भूजल प्रवाह समीकरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 48: Line 48:


==लाप्लास समीकरण (स्थिर अवस्था प्रवाह)==
==लाप्लास समीकरण (स्थिर अवस्था प्रवाह)==
अगर  एक्वीफर में रिचार्जिंग सीमा की स्थितियां हैं तो एक स्थिर स्थिति तक पहुंचा जा सकता है (या इसे कई मामलों में अनुमान के रूप में उपयोग किया जा सकता है), और प्रसार समीकरण (ऊपर) लाप्लास समीकरण को सरल करता है।  
अगर  एक्विफायर में रिचार्जिंग सीमा की स्थितियां हैं तो एक स्थिर स्थिति तक पहुंचा जा सकता है या इसे कई स्थिति में अनुमान के रूप में उपयोग किया जा सकता है और प्रसार समीकरण लाप्लास समीकरण को सरल करता है।  


: <math>0 = \alpha\nabla^2 h</math>
: <math>0 = \alpha\nabla^2 h</math>
यह समीकरण बताता है कि हाइड्रोलिक हेड एक [[हार्मोनिक फ़ंक्शन]] है, और अन्य क्षेत्रों में इसके कई एनालॉग हैं। लाप्लास समीकरण को तकनीकों का उपयोग करके हल किया जा सकता है, ऊपर बताई गई समान मान्यताओं का उपयोग करते हुए, लेकिन एक स्थिर-अवस्था [[प्रवाह]] क्षेत्र की अतिरिक्त आवश्यकताओं के साथ रहता है।
यह समीकरण बताता है कि हाइड्रोलिक हेड एक [[हार्मोनिक फ़ंक्शन|हार्मोनिक फलन]] है और अन्य क्षेत्रों में इसके कई एनालॉग हैं। लाप्लास समीकरण को प्रद्यौगिकीय का उपयोग करके हल किया जा सकता है, ऊपर बताई गई समान मान्यताओं का उपयोग करते हुए, लेकिन एक स्थिर अवस्था [[प्रवाह]] क्षेत्र की अतिरिक्त आवश्यकताओं के रूप में होती है।


[[ असैनिक अभियंत्रण ]] और मृदा यांत्रिकी में इस समीकरण के समाधान के लिए एक सामान्य विधि है। ड्राइंग फ्लोनेट की ग्राफिकल तकनीक का उपयोग करना; जहां हाइड्रॉलिक हेड की [[ समोच्च रेखा | कंटूर रेखा]] और स्ट्रीम फंक्शन एक [[घुमावदार ग्रिड]] बनाते हैं, जिससे जटिल ज्यामिति को लगभग हल किया जा सकता है।
[[ असैनिक अभियंत्रण ]] और मृदा यांत्रिकी में इस समीकरण के समाधान के लिए एक सामान्य विधि है। ड्राइंग फ्लोनेट की ग्राफिकल प्रद्यौगिकीय  का उपयोग करते है; जहां हाइड्रॉलिक हेड की [[ समोच्च रेखा | कंटूर रेखा]] और स्ट्रीम फलन एक [[घुमावदार ग्रिड]] बनाते हैं, जिससे जटिल ज्यामिति को लगभग हल किया जा सकता है।


एक पम्पिंग कुएं में  स्थिर-अवस्था का प्रवाह जो वास्तव में कभी नहीं होता है, लेकिन कभी-कभी एक उपयोगी सन्निकटन होता है जिसे आमतौर पर थिएम समाधान कहा जाता है।
एक पम्पिंग कुएं में  स्थिर-अवस्था का प्रवाह जो वास्तव में कभी नहीं होता है, लेकिन कभी-कभी एक उपयोगी सन्निकटन के रूप में होता है जिसे सामान्यता थिएम समाधान कहा जाता है।


== द्वि-आयामी भूजल प्रवाह ==
== द्वि-आयामी भूजल प्रवाह ==

Revision as of 20:38, 30 April 2023

भूजल विज्ञान में उपयोग किया जाता है भूजल प्रवाह समीकरण एक गणितीय संबंध होता है, जिसका उपयोग जलभृत के माध्यम से भूजल के प्रवाह का वर्णन करने के लिए किया जाता है। भूजल के क्षणिक प्रवाह को प्रसार समीकरण के रूप में वर्णित किया जाता है, जैसा कि एक ठोस ताप चालन में ताप के प्रवाह का वर्णन करने के लिए ताप हस्तांतरण में इसका उपयोग किया जाता है। भूजल के स्थिर अवस्था प्रवाह को लाप्लास समीकरण के द्वारा वर्णित किया जाता है, जो संभावित प्रवाह का एक रूप है और कई क्षेत्र इसके अनुरूप वर्णित किया किये गए है।

भूजल प्रवाह समीकरण अधिकांशतः एक छोटे प्रतिनिधि मौलिक मात्रा (आरईवी) के लिए व्युत्पन्न रूप में होता है, जहां माध्यम के गुणों को प्रभावी रूप से स्थिर माना जाता है। डार्सी के नियम नामक संवैधानिक समीकरण का उपयोग करके इसके संदर्भ में व्यक्त किए जाते है, और इस प्रकार इसके संबंध में फ्लक्स शर्तों में इस छोटी मात्रा में बहने वाले पानी पर एक द्रव्यमान संतुलन किया करता है, जिसके लिए प्रवाह लामिनार रूप में होना आवश्यक है। अन्य दृष्टिकोण कार्स्ट या खंडित चट्टानों अर्थात ज्वालामुखीय जैसे जटिल तंत्र जलभृतों के प्रभाव के रूप में सम्मिलित करने के लिए एजेंट-मॉडल पर आधारित होते है। [1]

द्रव्यमान संतुलन

क्षणिक भूजल प्रवाह समीकरण पर पहुंचने के लिए, बड़े पैमाने पर संतुलन किया जाता है और डार्सी के नियम के साथ प्रयोग किया जाना चाहिए। यह संतुलन ऊष्मा समीकरण में आने के लिए ऊष्मा हस्तांतरण में प्रयुक्त ऊर्जा संतुलन के अनुरूप होता है। यह मात्र लेखांकन का एक बयान है, कि किसी दिए गए नियंत्रण मात्रा के लिए स्रोतों या सिंक के अतिरिक्त द्रव्यमान को बनाया या नष्ट किया जा सकता है। द्रव्यमान के संरक्षण में कहा गया है कि समय की एक निश्चित वृद्धि (Δt) के लिए सीमाओं के पार बहने वाले द्रव्यमान और आयतन के भीतर के स्रोतों के बीच का अंतर भंडारण में परिवर्तन होता है। जिसे इस रूप में दिखाया जाता है,

प्रसार समीकरण (क्षणिक प्रवाह)

द्रव्यमान को घनत्व गुणा आयतन के रूप में दर्शाया जाता है और अधिकांश स्थितियों में पानी को असंपीड्य रूप में माना जा सकता है और इस प्रकार घनत्व दबाव पर निर्भर नहीं करता है। द्रव्यमान सीमाओं के पार प्रवाहित होता है और फिर आयतन प्रवाह बन जाता है जैसा कि डार्सी के नियम में पाया जाता है। नियंत्रण आयतन की सीमाओं के भीतर और बाहर प्रवाह की शर्तों का प्रतिनिधित्व करने के लिए टेलर श्रृंखला का उपयोग किया जाना चाहिए और विचलन प्रमेय का उपयोग करके सीमा के पार प्रवाह को संपूर्ण मात्रा में एक प्रवाह के रूप में बदलना चाहिए और इस प्रकार अंतर के रूप में भूजल प्रवाह समीकरण का अंतिम रूप में होना चाहिए।

इसे अन्य क्षेत्रों में प्रसार समीकरण या ऊष्मा समीकरण के रूप में जाना जाता है, यह एक परवलयिक आंशिक अंतर समीकरण (पीडीई) के रूप में होता है। यह गणितीय कथन इंगित करता है कि बायीं ओर समय के साथ हाइड्रोलिक हेड में परिवर्तन फ्लक्स के नकारात्मक विचलन के बराबर होता है और स्रोत शर्तों से इस समीकरण में हेड और फ्लक्स अज्ञात रूप में होते हैं, लेकिन डार्सी का नियम फ्लक्स को हाइड्रोलिक हेड्स से संबंधित होता है, इसलिए इसे फ्लक्स (q) के लिए प्रतिस्थापित करने से होता है

अब अगर हाइड्रोलिक चालकता (K) स्थानिक रूप से एकसमान है और टेन्सर के अतिरिक्त आइसोट्रोपिक है, तो इसे स्थानिक व्युत्पन्न से बाहर निकाला जा सकता है, जिससे उन्हें लाप्लासियन में सरल बनाया जा सके, यह समीकरण बनाता है।

विशिष्ट भंडारण (Ss) द्वारा विभाजित करके, दाहिनी ओर हाइड्रोलिक विसरण (α = K/Ssया समकक्ष, α = T/S) के रूप में होता है। हाइड्रोलिक विसरण उस गति के समानुपाती होती है जिस पर एक परिमित दबाव पल्स प्रणाली के माध्यम से α के बड़े मान संकेतों के तेजी से प्रसार के लिए प्रसारित होता है और इस प्रकार भूजल प्रवाह समीकरण बन जाता है।

जहां सिंक/स्रोत शब्द G, में अब समान इकाइयों के रूप में हैं, लेकिन उपयुक्त भंडारण अवधि से विभाजित है जैसा कि हाइड्रोलिक विसरण प्रतिस्थापन द्वारा परिभाषित किया गया है।

आयताकार कार्टेसियन निर्देशांक

मॉडफ्लो में प्रयुक्त त्रि-आयामी परिमित अंतर ग्रिड

विशेष रूप से आयताकार ग्रिड परिमित अंतर मॉडल का उपयोग करते है उदाहरण के लिए यूएसजीएस द्वारा बनाए गए मॉडफ्लो कार्टेशियन निर्देशांक का वर्णन करते है। इन निर्देशांकों में सामान्य लाप्लासियन ऑपरेटर विशेष रूप से तीन आयामी प्रवाह के लिए बन जाता है।

मॉडफ्लो कोड गवर्निंग ग्राउंडवाटर फ्लो इक्वेशन के एक ओर्थोगोनल 3-डी फॉर्म को अलग करता है और अनुकरण करता है। चूँकि, अगर उपयोगकर्ता ऐसा करना चाहता है तो उसके पास अर्ध-3D मोड में चलने का विकल्प होता है; इस स्थिति में नमूना k और Ss के अतिरिक्त लंबवत औसत T और S से संबंधित होता है। अर्ध-3डी मोड में रिसाव की अवधारणा का उपयोग करके 2डी क्षैतिज परतों के बीच प्रवाह की गणना की जाती है।

परिपत्र बेलनाकार निर्देशांक

एक अन्य उपयोगी समन्वय प्रणाली 3डी बेलनाकार निर्देशांक के रूप में है, सामान्यतः जहां एक पंपिंग कुआं Z अक्ष के समानांतर मूल पर स्थित एक लाइन स्रोत के रूप में होता है, जिससे अभिसरण रेडियल प्रवाह होता है। इन शर्तों के अनुसार उपरोक्त समीकरण r रेडियल दूरी और θ कोण के रूप में बन जाता है।


अनुमान

यह समीकरण मूल बिंदु पर स्थित शक्ति G के एक पंपिंग कुएं में प्रवाह का प्रतिनिधित्व करता है। यह समीकरण और उपरोक्त कार्टेशियन संस्करण दोनों भूजल प्रवाह में मूलभूत समीकरण के रूप में हैं, लेकिन इस बिंदु पर पहुंचने के लिए अधिक सरलीकरण की आवश्यकता होती है। कुछ मुख्य धारणाएँ जो इन दोनों समीकरणों से जुड़ी हैं।

  • जलभृत सामग्री असंपीड्य है मैट्रिक्स में कोई बदलाव नहीं है दबाव उर्फ ​​अवतलन में परिवर्तन के कारण होते है
  • पानी निरंतर घनत्व असंपीड्य के रूप में होते है
  • जलभृत पर कोई बाहरी भार जैसे, ओवरबर्डन वायुमंडलीय दबाव स्थिर रूप में होते है
  • 1डी रेडियल समस्या के लिए पम्पिंग कुआँ पूरी तरह से एक गैर रिसाव वाले जलभृत में प्रवेश के रूप में है
  • भूजल धीरे-धीरे बह रहा है और इस प्रकार रेनॉल्ड्स संख्या से कम होता है
  • हाइड्रोलिक चालकता (k) एक समदैशिक अदिश भौतिकी के रूप में है

इन बड़ी धारणाओं के अतिरिक्त भूजल प्रवाह समीकरण स्रोतों और सिंक के क्षणिक वितरण के कारण जलभृतों में प्रमुखों के वितरण का प्रतिनिधित्व करने का अच्छा काम करता है।

लाप्लास समीकरण (स्थिर अवस्था प्रवाह)

अगर एक्विफायर में रिचार्जिंग सीमा की स्थितियां हैं तो एक स्थिर स्थिति तक पहुंचा जा सकता है या इसे कई स्थिति में अनुमान के रूप में उपयोग किया जा सकता है और प्रसार समीकरण लाप्लास समीकरण को सरल करता है।

यह समीकरण बताता है कि हाइड्रोलिक हेड एक हार्मोनिक फलन है और अन्य क्षेत्रों में इसके कई एनालॉग हैं। लाप्लास समीकरण को प्रद्यौगिकीय का उपयोग करके हल किया जा सकता है, ऊपर बताई गई समान मान्यताओं का उपयोग करते हुए, लेकिन एक स्थिर अवस्था प्रवाह क्षेत्र की अतिरिक्त आवश्यकताओं के रूप में होती है।

असैनिक अभियंत्रण और मृदा यांत्रिकी में इस समीकरण के समाधान के लिए एक सामान्य विधि है। ड्राइंग फ्लोनेट की ग्राफिकल प्रद्यौगिकीय का उपयोग करते है; जहां हाइड्रॉलिक हेड की कंटूर रेखा और स्ट्रीम फलन एक घुमावदार ग्रिड बनाते हैं, जिससे जटिल ज्यामिति को लगभग हल किया जा सकता है।

एक पम्पिंग कुएं में स्थिर-अवस्था का प्रवाह जो वास्तव में कभी नहीं होता है, लेकिन कभी-कभी एक उपयोगी सन्निकटन के रूप में होता है जिसे सामान्यता थिएम समाधान कहा जाता है।

द्वि-आयामी भूजल प्रवाह

उपरोक्त भूजल प्रवाह समीकरण तीन आयामी प्रवाह के लिए मान्य हैं। अपुष्ट जलभृतों में, समीकरण के 3डी रूप का समाधान एक मुक्त सतह जल तालिका सीमा स्थिति की उपस्थिति से जटिल होता है: शीर्षों के स्थानिक वितरण के लिए हल करने के अतिरिक्त, इस सतह का स्थान भी एक अज्ञात है। यह एक गैर-रैखिक समस्या है, अगर शासकीय समीकरण रैखिक है।

डुपिट-फोर्चहाइमर धारणा को लागू करके भूजल प्रवाह समीकरण का एक वैकल्पिक सूत्रीकरण प्राप्त किया जा सकता है, जहां यह माना जाता है कि शीर्ष ऊर्ध्वाधर दिशा में भिन्न नहीं होते हैं (अर्थात, ). एक क्षैतिज जल संतुलन क्षेत्र के साथ एक लंबे ऊर्ध्वाधर स्तंभ पर लागू होता है जलभृत आधार से असंतृप्त सतह तक विस्तार। इस दूरी को संतृप्त मोटाई, बी के रूप में जाना जाता है। एक सीमित जलभृत में, संतृप्त मोटाई जलभृत, एच की ऊंचाई से निर्धारित होती है, और दबाव सिर हर जगह गैर-शून्य होता है। एक असीमित जलभृत में, संतृप्त मोटाई को जल तालिका की सतह और जलभृत आधार के बीच ऊर्ध्वाधर दूरी के रूप में परिभाषित किया जाता है। अगर , और जलभृत आधार शून्य आधार पर है, तो असंबद्ध संतृप्त मोटाई शीर्ष के बराबर है, अर्थात, b=h।

हाइड्रोलिक चालकता और प्रवाह के क्षैतिज घटकों दोनों को मानते हुए एक्वीफर की संपूर्ण संतृप्त मोटाई के साथ समान हैं (अर्थात, और ), हम एकीकृत भूजल निर्वहन, क्यू के संदर्भ में डार्सी के नियम को व्यक्त कर सकते हैंxऔर क्यूy:

इन्हें हमारे द्रव्यमान संतुलन अभिव्यक्ति में सम्मिलित करते हुए, हम असम्पीडित संतृप्त भूजल प्रवाह के लिए सामान्य 2D शासी समीकरण प्राप्त करते हैं:

जहाँ n एक्वीफर सरंध्रता है। स्रोत शब्द, एन (लंबाई प्रति समय), ऊर्ध्वाधर दिशा में पानी के अतिरिक्त (जैसे, पुनर्भरण) का प्रतिनिधित्व करता है। संतृप्त मोटाई, विशिष्ट भंडारण और विशिष्ट उपज के लिए सही परिभाषाओं को शामिल करके, हम इसे सीमित और अपरिमित स्थितियों के लिए दो अद्वितीय शासी समीकरणों में बदल सकते हैं:

(सीमित), जहां एस = एसsबी जलभृत भंडारण है और

(अपरिबद्ध), जहां एसyएक्वीफर की विशिष्ट उपज है।

ध्यान दें कि अपरिरुद्ध स्थिति में आंशिक अवकल समीकरण गैर-रैखिक होता है, जबकि सीमित स्थिति में यह रैखिक होता है। असीमित स्थिर-अवस्था प्रवाह के लिए, इस गैर-रैखिकता को पीडीई को शीर्ष वर्ग के संदर्भ में व्यक्त करके हटाया जा सकता है:

या, सजातीय जलवाही स्तर के लिए,

यह फॉर्मूलेशन हमें असीमित प्रवाह के मामले में रैखिक पीडीई को हल करने के लिए मानक तरीकों को लागू करने की अनुमति देता है। बिना पुनर्भरण वाले विषम जलभृतों के लिए, मिश्रित सीमित/अपरिबद्ध मामलों के लिए संभावित प्रवाह विधियों को लागू किया जा सकता है।

यह भी देखें

संदर्भ

  1. Corona, Oliver López; Padilla, Pablo; Escolero, Oscar; González, Tomas; Morales-Casique, Eric; Osorio-Olvera, Luis (2014-10-16). "ट्रैवलिंग एजेंट मॉडल के रूप में जटिल भूजल प्रवाह प्रणाली". PeerJ (in English). 2: e557. doi:10.7717/peerj.557. ISSN 2167-8359. PMC 4203025. PMID 25337455.


अग्रिम पठन


बाहरी संबंध