यादृच्छिक क्षेत्र: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (9 revisions imported from alpha:यादृच्छिक_क्षेत्र) |
(No difference)
|
Revision as of 09:31, 5 April 2023
भौतिकी और गणित में, एक यादृच्छिक क्षेत्र एक इच्छानुसार डोमेन (सामान्यतः एक बहु-आयामी स्थान जैसे ). जिससे यह एक कार्य है अर्थात् यह एक फलन है जो प्रत्येक बिंदु (या कोई अन्य डोमेन) पर एक यादृच्छिक मान लेता है। इसे कभी-कभी स्टोकेस्टिक प्रक्रिया के पर्याय के रूप में भी माना जाता है, जिसमें इसके सूचकांक समूह पर कुछ प्रतिबंध होते हैं।[1] यही है, आधुनिक परिभाषाओं के अनुसार, एक यादृच्छिक क्षेत्र एक स्टोकास्टिक प्रक्रिया का एक सामान्यीकरण है जहां अंतर्निहित पैरामीटर को अब वास्तविक समन्वय स्थान या पूर्णांक मूल्यवान समय नहीं होना चाहिए किंतु इसके बजाय ऐसे मान ले सकते हैं जो बहुआयामी सदिश स्थल या कुछ अनेक बिंदु पर हैं।[2]
औपचारिक परिभाषा
एक संभाव्यता स्थान दिया गया है,एक X -मूल्यवान यादृच्छिक क्षेत्र एक स्थलीय स्थान T में तत्वों द्वारा अनुक्रमित X -मूल्यवान यादृच्छिक अनियमित परिवर्तनशील वस्तु का एक संग्रह है। जिससे यादृच्छिक क्षेत्र F एक संग्रह है
जहां प्रत्येक एक X -मूल्यवान यादृच्छिक चर है।
उदाहरण
इसके असतत संस्करण में, एक यादृच्छिक क्षेत्र यादृच्छिक संख्याओं की एक सूची है, जिनके सूचकांकों को अंतरिक्ष में बिंदुओं के असतत समूह के साथ पहचाना जाता है (उदाहरण के लिए, एन-आयामी यूक्लिडियन अंतरिक्ष)। मान लीजिए कि चार यादृच्छिक चर हैं, , , , और , क्रमशः (0,0), (0,2), (2,2), और (2,0) पर 2D ग्रिड में स्थित है। मान लीजिए कि प्रत्येक यादृच्छिक चर -1 या 1 के मान पर ले सकता है, और प्रत्येक यादृच्छिक चर के मान की संभावना उसके तत्काल आसन्न निकटतम पर निर्भर करती है। यह असतत यादृच्छिक क्षेत्र का एक सरल उदाहरण है।
अधिक सामान्यतः, मान प्रत्येक एक सतत डोमेन पर परिभाषित किया जा सकता है। बड़े ग्रिड में, यह यादृच्छिक क्षेत्र के बारे में सोचने के लिए भी उपयोगी हो सकता है जैसा कि ऊपर वर्णित यादृच्छिक चर के एक कार्य के रूप में होता है। क्वांटम क्षेत्र सिद्धांत में धारणा को एक यादृच्छिक कार्यात्मक (गणित) के लिए सामान्यीकृत किया जाता है, जो एक फंक्शन स्पेस पर यादृच्छिक मान लेता है ( फेनमैन अभिन्न देखें)।
कई प्रकार के यादृच्छिक क्षेत्र उपस्थितहैं, उनमें मार्कोव यादृच्छिक क्षेत्र (एमआरएफ), गिब्स यादृच्छिक क्षेत्र, सशर्त यादृच्छिक क्षेत्र (सीआरएफ) और गॉसियन यादृच्छिक क्षेत्र सम्मिलित हैं। 1974 में, जूलियन बेसाग ने एमआरएफ एस और गिब्स आरएफ एस के बीच के संबंध पर निर्भर एक सन्निकटन पद्धति का प्रस्ताव रखा है।
उदाहरण गुण
एक एमआरएफ मार्कोव संपत्ति प्रदर्शित करता है
मान के प्रत्येक विकल्प के लिए . और प्रत्येक के पड़ोसियों का समुच्चय है दूसरे शब्दों में, संभावना है कि एक यादृच्छिक चर एक मान ग्रहण करता है, इसके तत्काल निकटतम यादृच्छिक चर पर निर्भर करता है। एक एमआरएफ में एक यादृच्छिक चर की प्रायिकता किसके द्वारा दी जाती है
जहां योग (एक अभिन्न हो सकता है) k के संभावित मान से अधिक है। इस मात्रा की स्पष्ट गणना करना कभी-कभी कठिन होता है।
अनुप्रयोग
जब प्राकृतिक विज्ञान में उपयोग किया जाता है, यादृच्छिक क्षेत्र में मूल्य प्रायः स्थानिक रूप से सहसंबद्ध होते हैं। उदाहरण के लिए, सन्निकट मान (अर्थात् सन्निकट सूचकांकों वाले मान) उतने भिन्न नहीं होते हैं जितने कि वे मान होते हैं जो आगे दूर होते हैं। यह एक सहप्रसरण संरचना का एक उदाहरण है, जिसके कई अलग-अलग प्रकार एक यादृच्छिक क्षेत्र में प्रतिरूपित किए जा सकते हैं। एक उदाहरण ईज़िंग मॉडल है जहां कभी-कभी निकटतम परस्पर क्रिया को केवल मॉडल को बेहतर ढंग से समझने के लिए सरलीकरण के रूप में सम्मिलित किया जाता है।
यादृच्छिक क्षेत्रों का एक सामान्य उपयोग कंप्यूटर ग्राफिक्स की पीढ़ी में है, विशेष रूप से वे जो प्राकृतिक सतहों जैसे द्रव सिमुलेशन और डिजिटल इलाके मॉडल की नकल करते हैं। उपसतह ग्राउंड मॉडल में यादृच्छिक क्षेत्रों का भी उपयोग किया गया है [3]
तंत्रिका विज्ञान में, विशेष रूप से कार्यात्मक न्यूरोइमेजिंग पोजीट्रान एमिशन टोमोग्राफी या कार्यात्मक चुंबकीय अनुनाद छवि का उपयोग करके कार्य संबंधी कार्यात्मक मस्तिष्क छवि अध्ययन में, यादृच्छिक क्षेत्रों का सांख्यिकीय विश्लेषण वास्तव में महत्वपूर्ण सक्रियता वाले क्षेत्रों को खोजने के लिए कई तुलनाओं की समस्या का एक सामान्य विकल्प है।[4]
उनका उपयोग यंत्र अधिगम अनुप्रयोगों में भी किया जाता है (ग्राफिकल मॉडल देखें)।
टेन्सर-मान यादृच्छिक क्षेत्र
यादृच्छिक क्षेत्र मोंटे कार्लो विधि द्वारा प्राकृतिक प्रक्रियाओं का अध्ययन करने में बहुत उपयोगी होते हैं जिसमें यादृच्छिक क्षेत्र स्वाभाविक रूप से स्थानिक रूप से भिन्न गुणों के अनुरूप होते हैं। यह टेन्सर-मूल्यवान यादृच्छिक क्षेत्रों की ओर जाता है जिसमें एक सांख्यिकीय आयतन तत्व (एसवीई) द्वारा महत्वपूर्ण भूमिका निभाई जाती है; जब एसवीई पर्याप्त रूप से बड़ा हो जाता है, तो इसके गुण नियतात्मक हो जाते हैं और नियतात्मक सातत्य भौतिकी के प्रतिनिधि आयतन तत्व (आर.वी.ई) को पुनः प्राप्त कर लेते हैं। दूसरे प्रकार के यादृच्छिक क्षेत्र जो निरंतर सिद्धांतों में दिखाई देते हैं, वे निर्भर मात्रा (तापमान, विस्थापन, वेग, विरूपण, वर्तन, शरीर और सतह बल, तनाव, आदि) के होते हैं।[5]
यह भी देखें
- सहप्रसरण
- युद्ध
- वैरोग्राम
- फिर से बेचना
- अनेक संभावनाओं में से चुनी हूई प्रक्रिया
- परस्पर क्रिया कण प्रणाली
- स्टोकेस्टिक सेलुलर ऑटोमेटा
संदर्भ
- ↑ "Random Fields" (PDF).
- ↑ Vanmarcke, Erik (2010). Random Fields: Analysis and Synthesis. World Scientific Publishing Company. ISBN 978-9812563538.
- ↑ Cardenas, IC (2023). "गैर-सजातीय यादृच्छिक क्षेत्रों का उपयोग करके बोरहोल डेटा से स्ट्रैटिग्राफिक अनिश्चितता की मात्रा निर्धारित करने के लिए एक द्वि-आयामी दृष्टिकोण". Engineering Geology. doi:10.1016/j.enggeo.2023.107001.
- ↑ Worsley, K. J.; Evans, A. C.; Marrett, S.; Neelin, P. (November 1992). "मानव मस्तिष्क में CBF सक्रियण अध्ययन के लिए एक त्रि-आयामी सांख्यिकीय विश्लेषण". Journal of Cerebral Blood Flow & Metabolism (in English). 12 (6): 900–918. doi:10.1038/jcbfm.1992.127. ISSN 0271-678X. PMID 1400644.
- ↑ Malyarenko, Anatoliy; Ostoja-Starzewski, Martin (2019). कॉन्टिनम फिजिक्स के लिए टेन्सर-वैल्यूड रैंडम फील्ड्स. Cambridge University Press. ISBN 9781108429856.
अग्रिम पठन
- Adler, R. J. & Taylor, Jonathan (2007). Random Fields and Geometry. Springer. ISBN 978-0-387-48112-8.
- Besag, J. E. (1974). "Spatial Interaction and the Statistical Analysis of Lattice Systems". Journal of the Royal Statistical Society. Series B. 36 (2): 192–236. doi:10.1111/j.2517-6161.1974.tb00999.x.
- Griffeath, David (1976). "Random Fields". In Kemeny, John G.; Snell, Laurie; Knapp, Anthony W. (eds.). Denumerable Markov Chains (2nd ed.). Springer. ISBN 0-387-90177-9.
- Davar Khoshnevisan (2002). Multiparameter Processes : An Introduction to Random Fields. Springer. ISBN 0-387-95459-7.