कैननिकल निर्देशांक: Difference between revisions
(Created page with "{{Short description|Sets of coordinates on phase space which can be used to describe a physical system}} {{Multiple issues| {{no footnotes|date=November 2018}} {{more citation...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Sets of coordinates on phase space which can be used to describe a physical system}} | {{Short description|Sets of coordinates on phase space which can be used to describe a physical system}} | ||
{{Classical mechanics}} | {{Classical mechanics}} | ||
गणित और [[शास्त्रीय यांत्रिकी]] में, विहित निर्देशांक [[चरण स्थान]] पर निर्देशांक के | गणित और [[शास्त्रीय यांत्रिकी|मौलिक यांत्रिकी]] में, विहित निर्देशांक [[चरण स्थान]] पर निर्देशांक के समूह होते हैं जिनका उपयोग किसी भी समय किसी भौतिक प्रणाली का वर्णन करने के लिए किया जा सकता है। मौलिक यांत्रिकी के [[हैमिल्टनियन यांत्रिकी]] में कैननिकल निर्देशांक का उपयोग किया जाता है। [[क्वांटम यांत्रिकी]] में एक निकट संबंधी अवधारणा भी दिखाई देती है; विवरण के लिए स्टोन-वॉन न्यूमैन प्रमेय और [[विहित रूपान्तरण संबंध]] देखें। | ||
जैसा कि हैमिल्टनियन यांत्रिकी को सहानुभूति ज्यामिति द्वारा सामान्यीकृत किया जाता है और [[विहित परिवर्तन]] | जैसा कि हैमिल्टनियन यांत्रिकी को सहानुभूति ज्यामिति द्वारा सामान्यीकृत किया जाता है और [[विहित परिवर्तन]]को [[संपर्क परिवर्तन]] द्वारा सामान्यीकृत किया जाता है, इसलिए मौलिक यांत्रिकी में विहित निर्देशांक की 19 वीं शताब्दी की परिभाषा को एक अधिक अमूर्त 20 वीं शताब्दी की परिभाषा के लिए सामान्यीकृत किया जा सकता है, जो [[कई गुना|मैनिफोल्ड]] (चरण स्थान की गणितीय धारणा) है । | ||
== | == मौलिक यांत्रिकी में परिभाषा == | ||
मौलिक यांत्रिकी में, कैनोनिकल निर्देशांक चरण स्थान में निर्देशांक <math>q^i</math> और <math>p_i</math>होते हैं जो हैमिल्टनियन औपचारिकता में उपयोग किए जाते हैं। विहित निर्देशांक मौलिक प्वासों कोष्ठक संबंधों को संतुष्ट करते हैं: | |||
:<math>\left\{q^i, q^j\right\} = 0 \qquad \left\{p_i, p_j\right\} = 0 \qquad \left\{q^i, p_j\right\} = \delta_{ij}</math> | :<math>\left\{q^i, q^j\right\} = 0 \qquad \left\{p_i, p_j\right\} = 0 \qquad \left\{q^i, p_j\right\} = \delta_{ij}</math> | ||
विहित निर्देशांकों का एक विशिष्ट उदाहरण <math>q^i</math> के लिए सामान्य कार्तीय निर्देशांक होना और <math>p_i</math> संवेग के घटक होना है। इसलिए सामान्यतः , <math>p_i</math> निर्देशांकों को "संयुग्म संवेग" कहा जाता है। | |||
लिजेन्ड्रे परिवर्तन द्वारा लैग्रैन्जियन यांत्रिकी औपचारिकता के [[सामान्यीकृत निर्देशांक]] से कैनोनिकल निर्देशांक प्राप्त किए जा सकते हैं, या एक कैननिकल परिवर्तन द्वारा कैनोनिकल निर्देशांक के दूसरे | लिजेन्ड्रे परिवर्तन द्वारा लैग्रैन्जियन यांत्रिकी औपचारिकता के [[सामान्यीकृत निर्देशांक]] से कैनोनिकल निर्देशांक प्राप्त किए जा सकते हैं, या एक कैननिकल परिवर्तन द्वारा कैनोनिकल निर्देशांक के दूसरे समूह से प्राप्त किया जा सकता है। | ||
== कॉटैंजेंट बंडलों पर परिभाषा == | == कॉटैंजेंट बंडलों पर परिभाषा == | ||
कैनोनिकल निर्देशांक को | कैनोनिकल निर्देशांक को मैनिफोल्ड के कोटेन्टेंट बंडल पर निर्देशांक के एक विशेष समूह के रूप में परिभाषित किया जाता है। वे सामान्यतः <math>\left(q^i, p_j\right)</math> या <math>\left(x^i, p_j\right)</math> के समूह के रूप में लिखे जाते हैं। x's या q's अंतर्निहित मैनिफोल्ड पर निर्देशांकों को दर्शाता है और p's संयुग्मी संवेग को दर्शाता है, जो मैनिफोल्ड में बिंदु q पर कोटेंगेंट बंडल में [[1-रूप]] हैं। | ||
विहित निर्देशांकों की एक सामान्य परिभाषा कॉटैंजेंट बंडल पर निर्देशांकों का कोई | विहित निर्देशांकों की एक सामान्य परिभाषा कॉटैंजेंट बंडल पर निर्देशांकों का कोई समूह है जो विहित एक-रूप को प्रपत्र में लिखे जाने की अनुमति देता है | ||
:<math>\sum_i p_i\,\mathrm{d}q^i</math> | :<math>\sum_i p_i\,\mathrm{d}q^i</math> | ||
कुल अंतर | कुल अंतर तक इस रूप को संरक्षित करने वाले निर्देशांक में परिवर्तन एक विहित परिवर्तन है; ये एक [[sympletomorphism|सिम्पेक्टोमोर्फिज्म]] का एक विशेष स्थति है, जो अनिवार्य रूप से [[सिंपलेक्टिक मैनिफोल्ड]] पर निर्देशांक का परिवर्तन है। | ||
निम्नलिखित | निम्नलिखित प्रदर्शन में, हम मानते हैं कि मैनिफोल्ड वास्तविक मैनिफोल्ड हैं, इसलिए स्पर्शरेखा वैक्टर पर काम करने वाले कॉटैंगेंट वैक्टर वास्तविक संख्याएं उत्पन्न करते हैं। | ||
== औपचारिक विकास == | == औपचारिक विकास == | ||
मैनिफोल्ड {{mvar|Q}} को देखते हुए, {{mvar|Q}} ([[स्पर्शरेखा बंडल]] {{math|''TQ''}} का एक खंड) पर एक वेक्टर क्षेत्र {{mvar|X}} को टेंगेंट और कॉटैंगेंट रिक्त स्थान के बीच द्वंद्व द्वारा कोटेंटेंट बंडल पर कार्य करने वाले फलन के रूप में माना जा सकता है। यानी एक फलन को परिभाषित करें | |||
:<math>P_X: T^*Q \to \mathbb{R}</math> | :<math>P_X: T^*Q \to \mathbb{R}</math> | ||
Line 33: | Line 29: | ||
:<math>P_X(q, p) = p(X_q)</math> | :<math>P_X(q, p) = p(X_q)</math> | ||
<math>T_q^*Q</math> में सभी स्पर्शरेखा वैक्टर {{mvar|p}} के लिए है। यहाँ, <math>X_q</math> , <math>T_qQ</math> में एक सदिश है, जो बिंदु {{mvar|q}} पर मैनिफोल्ड {{mvar|Q}} की स्पर्शरेखा है। फलन <math>P_X</math> को {{mvar|X}} के संगत संवेग फलन कहा जाता है। | |||
[[एटलस (टोपोलॉजी)]] में, वेक्टर क्षेत्र {{mvar|X}} बिंदु पर {{mvar|q}} के रूप में लिखा जा सकता है | [[एटलस (टोपोलॉजी)]] में, वेक्टर क्षेत्र {{mvar|X}} बिंदु पर {{mvar|q}} के रूप में लिखा जा सकता है | ||
:<math>X_q = \sum_i X^i(q) \frac{\partial}{\partial q^i}</math> | :<math>X_q = \sum_i X^i(q) \frac{\partial}{\partial q^i}</math> | ||
जहां <math>\partial /\partial q^i</math> निर्देशांक फ़्रेम चालू हैं {{mvar|TQ}}. संयुग्मी संवेग तब व्यंजक होता है | जहां <math>\partial /\partial q^i</math>, {{mvar|TQ}} निर्देशांक फ़्रेम '''चालू''' हैं {{mvar|TQ}}. संयुग्मी संवेग तब व्यंजक होता है | ||
:<math>P_X(q, p) = \sum_i X^i(q)\; p_i</math> | :<math>P_X(q, p) = \sum_i X^i(q)\; p_i</math> | ||
जहाँ <math>p_i</math>, <math>\partial /\partial q^i</math> के संगत संवेग फलन के रूप में परिभाषित किया गया है। | |||
:<math>p_i = P_{\partial /\partial q^i}</math> | :<math>p_i = P_{\partial /\partial q^i}</math> | ||
<math>q^i</math> | <math>q^i</math> एक साथ <math>p_j</math> के साथ मिलकर कॉटैंजेंट बंडल <math>T^*Q</math> पर एक समन्वय प्रणाली बनाते हैं; इन निर्देशांकों को विहित निर्देशांक कहा जाता है। | ||
== सामान्यीकृत निर्देशांक == | == सामान्यीकृत निर्देशांक == | ||
लाग्रंगियन यांत्रिकी में, निर्देशांक के एक अलग समूह का उपयोग किया जाता है, जिसे सामान्यीकृत निर्देशांक कहा जाता है। इन्हें सामान्यतः <math>\left(q^i, \dot{q}^i\right)</math> के रूप में दर्शाया जाता है जहाँ <math>q^i</math> को सामान्यीकृत स्थिति कहा जाता है और <math>\dot{q}^i</math> सामान्यीकृत वेग। जब सहस्पर्शी सदिश क्षेत्र को स्पर्शरेखा बंडल पर परिभाषित किया जाता है, तो सामान्यीकृत निर्देशांक हैमिल्टन-जैकोबी समीकरणों के माध्यम से विहित निर्देशांक से संबंधित होते हैं। | |||
<nowiki>Lagrangian यांत्रिकी में, निर्देशांक के एक अलग सेट का उपयोग किया जाता है, जिसे सामान्यीकृत निर्देशांक कहा जाता है। इन्हें आमतौर पर {\displaystyle \left(q^{i},{\dot {q}}^{i}\right)} के रूप में दर्शाया जाता है, जहां q^{i} नि होते हैं।</nowiki> | |||
== यह भी देखें == | == यह भी देखें == |
Revision as of 09:06, 2 May 2023
Part of a series on |
चिरसम्मत यांत्रिकी |
---|
गणित और मौलिक यांत्रिकी में, विहित निर्देशांक चरण स्थान पर निर्देशांक के समूह होते हैं जिनका उपयोग किसी भी समय किसी भौतिक प्रणाली का वर्णन करने के लिए किया जा सकता है। मौलिक यांत्रिकी के हैमिल्टनियन यांत्रिकी में कैननिकल निर्देशांक का उपयोग किया जाता है। क्वांटम यांत्रिकी में एक निकट संबंधी अवधारणा भी दिखाई देती है; विवरण के लिए स्टोन-वॉन न्यूमैन प्रमेय और विहित रूपान्तरण संबंध देखें।
जैसा कि हैमिल्टनियन यांत्रिकी को सहानुभूति ज्यामिति द्वारा सामान्यीकृत किया जाता है और विहित परिवर्तनको संपर्क परिवर्तन द्वारा सामान्यीकृत किया जाता है, इसलिए मौलिक यांत्रिकी में विहित निर्देशांक की 19 वीं शताब्दी की परिभाषा को एक अधिक अमूर्त 20 वीं शताब्दी की परिभाषा के लिए सामान्यीकृत किया जा सकता है, जो मैनिफोल्ड (चरण स्थान की गणितीय धारणा) है ।
मौलिक यांत्रिकी में परिभाषा
मौलिक यांत्रिकी में, कैनोनिकल निर्देशांक चरण स्थान में निर्देशांक और होते हैं जो हैमिल्टनियन औपचारिकता में उपयोग किए जाते हैं। विहित निर्देशांक मौलिक प्वासों कोष्ठक संबंधों को संतुष्ट करते हैं:
विहित निर्देशांकों का एक विशिष्ट उदाहरण के लिए सामान्य कार्तीय निर्देशांक होना और संवेग के घटक होना है। इसलिए सामान्यतः , निर्देशांकों को "संयुग्म संवेग" कहा जाता है।
लिजेन्ड्रे परिवर्तन द्वारा लैग्रैन्जियन यांत्रिकी औपचारिकता के सामान्यीकृत निर्देशांक से कैनोनिकल निर्देशांक प्राप्त किए जा सकते हैं, या एक कैननिकल परिवर्तन द्वारा कैनोनिकल निर्देशांक के दूसरे समूह से प्राप्त किया जा सकता है।
कॉटैंजेंट बंडलों पर परिभाषा
कैनोनिकल निर्देशांक को मैनिफोल्ड के कोटेन्टेंट बंडल पर निर्देशांक के एक विशेष समूह के रूप में परिभाषित किया जाता है। वे सामान्यतः या के समूह के रूप में लिखे जाते हैं। x's या q's अंतर्निहित मैनिफोल्ड पर निर्देशांकों को दर्शाता है और p's संयुग्मी संवेग को दर्शाता है, जो मैनिफोल्ड में बिंदु q पर कोटेंगेंट बंडल में 1-रूप हैं।
विहित निर्देशांकों की एक सामान्य परिभाषा कॉटैंजेंट बंडल पर निर्देशांकों का कोई समूह है जो विहित एक-रूप को प्रपत्र में लिखे जाने की अनुमति देता है
कुल अंतर तक इस रूप को संरक्षित करने वाले निर्देशांक में परिवर्तन एक विहित परिवर्तन है; ये एक सिम्पेक्टोमोर्फिज्म का एक विशेष स्थति है, जो अनिवार्य रूप से सिंपलेक्टिक मैनिफोल्ड पर निर्देशांक का परिवर्तन है।
निम्नलिखित प्रदर्शन में, हम मानते हैं कि मैनिफोल्ड वास्तविक मैनिफोल्ड हैं, इसलिए स्पर्शरेखा वैक्टर पर काम करने वाले कॉटैंगेंट वैक्टर वास्तविक संख्याएं उत्पन्न करते हैं।
औपचारिक विकास
मैनिफोल्ड Q को देखते हुए, Q (स्पर्शरेखा बंडल TQ का एक खंड) पर एक वेक्टर क्षेत्र X को टेंगेंट और कॉटैंगेंट रिक्त स्थान के बीच द्वंद्व द्वारा कोटेंटेंट बंडल पर कार्य करने वाले फलन के रूप में माना जा सकता है। यानी एक फलन को परिभाषित करें
ऐसा है कि
में सभी स्पर्शरेखा वैक्टर p के लिए है। यहाँ, , में एक सदिश है, जो बिंदु q पर मैनिफोल्ड Q की स्पर्शरेखा है। फलन को X के संगत संवेग फलन कहा जाता है।
एटलस (टोपोलॉजी) में, वेक्टर क्षेत्र X बिंदु पर q के रूप में लिखा जा सकता है
जहां , TQ निर्देशांक फ़्रेम चालू हैं TQ. संयुग्मी संवेग तब व्यंजक होता है
जहाँ , के संगत संवेग फलन के रूप में परिभाषित किया गया है।
एक साथ के साथ मिलकर कॉटैंजेंट बंडल पर एक समन्वय प्रणाली बनाते हैं; इन निर्देशांकों को विहित निर्देशांक कहा जाता है।
सामान्यीकृत निर्देशांक
लाग्रंगियन यांत्रिकी में, निर्देशांक के एक अलग समूह का उपयोग किया जाता है, जिसे सामान्यीकृत निर्देशांक कहा जाता है। इन्हें सामान्यतः के रूप में दर्शाया जाता है जहाँ को सामान्यीकृत स्थिति कहा जाता है और सामान्यीकृत वेग। जब सहस्पर्शी सदिश क्षेत्र को स्पर्शरेखा बंडल पर परिभाषित किया जाता है, तो सामान्यीकृत निर्देशांक हैमिल्टन-जैकोबी समीकरणों के माध्यम से विहित निर्देशांक से संबंधित होते हैं।
Lagrangian यांत्रिकी में, निर्देशांक के एक अलग सेट का उपयोग किया जाता है, जिसे सामान्यीकृत निर्देशांक कहा जाता है। इन्हें आमतौर पर {\displaystyle \left(q^{i},{\dot {q}}^{i}\right)} के रूप में दर्शाया जाता है, जहां q^{i} नि होते हैं।
यह भी देखें
- रैखिक विभेदक विश्लेषण
- सिम्प्लेक्टिक मैनिफोल्ड
- सहानुभूति वेक्टर क्षेत्र
- सिम्पेक्टोमोर्फिज्म
- काइनेटिक गति
- पूरकता (भौतिकी)
- विहित परिमाणीकरण
- कैननिकल क्वांटम ग्रेविटी
संदर्भ
- Goldstein, Herbert; Poole, Charles P., Jr.; Safko, John L. (2002). Classical Mechanics (3rd ed.). San Francisco: Addison Wesley. pp. 347–349. ISBN 0-201-65702-3.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - Ralph Abraham and Jerrold E. Marsden, Foundations of Mechanics, (1978) Benjamin-Cummings, London ISBN 0-8053-0102-X See section 3.2.