अपवाह वेग: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Average velocity of particles mainly moving randomly}}
{{Short description|Average velocity of particles mainly moving randomly}}
भौतिकी में, बहाव वेग [[विद्युत क्षेत्र]] के कारण पदार्थ में आवेशित कणों, जैसे [[इलेक्ट्रॉन|इलेक्ट्रोनो]] द्वारा प्राप्त [[औसत वेग]] है। सामान्यतः, [[विद्युत कंडक्टर]] में इलेक्ट्रॉन बेतरतीब ढंग से [[फर्मी वेग]] से फैलेगा, जिसके परिणामस्वरूप औसत वेग शून्य होगा। विद्युत क्षेत्र को लागू करने से इस यादृच्छिक गति में दिशा में छोटा शुद्ध प्रवाह जुड़ जाता है; यह बहाव है।[[File:Drift velocity of electrons.jpg|thumb|इलेक्ट्रॉनों का बहाव वेग]]बहाव वेग वर्तमान (बिजली) के समानुपाती होता है। [[प्रतिरोध (बिजली)]] सामग्री में, यह बाहरी विद्युत क्षेत्र के परिमाण के समानुपाती भी होता है। इस प्रकार ओम के नियम को बहाव वेग के संदर्भ में समझाया जा सकता है। कानून की सबसे प्रारंभिक अभिव्यक्ति है:
भौतिकी में, बहाव वेग [[विद्युत क्षेत्र]] के कारण पदार्थ में आवेशित कणों, जैसे [[इलेक्ट्रॉन|इलेक्ट्रोनो]] द्वारा प्राप्त [[औसत वेग]] है। सामान्यतः, [[विद्युत कंडक्टर]] में इलेक्ट्रॉन अव्यवस्थित रूप से [[फर्मी वेग]] से फैलेगा, जिसके परिणामस्वरूप औसत वेग शून्य होगा। विद्युत क्षेत्र को लागू करने से इस यादृच्छिक गति में दिशा में छोटा शुद्ध प्रवाह जुड़ जाता है; यह बहाव है।[[File:Drift velocity of electrons.jpg|thumb|इलेक्ट्रॉनों का बहाव वेग]]बहाव वेग वर्तमान (बिजली) के समानुपाती होता है। [[प्रतिरोध (बिजली)]] सामग्री में, यह बाहरी विद्युत क्षेत्र के परिमाण के समानुपाती भी होता है। इस प्रकार ओम के नियम को बहाव वेग के संदर्भ में समझाया जा सकता है। कानून की सबसे प्रारंभिक अभिव्यक्ति है:


:<math>  u= \mu E ,</math>
:<math>  u= \mu E ,</math>
कहाँ {{math|''u''}} बहाव वेग है, {{math|''μ''}} सामग्री की [[इलेक्ट्रॉन गतिशीलता]] है, और {{math|''E''}} विद्युत क्षेत्र है। [[इकाइयों की एमकेएस प्रणाली]] में, इन मात्राओं की इकाइयां एम/एस, एम हैं<sup>2</sup>/([[ वाल्ट ]]·s), और V/m, क्रमशः।
जहाँ  {{math|''u''}} बहाव वेग है, {{math|''μ''}} सामग्री की [[इलेक्ट्रॉन गतिशीलता]] है, और {{math|''E''}} विद्युत क्षेत्र है। [[इकाइयों की एमकेएस प्रणाली]] में, इन मात्राओं की इकाइयां क्रमशः m/s, m2/(V·s), और V/m हैं।


जब कंडक्टर में  संभावित अंतर लागू किया जाता है, मुक्त इलेक्ट्रॉन दिशा में वेग प्राप्त करते हैं, लगातार टकरावों के मध्य विद्युत क्षेत्र के विपरीत (और क्षेत्र की दिशा में यात्रा करते समय वेग खो देते हैं), इस प्रकार उस दिशा में वेग घटक प्राप्त करने के अतिरिक्त  इसके यादृच्छिक तापीय वेग के लिए। नतीजतन, इलेक्ट्रॉनों का निश्चित छोटा बहाव वेग होता है, जो मुक्त इलेक्ट्रॉनों की यादृच्छिक गति पर आरोपित होता है। इस अपवाह वेग के कारण क्षेत्र की दिशा के विपरीत इलेक्ट्रॉनों का शुद्ध प्रवाह होता है।
जब कंडक्टर में  संभावित अंतर लागू किया जाता है, मुक्त इलेक्ट्रॉन दिशा में वेग प्राप्त करते हैं, लगातार टकरावों के मध्य विद्युत क्षेत्र के विपरीत और क्षेत्र की दिशा में यात्रा करते समय वेग खो देते हैं, इस प्रकार उस दिशा में वेग घटक प्राप्त करने के अतिरिक्त  इसके यादृच्छिक तापीय वेग के लिए। नतीजतन, इलेक्ट्रॉनों का निश्चित छोटा बहाव वेग होता है, जो मुक्त इलेक्ट्रॉनों की यादृच्छिक गति पर आरोपित होता है। इस बहाव वेग के कारण क्षेत्र की दिशा के विपरीत इलेक्ट्रॉनों का शुद्ध प्रवाह होता है।


== प्रायोगिक माप ==
== प्रायोगिक माप ==
निरंतर [[क्रॉस-सेक्शन (ज्यामिति)]] | क्रॉस-सेक्शनल क्षेत्र की सामग्री में आवेश वाहकों के बहाव वेग के मूल्यांकन के लिए सूत्र द्वारा दिया गया है:<ref>{{cite book|last=Griffiths|first=David|title=इलेक्ट्रोडायनामिक्स का परिचय|url=https://archive.org/details/introductiontoel00grif_0|url-access=registration|year=1999|publisher=Prentice-Hall|location=Upper Saddle River, NJ|page=[https://archive.org/details/introductiontoel00grif_0/page/289 289]|isbn=9780138053260|edition=3}}</ref>
निरंतर [[क्रॉस-सेक्शन (ज्यामिति)]] क्षेत्र की सामग्री में आवेश वाहकों के बहाव वेग के मूल्यांकन के लिए सूत्र दिया गया है:<ref>{{cite book|last=Griffiths|first=David|title=इलेक्ट्रोडायनामिक्स का परिचय|url=https://archive.org/details/introductiontoel00grif_0|url-access=registration|year=1999|publisher=Prentice-Hall|location=Upper Saddle River, NJ|page=[https://archive.org/details/introductiontoel00grif_0/page/289 289]|isbn=9780138053260|edition=3}}</ref>
:<math>u = {j \over n q} ,</math>
:<math>u = {j \over n q} ,</math>
कहाँ {{math|''u''}} इलेक्ट्रॉनों का बहाव वेग है, {{math|''j''}} सामग्री के माध्यम से प्रवाहित होने वाला [[वर्तमान घनत्व]] है, {{math|''n''}} आवेश-वाहक [[संख्या घनत्व]] है, और {{math|''q''}} आवेश-वाहक पर विद्युत आवेश है।
जहाँ {{math|''u''}} इलेक्ट्रॉनों का बहाव वेग है, {{math|''j''}} सामग्री के माध्यम से प्रवाहित होने वाला [[वर्तमान घनत्व]] है, {{math|''n''}} आवेश-वाहक [[संख्या घनत्व]] है, और {{math|''q''}} आवेश-वाहक पर विद्युत आवेश है।


इसे इस प्रकार भी लिखा जा सकता है:
इसे इस प्रकार भी लिखा जा सकता है:


:<math>j = nqu</math>
:<math>j = nqu</math>
लेकिन वर्तमान घनत्व और बहाव वेग, जे और यू वास्तव में वैक्टर हैं, इसलिए इस संबंध को अक्सर इस प्रकार लिखा जाता है:
परन्तु वर्तमान घनत्व और बहाव वेग, {{math|''j''}} और {{math|''u''}} वास्तव में वैक्टर हैं, इसलिए इस संबंध को प्रायः इस प्रकार लिखा जाता है:


:<math>\mathbf{J} = \rho \mathbf{u} \,</math>
:<math>\mathbf{J} = \rho \mathbf{u} \,</math>
कहाँ
जहाँ


:<math>\rho = nq </math>
:<math>\rho = nq </math>
Line 26: Line 26:


:<math>u = {m \; \sigma \Delta V \over \rho e f \ell} ,</math>
:<math>u = {m \; \sigma \Delta V \over \rho e f \ell} ,</math>
कहाँ
जहाँ
*{{math|''u''}} फिर से इलेक्ट्रॉनों का बहाव वेग है, [[मीटर]]⋅[[ दूसरा ]] में<sup>-1</sup>
*{{math|''u''}} फिर से इलेक्ट्रॉनों का बहाव वेग है, [[मीटर]]⋅[[ दूसरा ]] में<sup>-1</sup>
*{{math|''m''}} धातु का आणविक द्रव्यमान है, किग्रा में
*{{math|''m''}} धातु का आणविक द्रव्यमान है, किग्रा में
Line 51: Line 51:
     = \dfrac{\text{m}}{\text{s}}
     = \dfrac{\text{m}}{\text{s}}
</math>
</math>
अत: इस तार में इलेक्ट्रॉन  {{val|23|u=μm/s}}<nowiki> की दर से प्रवाहित हो रहे हैं | 60 पर{{nb s}Hz अल्टरनेटिंग करंट, इसका मतलब है कि, आधे चक्र के भीतर, औसतन इलेक्ट्रॉन 0.2 माइक्रोन से कम बहाव करते हैं। संदर्भ में, एम्पीयर के आसपास </nowiki>{{val|3|e=16}} इलेक्ट्रॉन प्रति चक्र दो बार संपर्क बिंदु पर प्रवाहित होंगे। लेकिन आसपास से बाहर {{val|1|e=22}} चल इलेक्ट्रॉन प्रति मीटर तार, यह नगण्य अंश है।
अत: इस तार में इलेक्ट्रॉन  {{val|23|u=μm/s}}<nowiki> की दर से प्रवाहित हो रहे हैं | 60 पर{{nb s}Hz अल्टरनेटिंग करंट, इसका मतलब है कि, आधे चक्र के भीतर, औसतन इलेक्ट्रॉन 0.2 माइक्रोन से कम बहाव करते हैं। संदर्भ में, एम्पीयर के आसपास </nowiki>{{val|3|e=16}} इलेक्ट्रॉन प्रति चक्र दो बार संपर्क बिंदु पर प्रवाहित होंगे। परन्तु आसपास से बाहर {{val|1|e=22}} चल इलेक्ट्रॉन प्रति मीटर तार, यह नगण्य अंश है।


तुलनात्मक रूप से, इन इलेक्ट्रॉनों का फर्मी प्रवाह वेग (जो, कमरे के तापमान पर, विद्युत प्रवाह की अनुपस्थिति में उनके अनुमानित वेग के रूप में सोचा जा सकता है) लगभग है {{val|1570|u=km/s}} है।<ref>http://hyperphysics.phy-astr.gsu.edu/hbase/electric/ohmmic.html Ohm's Law, Microscopic View, retrieved 2015-11-16</ref>
तुलनात्मक रूप से, इन इलेक्ट्रॉनों का फर्मी प्रवाह वेग (जो, कमरे के तापमान पर, विद्युत प्रवाह की अनुपस्थिति में उनके अनुमानित वेग के रूप में सोचा जा सकता है) लगभग है {{val|1570|u=km/s}} है।<ref>http://hyperphysics.phy-astr.gsu.edu/hbase/electric/ohmmic.html Ohm's Law, Microscopic View, retrieved 2015-11-16</ref>

Revision as of 19:15, 12 March 2023

भौतिकी में, बहाव वेग विद्युत क्षेत्र के कारण पदार्थ में आवेशित कणों, जैसे इलेक्ट्रोनो द्वारा प्राप्त औसत वेग है। सामान्यतः, विद्युत कंडक्टर में इलेक्ट्रॉन अव्यवस्थित रूप से फर्मी वेग से फैलेगा, जिसके परिणामस्वरूप औसत वेग शून्य होगा। विद्युत क्षेत्र को लागू करने से इस यादृच्छिक गति में दिशा में छोटा शुद्ध प्रवाह जुड़ जाता है; यह बहाव है।

इलेक्ट्रॉनों का बहाव वेग

बहाव वेग वर्तमान (बिजली) के समानुपाती होता है। प्रतिरोध (बिजली) सामग्री में, यह बाहरी विद्युत क्षेत्र के परिमाण के समानुपाती भी होता है। इस प्रकार ओम के नियम को बहाव वेग के संदर्भ में समझाया जा सकता है। कानून की सबसे प्रारंभिक अभिव्यक्ति है:

जहाँ u बहाव वेग है, μ सामग्री की इलेक्ट्रॉन गतिशीलता है, और E विद्युत क्षेत्र है। इकाइयों की एमकेएस प्रणाली में, इन मात्राओं की इकाइयां क्रमशः m/s, m2/(V·s), और V/m हैं।

जब कंडक्टर में संभावित अंतर लागू किया जाता है, मुक्त इलेक्ट्रॉन दिशा में वेग प्राप्त करते हैं, लगातार टकरावों के मध्य विद्युत क्षेत्र के विपरीत और क्षेत्र की दिशा में यात्रा करते समय वेग खो देते हैं, इस प्रकार उस दिशा में वेग घटक प्राप्त करने के अतिरिक्त इसके यादृच्छिक तापीय वेग के लिए। नतीजतन, इलेक्ट्रॉनों का निश्चित छोटा बहाव वेग होता है, जो मुक्त इलेक्ट्रॉनों की यादृच्छिक गति पर आरोपित होता है। इस बहाव वेग के कारण क्षेत्र की दिशा के विपरीत इलेक्ट्रॉनों का शुद्ध प्रवाह होता है।

प्रायोगिक माप

निरंतर क्रॉस-सेक्शन (ज्यामिति) क्षेत्र की सामग्री में आवेश वाहकों के बहाव वेग के मूल्यांकन के लिए सूत्र दिया गया है:[1]

जहाँ u इलेक्ट्रॉनों का बहाव वेग है, j सामग्री के माध्यम से प्रवाहित होने वाला वर्तमान घनत्व है, n आवेश-वाहक संख्या घनत्व है, और q आवेश-वाहक पर विद्युत आवेश है।

इसे इस प्रकार भी लिखा जा सकता है:

परन्तु वर्तमान घनत्व और बहाव वेग, j और u वास्तव में वैक्टर हैं, इसलिए इस संबंध को प्रायः इस प्रकार लिखा जाता है:

जहाँ

आवेश घनत्व है (SI इकाई: कूलम्ब प्रति घन मीटर)।

सही-बेलनाकार विद्युत प्रवाह-वाहक धातु विद्युत कंडक्टर के मूल गुणों के संदर्भ में, जहां चार्ज-वाहक इलेक्ट्रॉनों होते हैं, इस अभिव्यक्ति को पुनः लिखा जा सकता है:[citation needed]

जहाँ

  • u फिर से इलेक्ट्रॉनों का बहाव वेग है, मीटरदूसरा में-1
  • m धातु का आणविक द्रव्यमान है, किग्रा में
  • σ सीमेंस (इकाई)/मीटर में माने गए तापमान पर माध्यम की विद्युत चालकता है।
  • ΔV वोल्ट में कंडक्टर पर लागू वोल्टेज है
  • ρ कंडक्टर का घनत्व (द्रव्यमान प्रति इकाई आयतन) किग्रा⋅मीटर में है−3
  • e प्राथमिक आवेश है, कूलम्ब (इकाई) में
  • f प्रति परमाणु इलेक्ट्रॉन की संख्या है
  • मीटर में कंडक्टर की लंबाई है

संख्यात्मक उदाहरण

बिजली सामान्यतः तांबे के तारों के माध्यम से आयोजित की जाती है। ताँबा का घनत्व 8.94 g/cm3 होता है और परमाणु भार 63.546 g/mol, तो हैं 140685.5 mol/m3. किसी भी तत्व के मोल (इकाई) में 6.022×1023 होते हैं परमाणु (अवोगाद्रो संख्या)। इसलिए, में 1 m3 ताँबे के लगभग होते हैं 8.5×1028 परमाणु (6.022×1023 × 140685.5 mol/m3). कॉपर में प्रति परमाणु एक मुक्त इलेक्ट्रॉन होता है, इसलिए n के बराबर है 8.5×1028 इलेक्ट्रॉन प्रति घन मीटर।

करंट मान लीजिए I = 1 ampere, और का एक तार 2 mm व्यास (त्रिज्या = 0.001 m). इस तार का अनुप्रस्थ काट क्षेत्रफल होता है {{math|A}π × (0.001 m)2 = 3.14×10−6 m2 = 3.14 mm2. इलेक्ट्रॉन का आवेश होता है q = −1.6×10−19 C. इसलिए बहाव वेग की गणना की जा सकती है:

आयामी विश्लेषण:
अत: इस तार में इलेक्ट्रॉन 23 μm/s की दर से प्रवाहित हो रहे हैं | 60 पर{{nb s}Hz अल्टरनेटिंग करंट, इसका मतलब है कि, आधे चक्र के भीतर, औसतन इलेक्ट्रॉन 0.2 माइक्रोन से कम बहाव करते हैं। संदर्भ में, एम्पीयर के आसपास 3×1016 इलेक्ट्रॉन प्रति चक्र दो बार संपर्क बिंदु पर प्रवाहित होंगे। परन्तु आसपास से बाहर 1×1022 चल इलेक्ट्रॉन प्रति मीटर तार, यह नगण्य अंश है।

तुलनात्मक रूप से, इन इलेक्ट्रॉनों का फर्मी प्रवाह वेग (जो, कमरे के तापमान पर, विद्युत प्रवाह की अनुपस्थिति में उनके अनुमानित वेग के रूप में सोचा जा सकता है) लगभग है 1570 km/s है।[2]


यह भी देखें

संदर्भ

  1. Griffiths, David (1999). इलेक्ट्रोडायनामिक्स का परिचय (3 ed.). Upper Saddle River, NJ: Prentice-Hall. p. 289. ISBN 9780138053260.
  2. http://hyperphysics.phy-astr.gsu.edu/hbase/electric/ohmmic.html Ohm's Law, Microscopic View, retrieved 2015-11-16


बाहरी संबंध