चाहिए (यह अनिवार्य रूप से शर्त है कि संभावनाओं को एक में जोड़ना चाहिए)।
सामान्य रूप से, समुच्चय समय के साथ वॉन न्यूमैन समीकरण के अनुसार विकसित होता है।
संतुलन समूह ( वे जो समय के साथ विकसित नहीं होते हैं) सिर्फ संरक्षित चर के फलन के रूप में लिखा जा सकता है। उदाहरण के लिए, बृहत् विहित समुच्चय और विहित समुच्चय समग्र ऊर्जा का दृढ़ता से कार्य करता है, जिसे Ĥ (हैमिल्टनियन) समग्र ऊर्जा संक्रियक द्वारा मापा जाता है। बृहत् विहित समुच्चय अतिरिक्त रूप से कण संख्या का एक फलन है, जिसे N̂ समग्र कण संख्या संक्रियक द्वारा मापा जाता है। इस तरह के संतुलन समुच्चय अवस्थाओ के लंबकोणीय आधार में एक विकर्ण आव्यूह हैं जो एक साथ प्रत्येक संरक्षित चर को विकर्ण करते हैं। ब्रा-केट संकेतन में, घनत्व आव्यूह है
जहां |ψi⟩, द्वारा अनुक्रमित i, पूर्ण और लंबकोणीय आधार के तत्व हैं। (ध्यान दें कि अन्य आधारों में, घनत्व आव्यूह आवश्यक रूप से विकर्ण नहीं है।)
उत्कृष्ट यांत्रिक
उत्कृष्ट यांत्रिकी में, समुच्चय प्रणाली के प्रावस्था-समष्टि पर परिभाषित प्रायिकता घनत्व फलन द्वारा दर्शाया जाता है।[2] जबकि एक व्यक्तिगत प्रणाली हैमिल्टन के समीकरणों के अनुसार विकसित होती है, लिउविले के समीकरण (हैमिल्टनियन) के अनुसार समय के साथ घनत्व फलन (समुच्चय) विकसित होता है।
हैमिल्टनियन यांत्रिकी में भागों की एक परिभाषित संख्या के साथ, प्रावस्था-समष्टि n होता है सामान्यीकृत निर्देशांक q1, ... qn, और n संबंधित विहित गति कहा जाता है तब p1, ... pn. समुच्चय संयुक्त प्रायिकता घनत्व फलन ρ(p1, ... pn, q1, ... qn) द्वारा दर्शाया जाता है।
यदि प्रणाली में भागों की संख्या को समुच्चय में प्रणाली के बीच भिन्न होने की स्वीकृति है (जैसा कि एक बृहत् समुच्चय में जहां कणों की संख्या एक यादृच्छिक मात्रा है), तो यह एक विस्तारित प्रावस्था-समष्टि पर एक प्रायिकता बंटन है जिसमें आगे के चर सम्मिलित हैं जैसे कण संख्या N1 (पहली तरह का कण), N2 (द्वितीय प्रकार का कण), और इतने पर Ns (अंतिम प्रकार का कण; s कितने विभिन्न प्रकार के कण हैं)। समुच्चय तब एक संयुक्त प्रायिकता घनत्व फलन ρ(N1, ... Ns, p1, ... pn, q1, ... qn) द्वारा दर्शाया जाता है। निर्देशांक की संख्या n कणों की संख्या के साथ परिवर्तित होता रहता है।
कोई यांत्रिक मात्रा X को प्रणाली के चरण के फलन के रूप में लिखा जा सकता है। इस तरह की किसी भी मात्रा का अपेक्षित मान इस मात्रा के पूरे प्रावस्था-समष्टि ρ पर एक अभिन्न द्वारा भारित द्वारा दिया जाता है:
प्रायिकता सामान्यीकरण की स्थिति प्रयुक्त होती है, आवश्यकता होती है
प्रावस्था-समष्टि एक सतत स्थान है जिसमें किसी भी छोटे क्षेत्र के अंदर अनंत संख्या में अलग-अलग भौतिक अवस्थाएँ होती हैं। प्रावस्था-समष्टि में प्रायिकता घनत्व को सूक्ष्म अवस्था पर प्रायिकता बंटन से जोड़ने के लिए, यह आवश्यक है कि किसी तरह प्रावस्था-समष्टि को उन ब्लॉकों में विभाजित किया जाए जो प्रणाली के विभिन्न अवस्थाओ का निष्पक्ष तरीके से प्रतिनिधित्व करते हुए वितरित किए जाते हैं। यह पता चला है कि ऐसा करने का सही तरीका विहित प्रावस्था-समष्टि के समान आकार के ब्लॉक में परिणाम देता है, और इसलिए उत्कृष्ट यांत्रिकी में एक सूक्ष्म अवस्था विहित निर्देशांक के प्रावस्था-समष्टि में एक विस्तारित क्षेत्र है जिसमें एक विशेष मात्रा होती है।[note 1] विशेष रूप से, प्रायिकता घनत्व फलन प्रावस्था-समष्टि में, ρ, सूक्ष्म अवस्था पर प्रायिकता बंटन से संबंधित है, P कारक द्वारा
जहाँ
- h ऊर्जा × समय की इकाइयों के साथ एकपक्षीय लेकिन पूर्व निर्धारित स्थिरांक है, सूक्ष्म अवस्था ρ की सीमा निर्धारित करना और सही आयाम प्रदान करना।[note 2]
- C गणना संशोधक कारक है (नीचे देखें), सामान्य रूप से कणों की संख्या और इसी तरह के प्रयोजन पर निर्भर करता है।
चूँकि h एकपक्षीय रूप से चयन किया जा सकता है, सूक्ष्म अवस्था का अनुमानित आकार भी यादृच्छिक है। फिर भी, h का मान एंट्रॉपी और रासायनिक क्षमता जैसे मात्राओं के समायोजन को प्रभावित करता है, और इसलिए इसके मान विभिन्न प्रणालियों की तुलना करते समय h के अनुरूप होना महत्वपूर्ण है।
प्रावस्था-समष्टि में अधि-गणना को सही करना
सामान्य रूप से, प्रावस्था-समष्टि में कई अलग-अलग समष्टि में समान भौतिक स्थिति के प्रतिदर्श होते हैं। यह इस बात का परिणाम है कि भौतिक अवस्था को गणितीय निर्देशांकों में कूटबद्ध किया जाता है; समन्वय प्रणाली का सबसे सरल विकल्प प्रायः एक अवस्था को कई तरीकों से एन्कोड करने की स्वीकृति देता है। इसका एक उदाहरण समान कणों की एक गैस है जिसका अवस्था कणों की व्यक्तिगत स्थिति और संवेग के संदर्भ में लिखा जाता है: जब दो कणों का आदान-प्रदान होता है, प्रावस्था-समष्टि में परिणामी बिंदु अलग होता है, और फिर भी यह एक समान भौतिक स्थिति प्रणाली से अनुरूप है। सांख्यिकीय यांत्रिकी (भौतिक अवस्थाओं के बारे में एक सिद्धांत) में यह पहचानना महत्वपूर्ण है कि प्रावस्था-समष्टि सिर्फ एक गणितीय निर्माण है, और प्रावस्था-समष्टि पर एकीकृत करते समय वास्तविक भौतिक अवस्थाओं से अधिक गणना नहीं करना है। अधि-गणना से महत्वपूर्ण समस्याएं हो सकती हैं:
- समन्वय प्रणाली के चयन पर व्युत्पन्न मात्राओं (जैसे एन्ट्रापी और रासायनिक क्षमता) की निर्भरता, क्योंकि एक समन्वय प्रणाली दूसरे की तुलना में अधिक या कम अधिक दिखा सकती है।[note 3]
- गलत निष्कर्ष जो भौतिक अनुभव के साथ असंगत हैं, जैसा कि मिश्रण विरोधाभास में है।[2]
- रासायनिक क्षमता और बृहत् विहित समुच्चय को परिभाषित करने में मूलभूत समस्या है।[2]
समन्वय प्रणाली को अन्वेषण करना सामान्य रूप से कठिन है जो प्रत्येक भौतिक अवस्था को विशिष्ट रूप से कूटबद्ध करता है। परिणामस्वरूप, सामान्य रूप से प्रत्येक अवस्था की कई प्रतियों के साथ एक समन्वय प्रणाली का उपयोग करना और फिर अधि-गणना को पहचानना और निकालना आवश्यक होता है।
अधि-गणना को हटाने का एक अशुद्ध तरीका प्रावस्था-समष्टि के उप-क्षेत्र को मैन्युअल (नियमावली) रूप से परिभाषित करना होगा जिसमें प्रत्येक भौतिक अवस्था को सिर्फ एक बार सम्मिलित किया जाता है और फिर प्रावस्था-समष्टि के अन्य सभी भागों को बाहर कर दिया जाता है। गैस में, उदाहरण के लिए, कोई सिर्फ उन चरणों को सम्मिलित कर सकता है जहां कण ' x निर्देशांक आरोही क्रम में क्रमबद्ध हैं। हालांकि यह समस्या को संशोधित कर देगा, परिणामी एकीकरण पर प्रावस्था-समष्टि अपने असामान्य सीमा आकार के कारण प्रदर्शन करने के लिए अनुपयुक्त होगा। (इस स्थिति में, कारक को C = 1,पर संस्थापित किया जाएगा और अभिन्न प्रावस्था-समष्टि के चयनित उपक्षेत्र तक ही सीमित रहेगा।)
अधि-गणना को सही करने का एक सरल तरीका है कि सभी प्रावस्था-समष्टि को एकीकृत किया जाए, लेकिन अधि-गणना की पूरा करने के लिए प्रत्येक प्रावस्था के भार को कम किया जाए। यह कारक C द्वारा ऊपर प्रस्तुत किया गया है, जो एक पूर्ण संख्या है जो दर्शाती है कि प्रावस्था-समष्टि में भौतिक स्थिति को कितने तरीकों से दर्शाया जा सकता है। निरंतर विहित निर्देशांक के साथ इसका मान भिन्न नहीं होता है,[note 4] इसलिए अधि-गणना को विहित निर्देशांक की पूरी शृंखला को एकीकृत करके, फिर अधि-गणना कारक से परिणाम को विभाजित करके सही किया जा सकता है। हालाँकि, C असतत चर जैसे कणों की संख्या के साथ दृढ़ता से भिन्न होता है, और इसलिए इसे कण संख्याओं पर योग करने से पहले प्रयुक्त किया जाना चाहिए।
जैसा कि ऊपर उल्लेख किया गया है, इस अधि-गणना का उत्कृष्ट उदाहरण एक द्रव प्रणाली के लिए है जिसमें विभिन्न प्रकार के कण होते हैं, जहाँ समान प्रकार के दो कण अविशेषणीय और विनिमेय होते हैं। जब स्थिति को कणों की अलग-अलग स्थिति और संवेग के संदर्भ में लिखा जाता है, तो समान कणों के आदान-प्रदान से संबंधित अधि-गणना का उपयोग करके सही किया जाता है।[2]
इसे सही बोल्ट्जमैन गणना के रूप में जाना जाता है।
सांख्यिकी में समुच्चय
भौतिक विज्ञान में उपयोग किए जाने वाले सांख्यिकीय समुच्चयों का सूत्रीकरण अब अन्य क्षेत्रों में व्यापक रूप से अपनाया गया है, क्योंकि यह माना गया है कि विहित समुच्चय या गिब्स संशोधन एक प्रणाली की एन्ट्रापी को अधिकतम करने के लिए कार्य करता है, जो बाधाओं के एक समुच्चय के अधीन है: यह अधिकतम एन्ट्रापी का सिद्धांत है। यह सिद्धांत अब व्यापक रूप से भाषाविज्ञान, रोबोटिक और इसी तरह की समस्याओं पर प्रयुक्त किया गया है।
इसके अतिरिक्त, भौतिकी में सांख्यिकीय समुच्चय प्रायः स्थानीयता के सिद्धांत पर बनाए जाते हैं: सभी अन्तः क्रिया सिर्फ प्रतिवेश परमाणुओं या आस-पास के अणुओं के बीच होते हैं। इस प्रकार, उदाहरण के लिए, लैटिस मॉडल (भौतिकी), जैसे कि आइसिंग मॉडल, घूर्णन के बीच निकटतम-प्रतिवेश अन्तः क्रिया के माध्यम से लोह- चुंबकीय सामग्री का मॉडल है। स्थानीयता के सिद्धांत का सांख्यिकीय सूत्रीकरण अब व्यापक अर्थों में मार्कोव गुण का एक रूप माना जाता है; निकटतम प्रतिवेश मार्कोव आवरण हैं। इस प्रकार, निकटतम-प्रतिवेश अन्तः क्रिया के साथ सांख्यिकीय समुच्चय की सामान्य धारणा मार्कोव यादृच्छिक क्षेत्रो की ओर ले जाती है, जो फिर से हॉपफील्ड नेटवर्क में उदाहरण के लिए व्यापक प्रयोज्यता प्राप्त करते हैं।
औसत समुच्चय
सांख्यिकीय यांत्रिकी में, समुच्चय औसत को उस मात्रा के माध्य के रूप में परिभाषित किया जाता है जो इस सांख्यिकीय संग्रह (गणितीय भौतिकी) में इसके सूक्ष्म-अवस्थाओ पर प्रणाली के वितरण के अनुसार, एक प्रणाली के सूक्ष्म अवस्था (सांख्यिकीय यांत्रिकी) का एक फलन है।
चूंकि समुच्चय औसत चयन किए गए सांख्यिकीय समुच्चय (गणितीय भौतिकी) पर निर्भर है, इसकी गणितीय अभिव्यक्ति समुच्चय से समुच्चय में भिन्न होती है। हालाँकि, किसी दिए गए भौतिक मात्रा के लिए प्राप्त माध्य ऊष्मागतिकीय सीमा पर चयन किए गए समुच्चय पर निर्भर नहीं करता है। वृहत विहित समुच्चय ऊष्मागतिकीय प्रणाली विवृत प्रणाली का एक उदाहरण है।[6]
उत्कृष्ट सांख्यिकीय यांत्रिकी
अपने पर्यावरण के साथ तापीय संतुलन में उत्कृष्ट प्रणाली के लिए, समुच्चय औसत प्रणाली के प्रावस्था-समष्टि पर एक अभिन्न अंग का रूप लेता है:
जहाँ:
- प्रणाली गुण A का समुच्चय औसत है,
- , ऊष्मागतिकीय के रूप में जाना जाता है,
- निर्देशांक और उनके संयुग्म सामान्यीकृत संवेग के समुच्चय के संदर्भ में H उत्कृष्ट प्रणाली का हैमिल्टनियन यांत्रिकी है और
- लाभ के उत्कृष्ट प्रावस्था-समष्टि का आयतन तत्व है।
इस अभिव्यक्ति में विभाजक को विभाजन फलन (सांख्यिकीय यांत्रिकी) के रूप में जाना जाता है, और अक्षर Z द्वारा निरूपित किया जाता है।
क्वांटम सांख्यिकीय यांत्रिकी
क्वांटम सांख्यिकीय यांत्रिकी में, अपने पर्यावरण के साथ तापीय संतुलन में एक क्वांटम प्रणाली के लिए, भारित औसत एक सतत अभिन्न के अतिरिक्त ऊर्जा अवस्थाओ के योग का रूप लेता है:
विहित समुच्चय औसत
विभाजन फलन (गणित) का सामान्यीकृत संस्करण ऊष्मप्रवैगिकी, सूचना सिद्धांत, सांख्यिकीय यांत्रिकी और क्वांटम यांत्रिकी में समुच्चय औसत के साथ काम करने के लिए पूर्ण रूपरेखा प्रदान करता है।
बृहत् विहित समुच्चय एक पृथक प्रणाली का प्रतिनिधित्व करता है जिसमें ऊर्जा (E), आयतन (V) और कणों की संख्या (N) सभी स्थिर हैं। विहित समुच्चय एक संवृत प्रणाली का प्रतिनिधित्व करता है जो अपने परिवेश (सामान्य रूप से एक ऊष्मा अवगाह) के साथ ऊर्जा (E) का आदान-प्रदान कर सकता है, लेकिन मात्रा (V) और कणों की संख्या (N) सभी स्थिर हैं। वृहत विहित समुच्चय एक विवृत प्रणाली का प्रतिनिधित्व करता है जो ऊर्जा (E) के साथ-साथ कणों को अपने परिवेश के साथ विनिमय कर सकता है लेकिन मात्रा (V) को स्थिर रखा जाता है।
परिचालन व्याख्या
अब तक की गई चर्चा में, दृढ़ होते हुए भी, हमने यह मान लिया है कि एक समुच्चय की धारणा एक प्राथमिकता के रूप में मान्य है, जैसा कि सामान्य रूप से भौतिक संदर्भ में किया जाता है। जो नहीं दिखाया गया है वह यह है कि समुच्चय स्वयं (परिणाम परिणाम नहीं) गणितीय रूप से एक परिशुद्ध परिभाषित वस्तु है। उदाहरण के लिए,
- यह स्पष्ट नहीं है कि प्रणाली का इतना बड़ा समुच्चय जहां सम्मिलित है (उदाहरण के लिए, क्या बॉक्स में गैस है?)
- यह स्पष्ट नहीं है कि कैसे भौतिक रूप से एक समुच्चय उत्पन्न किया जाए।
इस भाग में, हम आंशिक रूप से इस प्रश्न का उत्तर देने का प्रयास करते हैं।
मान लीजिए कि हमारे पास भौतिकी प्रयोगशाला में एक प्रणाली के लिए एक तैयारी प्रक्रिया है: उदाहरण के लिए, प्रक्रिया में एक भौतिक उपकरण और तंत्र में कुशलता पूर्वक करने के लिए कुछ प्रोटोकॉल सम्मिलित हो सकते हैं। इस तैयारी प्रक्रिया के परिणामस्वरूप, कुछ प्रणाली कुछ छोटी अवधि के लिए पृथक में निर्मित और बनाए रखी जाती है। इस प्रयोगशाला तैयारी प्रक्रिया को दोहराकर हम प्रणाली X1, X2, ....,Xk का अनुक्रम प्राप्त करते हैं, जो कि हमारे गणितीय आदर्शीकरण में, हम मानते हैं कि प्रणाली का एक अनंत अनुक्रम है। प्रणालियां समान हैं कि वे सभी एक ही तरह से उत्पादित की गई थीं। यह अनंत क्रम एक समूह है।
प्रयोगशाला संस्थापन में, इनमें से प्रत्येक उद्यत प्रणाली को निविष्ट के रूप में उपयोग किया जा सकता है फिर से, परीक्षण प्रक्रिया एक भौतिक उपकरण और कुछ प्रोटोकॉल सम्मिलित हैं; परीक्षण प्रक्रिया के परिणामस्वरूप हमें हां या ना में उत्तर मिलता है। प्रत्येक उद्यत प्रणाली पर प्रयुक्त एक परीक्षण प्रक्रिया E को देखते हुए, हम माप (E, X1), औसत (E, X2), ...., औसत (E, Xk) के मानो का अनुक्रम प्राप्त करते हैं। इनमें से प्रत्येक मान 0 (या नहीं) या 1 (हाँ) है।
मान लें कि निम्न समय औसत सम्मिलित है:
क्वांटम यांत्रिक प्रणाली के लिए, क्वांटम यांत्रिकी के लिए क्वांटम तर्क दृष्टिकोण में बनाई गई एक महत्वपूर्ण धारणा हिल्बर्ट समष्टि के संवृत उप-समष्टि के लैटिस के लिए हाँ-नहीं जैसे प्रश्नों की पहचान है। कुछ अतिरिक्त तकनीकी धारणाओ के साथ कोई भी अनुमान लगा सकता है कि अवस्था घनत्व संक्रियक S द्वारा दिए गए हैं ताकि:
हम देखते हैं कि यह सामान्य रूप से क्वांटम अवस्थाओ की परिभाषा को दर्शाता है: क्वांटम अवस्था वेधशालाओं से उनकी अपेक्षा के मानो का मानचित्रण है।
यह भी देखें
- घनत्व आव्यूह
- समुच्चय (द्रव यांत्रिकी)
- प्रावस्था-समष्टि
- लिउविल का प्रमेय (हैमिल्टनियन)
- मैक्सवेल-बोल्ट्जमैन सांख्यिकी
- प्रतिकृति (सांख्यिकी)
टिप्पणियाँ
- ↑ This equal-volume partitioning is a consequence of Liouville's theorem, i. e., the principle of conservation of extension in canonical phase space for Hamiltonian mechanics. This can also be demonstrated starting with the conception of an ensemble as a multitude of systems. See Gibbs' Elementary Principles, Chapter I.
- ↑ (Historical note) Gibbs' original ensemble effectively set h = 1 [energy unit]×[time unit], leading to unit-dependence in the values of some thermodynamic quantities like entropy and chemical potential. Since the advent of quantum mechanics, h is often taken to be equal to Planck's constant in order to obtain a semiclassical correspondence with quantum mechanics.
- ↑ In some cases the overcounting error is benign. An example is the choice of coordinate system used for representing orientations of three-dimensional objects. A simple encoding is the 3-sphere (e. g., unit quaternions) which is a double cover—each physical orientation can be encoded in two ways. If this encoding is used without correcting the overcounting, then the entropy will be higher by k log 2 per rotatable object and the chemical potential lower by kT log 2. This does not actually lead to any observable error since it only causes unobservable offsets.
- ↑ Technically, there are some phases where the permutation of particles does not even yield a distinct specific phase: for example, two similar particles can share the exact same trajectory, internal state, etc.. However, in classical mechanics these phases only make up an infinitesimal fraction of the phase space (they have measure zero) and so they do not contribute to any volume integral in phase space.
संदर्भ
- ↑ Rennie, Richard; Jonathan Law (2019). ऑक्सफोर्ड डिक्शनरी ऑफ फिजिक्स. pp. 458 ff. ISBN 978-0198821472.
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Gibbs, Josiah Willard (1902). Elementary Principles in Statistical Mechanics. New York: Charles Scribner's Sons.
- ↑ Kittel, Charles; Herbert Kroemer (1980). थर्मल भौतिकी, दूसरा संस्करण. San Francisco: W.H. Freeman and Company. pp. 31 ff. ISBN 0-7167-1088-9.
- ↑ Landau, L.D.; Lifshitz, E.M. (1980). सांख्यिकीय भौतिकी. Pergamon Press. pp. 9 ff. ISBN 0-08-023038-5.
- ↑ Simulation of chemical reaction equilibria by the reaction ensemble Monte Carlo method: a review https://doi.org/10.1080/08927020801986564
- ↑ http://physics.gmu.edu/~pnikolic/PHYS307/lectures/ensembles.pdf[bare URL PDF]