ऊर्जा की स्थिति: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 5: Line 5:
}}
}}


गुरुत्वाकर्षण के सापेक्षवादी शास्त्रीय क्षेत्र सिद्धांतों में, विशेष रूप से सामान्य सापेक्षता, एक ऊर्जा की स्थिति "अंतरिक्ष के एक क्षेत्र की ऊर्जा घनत्व नकारात्मक नहीं हो सकती है" बयान का एक सामान्यीकरण है जो एक सापेक्षिक रूप से वाक्यांशित गणितीय सूत्रीकरण में है। ऐसी स्थिति को व्यक्त करने के विभिन्न संभावित वैकल्पिक प्रकार हैं जैसे कि सिद्धांत की सामग्री,सामग्री पर जारी किया जा सकता है। आशा यह है कि कोई भी उचित पदार्थ सिद्धांत इस स्थिति को पूर्ण करेगा या न्यूनतम स्थिति को संरक्षित करेगा यदि यह प्रारंभिक स्थितियों से संतुष्ट है।
गुरुत्वाकर्षण के सापेक्षवादी सिद्धांतों में, ऊर्जा की स्थिति में "अंतरिक्ष क्षेत्र की ऊर्जा घनत्व नकारात्मक नहीं हो सकती है" प्रमाण के सामान्यीकरण के सापेक्षिक रूप से वाक्यांशित गणितीय सूत्रीकरण में है। ऐसी स्थिति को व्यक्त करने के विभिन्न संभावित वैकल्पिक प्रकार हैं जैसे कि सिद्धांत की सामग्री पर प्रस्तावित किया जा सकता है। आशा यह है कि कोई भी उचित पदार्थ सिद्धांत इस स्थिति को पूर्ण करेगा या न्यूनतम स्थिति को संरक्षित करेगा यदि यह प्रारंभिक स्थितियों से संतुष्ट है।


ऊर्जा की स्थितियाँ भौतिक बाधाएं नहीं है, बल्कि गणितीय रूप से लगाई गई सीमाएँ हैं जो इस विश्वास को पकड़ने का प्रयास करती हैं कि ऊर्जा सकारात्मक होनी चाहिए।<ref name="ARX-2014">{{cite news |last=Curiel |first=E. |title=ऊर्जा की स्थिति पर एक प्राइमर|url=https://archive.org/details/arxiv-1405.0403 |arxiv=1405.0403 |year=2014}}</ref> विभिन्न ऊर्जा स्थितियों की भौतिक वास्तविकता के अनुरूप नहीं होने के लिए जाना जाता है - उदाहरण के लिए[[ काली ऊर्जा ]]के अवलोकनीय प्रभाव शक्तिशाली ऊर्जा स्थिति का उल्लंघन करने के लिए जाने जाते हैं।<ref name="ARX-2018">{{cite journal |last=Farnes |first=J.S. |title=A Unifying Theory of Dark Energy and Dark Matter: Negative Masses and Matter Creation within a Modified ΛCDM Framework |journal=Astronomy & Astrophysics |volume=620 |pages=A92 |arxiv=1712.07962 |year=2018 |doi=10.1051/0004-6361/201832898 |bibcode=2018A&A...620A..92F |s2cid=53600834 }}</ref><ref name=Visser>{{Cite book |arxiv = gr-qc/0001099|doi = 10.1142/9789812792129_0014|chapter = Energy Conditions and Their Cosmological Implications|title = Cosmo-99|pages = 98–112|year = 2000|last1 = Visser|first1 = Matt|last2 = Barceló|first2 = Carlos|isbn = 978-981-02-4456-9|s2cid = 119446302}}</ref>
ऊर्जा की स्तिथियों में भौतिक बाधाएं नहीं होती है, अन्यथा गणितीय रूप में सीमाएँ होती हैं जो इस विचार पर विश्वास करती हैं कि ऊर्जा सकारात्मक होनी चाहिए।<ref name="ARX-2014">{{cite news |last=Curiel |first=E. |title=ऊर्जा की स्थिति पर एक प्राइमर|url=https://archive.org/details/arxiv-1405.0403 |arxiv=1405.0403 |year=2014}}</ref> विभिन्न ऊर्जा स्थितियों की भौतिक वास्तविकता के अनुरूप नहीं होने चाहिए| उदाहरण के लिए[[ काली ऊर्जा | ब्लैक ऊर्जा]] को अवलोकनीय प्रभाव शक्तिशाली ऊर्जा स्थिति का उल्लंघन करने के लिए जाने जाते हैं।<ref name="ARX-2018">{{cite journal |last=Farnes |first=J.S. |title=A Unifying Theory of Dark Energy and Dark Matter: Negative Masses and Matter Creation within a Modified ΛCDM Framework |journal=Astronomy & Astrophysics |volume=620 |pages=A92 |arxiv=1712.07962 |year=2018 |doi=10.1051/0004-6361/201832898 |bibcode=2018A&A...620A..92F |s2cid=53600834 }}</ref><ref name=Visser>{{Cite book |arxiv = gr-qc/0001099|doi = 10.1142/9789812792129_0014|chapter = Energy Conditions and Their Cosmological Implications|title = Cosmo-99|pages = 98–112|year = 2000|last1 = Visser|first1 = Matt|last2 = Barceló|first2 = Carlos|isbn = 978-981-02-4456-9|s2cid = 119446302}}</ref>


सामान्य सापेक्षता में, ब्लैक होल के बारे में विभिन्न महत्वपूर्ण प्रमेयों के प्रमाण में ऊर्जा स्थितियों का अक्सर उपयोग किया जाता है, जैसे कि नो हेयर प्रमेय या [[ब्लैक होल ऊष्मप्रवैगिकी|ब्लैक होल ऊष्मप्रवैगिकी के नियम]] |
सामान्य सापेक्ष में, ब्लैक होल के बारे में विभिन्न महत्वपूर्ण प्रमेयों के प्रमाण में ऊर्जा स्थितियों का प्रायः उपयोग किया जाता है, जैसे कि नो हेयर प्रमेय या [[ब्लैक होल ऊष्मप्रवैगिकी|ब्लैक होल ऊष्मप्रवैगिकी के नियम]] हैं |


== प्रेरणा ==
== प्रेरणा ==
सामान्य सापेक्षता और संबद्ध सिद्धांतों में, पदार्थ और किसी भी गैर-गुरुत्वाकर्षण क्षेत्र के कारण द्रव्यमान, संवेग और तनाव का वितरण ऊर्जा-संवेग टेंसर (या मैटर टेंसर)  <math>T^{ab}</math> द्वारा वर्णित है। चूँकि, आइंस्टीन फील्ड समीकरण अपने आप में यह निर्दिष्ट नहीं करता है कि स्पेसटाइम मॉडल में किस प्रकार के पदार्थ या गैर-गुरुत्वाकर्षण क्षेत्र स्वीकार्य हैं। यह दोनों एक शक्ति है, क्योंकि गुरुत्वाकर्षण का एक अच्छा सामान्य सिद्धांत गैर-गुरुत्वाकर्षण भौतिकी से संबंधित किसी भी धारणा से अधिकतम रूप से स्वतंत्र होना चाहिए, और एक दुर्बलता, क्योंकि कुछ और मानदंड के बिना [[आइंस्टीन क्षेत्र समीकरण]] गुणों के साथ कल्पित समाधान स्वीकार करता है, अधिकांश भौतिक विज्ञानी अभौतिक मानते हैं, प्रायः वास्तविक ब्रह्मांड में कुछ भी समान दिखने के लिए विचित्र है।
सामान्य सापेक्षता और संबद्ध सिद्धांतों में, पदार्थ और किसी भी गैर-गुरुत्वाकर्षण क्षेत्र के कारण द्रव्यमान, संवेग और तनाव का वितरण ऊर्जा-संवेग टेंसर (या मैटर टेंसर)  <math>T^{ab}</math> द्वारा वर्णित किया जाता है। चूँकि, आइंस्टीन फील्ड समीकरण अपने आप में यह निर्दिष्ट नहीं करता है कि स्पेसटाइम मॉडल में किस प्रकार के पदार्थ या गैर-गुरुत्वाकर्षण क्षेत्र स्वीकार्य हैं। यह दोनों शक्तियाँ हैं, क्योंकि गुरुत्वाकर्षण का उत्तम सामान्य सिद्धांत गैर-गुरुत्वाकर्षण भौतिकी से संबंधित किसी भी धारणा में अधिकतम रूप से स्वतंत्र और दुर्बल होना चाहिए, क्योंकि कुछ मानदंड के बिना [[आइंस्टीन क्षेत्र समीकरण]] गुणों के साथ कल्पित समाधान स्वीकार करता है, अधिकांश भौतिक विज्ञानी अभौतिक मानते हैं, प्रायः वास्तविक ब्रह्मांड में कुछ भी समान दिखने के लिए विचित्र है।


ऊर्जा की स्थिति ऐसे मानदंडों का प्रतिनिधित्व करती है। मोटे तौर पर बोलते हुए, वे पदार्थ के सभी राज्यों और सभी गैर-गुरुत्वाकर्षण क्षेत्रों के लिए सामान्य गुणों का वर्णन करते हैं जो आइंस्टीन क्षेत्र समीकरण के विभिन्न अभौतिक समाधानों को रद्द करने के लिए पर्याप्त रूप से शक्तिशाली होने के साथ-साथ भौतिकी में ठीक प्रकार से स्थापित हैं।
ऊर्जा की स्थिति ऐसे मानदंडों का प्रतिनिधित्व करती है। सामान्यतः वे पदार्थ के सभी राज्यों और सभी गैर-गुरुत्वाकर्षण क्षेत्रों के लिए सामान्य गुणों का वर्णन करते हैं जो आइंस्टीन क्षेत्र समीकरण के विभिन्न अभौतिक समाधानों को रद्द करने के लिए पर्याप्त रूप से शक्तिशाली होने के साथ-साथ भौतिकी में उचित प्रकार से स्थापित हैं।


गणितीय रूप से बोलते हुए, ऊर्जा स्थितियों की सबसे स्पष्ट विशिष्ट विशेषता यह है कि वे अनिवार्य रूप से पदार्थ टेंसर के [[eigenvalue|आइगेनवैल्यू]] और [[आइजन्वेक्टर]] पर प्रतिबंध हैं। एक अधिक सूक्ष्म किन्तु निम्न महत्वपूर्ण विशेषता यह नहीं है कि वे स्पर्शरेखा रिक्त स्थान के स्तर पर घटनावार लगाए गए हैं। इसलिए, उनके पास आपत्तिजनक [[वैश्विक स्पेसटाइम संरचना]], जैसे कि बंद टाइमलाइक कर्व्स को रद्द करने की कोई आशा नहीं है।
गणितीय रूप से विचार है कि, ऊर्जा स्थितियों की सबसे स्पष्ट विशिष्ट विशेषता यह है कि वे अनिवार्य रूप से पदार्थ टेंसर के [[eigenvalue|आइगेनवैल्यू]] और [[आइजन्वेक्टर]] पर प्रतिबंध हैं। अधिक सूक्ष्म किन्तु निम्न महत्वपूर्ण विशेषता यह नहीं है कि वे स्पर्शरेखा रिक्त स्थान के स्तर पर घटना स्थापित करती हैं। इसलिए, उनके पास आपत्तिजनक [[वैश्विक स्पेसटाइम संरचना]], जैसे कि बंद टाइमलाइक कर्व्स को रद्द करने की कोई आशा नहीं है।


== कुछ अवलोकन योग्य मात्राएँ ==
== कुछ अवलोकन योग्य मात्राएँ ==

Revision as of 19:49, 7 April 2023

गुरुत्वाकर्षण के सापेक्षवादी सिद्धांतों में, ऊर्जा की स्थिति में "अंतरिक्ष क्षेत्र की ऊर्जा घनत्व नकारात्मक नहीं हो सकती है" प्रमाण के सामान्यीकरण के सापेक्षिक रूप से वाक्यांशित गणितीय सूत्रीकरण में है। ऐसी स्थिति को व्यक्त करने के विभिन्न संभावित वैकल्पिक प्रकार हैं जैसे कि सिद्धांत की सामग्री पर प्रस्तावित किया जा सकता है। आशा यह है कि कोई भी उचित पदार्थ सिद्धांत इस स्थिति को पूर्ण करेगा या न्यूनतम स्थिति को संरक्षित करेगा यदि यह प्रारंभिक स्थितियों से संतुष्ट है।

ऊर्जा की स्तिथियों में भौतिक बाधाएं नहीं होती है, अन्यथा गणितीय रूप में सीमाएँ होती हैं जो इस विचार पर विश्वास करती हैं कि ऊर्जा सकारात्मक होनी चाहिए।[1] विभिन्न ऊर्जा स्थितियों की भौतिक वास्तविकता के अनुरूप नहीं होने चाहिए| उदाहरण के लिए ब्लैक ऊर्जा को अवलोकनीय प्रभाव शक्तिशाली ऊर्जा स्थिति का उल्लंघन करने के लिए जाने जाते हैं।[2][3]

सामान्य सापेक्ष में, ब्लैक होल के बारे में विभिन्न महत्वपूर्ण प्रमेयों के प्रमाण में ऊर्जा स्थितियों का प्रायः उपयोग किया जाता है, जैसे कि नो हेयर प्रमेय या ब्लैक होल ऊष्मप्रवैगिकी के नियम हैं |

प्रेरणा

सामान्य सापेक्षता और संबद्ध सिद्धांतों में, पदार्थ और किसी भी गैर-गुरुत्वाकर्षण क्षेत्र के कारण द्रव्यमान, संवेग और तनाव का वितरण ऊर्जा-संवेग टेंसर (या मैटर टेंसर) द्वारा वर्णित किया जाता है। चूँकि, आइंस्टीन फील्ड समीकरण अपने आप में यह निर्दिष्ट नहीं करता है कि स्पेसटाइम मॉडल में किस प्रकार के पदार्थ या गैर-गुरुत्वाकर्षण क्षेत्र स्वीकार्य हैं। यह दोनों शक्तियाँ हैं, क्योंकि गुरुत्वाकर्षण का उत्तम सामान्य सिद्धांत गैर-गुरुत्वाकर्षण भौतिकी से संबंधित किसी भी धारणा में अधिकतम रूप से स्वतंत्र और दुर्बल होना चाहिए, क्योंकि कुछ मानदंड के बिना आइंस्टीन क्षेत्र समीकरण गुणों के साथ कल्पित समाधान स्वीकार करता है, अधिकांश भौतिक विज्ञानी अभौतिक मानते हैं, प्रायः वास्तविक ब्रह्मांड में कुछ भी समान दिखने के लिए विचित्र है।

ऊर्जा की स्थिति ऐसे मानदंडों का प्रतिनिधित्व करती है। सामान्यतः वे पदार्थ के सभी राज्यों और सभी गैर-गुरुत्वाकर्षण क्षेत्रों के लिए सामान्य गुणों का वर्णन करते हैं जो आइंस्टीन क्षेत्र समीकरण के विभिन्न अभौतिक समाधानों को रद्द करने के लिए पर्याप्त रूप से शक्तिशाली होने के साथ-साथ भौतिकी में उचित प्रकार से स्थापित हैं।

गणितीय रूप से विचार है कि, ऊर्जा स्थितियों की सबसे स्पष्ट विशिष्ट विशेषता यह है कि वे अनिवार्य रूप से पदार्थ टेंसर के आइगेनवैल्यू और आइजन्वेक्टर पर प्रतिबंध हैं। अधिक सूक्ष्म किन्तु निम्न महत्वपूर्ण विशेषता यह नहीं है कि वे स्पर्शरेखा रिक्त स्थान के स्तर पर घटना स्थापित करती हैं। इसलिए, उनके पास आपत्तिजनक वैश्विक स्पेसटाइम संरचना, जैसे कि बंद टाइमलाइक कर्व्स को रद्द करने की कोई आशा नहीं है।

कुछ अवलोकन योग्य मात्राएँ

विभिन्न ऊर्जा स्थितियों के बयानों को समझने के लिए, किसी को मनमाने समय सदिश या अशक्त वैक्टर और पदार्थ टेंसर से निर्मित कुछ अदिश और सदिश राशियों की भौतिक व्याख्या से परिचित होना चाहिए।

सबसे पहले, एक इकाई समयबद्ध वेक्टर फ़ील्ड (संभवतः गैर-जड़त्वीय) आदर्श पर्यवेक्षकों के कुछ परिवार की विश्व रेखाओं को परिभाषित करने के रूप में सर्वांगसमता (सामान्य सापेक्षता) हो सकती है। फिर अदिश क्षेत्र

हमारे परिवार के पर्यवेक्षक द्वारा मापी गई कुल द्रव्यमान-ऊर्जा घनत्व (किसी भी गैर-गुरुत्वाकर्षण क्षेत्र की क्षेत्र ऊर्जा) के रूप में व्याख्या की जा सकती है (उसकी विश्व रेखा पर प्रत्येक घटना पर)। इसी तरह, घटकों के साथ वेक्टर क्षेत्र (एक प्रक्षेपण के बाद) हमारे पर्यवेक्षकों द्वारा मापी गई गति का प्रतिनिधित्व करता है।

दूसरा, एक मनमाना शून्य सदिश क्षेत्र दिया गया है अदिश क्षेत्र

द्रव्यमान-ऊर्जा घनत्व के प्रकार की सीमित स्तिथि मानी जा सकती है।

तीसरा, सामान्य सापेक्षता की स्तिथि में, एक मनमाना समय सदिश क्षेत्र दिया गया है , पुनः आदर्श पर्यवेक्षकों के एक परिवार की गति का वर्णन करने के रूप में व्याख्या की गई, रायचौधरी स्केलर प्रत्येक घटना में उन पर्यवेक्षकों के अनुरूप ज्वारीय टेंसर के ट्रेस (रैखिक बीजगणित) लेने से प्राप्त स्केलर क्षेत्र है:

रायचौधरी के समीकरण में यह मात्रा एक महत्वपूर्ण भूमिका निभाती है। फिर आइंस्टीन फील्ड समीकरण से हम तुरंत प्राप्त करते हैं

जहाँ, पदार्थ टेंसर का निशान है।

गणितीय कथन

आम उपयोग में विभिन्न वैकल्पिक ऊर्जा स्थितियां हैं:

शून्य ऊर्जा की स्थिति

अशक्त ऊर्जा की स्थिति यह निर्धारित करती है कि प्रत्येक भविष्य-इंगित अशक्त वेक्टर क्षेत्र के लिए ,

इनमें से प्रत्येक का एक औसत संस्करण है, जिसमें ऊपर उल्लिखित गुणों को केवल उपयुक्त सदिश क्षेत्रों की प्रवाह रेखाओं के साथ औसत पर ही रखा जाना है। अन्यथा, कासिमिर प्रभाव अपवादों की ओर ले जाता है। उदाहरण के लिए, 'औसत अशक्त ऊर्जा स्थिति' बताती है कि प्रत्येक प्रवाह रेखा (अभिन्न वक्र) के लिए अशक्त वेक्टर क्षेत्र का हमारे पास यह होना चाहिए


निर्बल ऊर्जा की स्थिति

निर्बल ऊर्जा की स्थिति यह निर्धारित करती है कि हर टाइमलाइक वेक्टर फील्ड के लिए संबंधित पर्यवेक्षकों द्वारा देखी गयी स्तिथि घनत्व सदैव गैर-नकारात्मक होती है:


प्रमुख ऊर्जा की स्थिति

प्रमुख ऊर्जा की स्थिति यह निर्धारित करती है कि निर्बल ऊर्जा की स्थिति के अतिरिक्त, प्रत्येक भविष्य-इंगित कारण वेक्टर क्षेत्र (या तो समयबद्ध या अशक्त) के लिए सही है। वेक्टर क्षेत्र एक भविष्य-इंगित कारण सदिश होना चाहिए। अर्थात्, द्रव्यमान-ऊर्जा को कभी भी प्रकाश से तेज गति से प्रवाहित होते हुए नहीं देखा जा सकता है।

शक्तिशाली ऊर्जा की स्थिति

शक्तिशाली ऊर्जा की स्थिति यह निर्धारित करती है कि हर 'टाइमलाइक वेक्टर फील्ड' के लिए संबंधित पर्यवेक्षकों द्वारा मापा गया ज्वारीय टेंसर का निशान सदैव गैर-नकारात्मक होता है:

न्यूनतम गणितीय दृष्टिकोण से, विभिन्न शास्त्रीय पदार्थ विन्यास हैं जो शक्तिशाली ऊर्जा की स्थिति का उल्लंघन करते हैं। उदाहरण के लिए, सकारात्मक क्षमता वाला एक अदिश क्षेत्र इस स्थिति का उल्लंघन कर सकता है। इसके अतिरिक्त, डार्क एनर्जी/ब्रह्मांड संबंधी स्थिरांक के अवलोकन से पता चलता है कि शक्तिशाली ऊर्जा की स्थिति हमारे ब्रह्मांड का वर्णन करने में विफल रहती है, तथापि कॉस्मोलॉजिकल पैमानों पर औसत हो। इसके अतिरिक्त, यह किसी भी ब्रह्माण्ड संबंधी मुद्रास्फीति प्रक्रिया (यहां तक ​​​​कि एक अदिश क्षेत्र द्वारा संचालित नहीं) में दृढ़ता से उल्लंघन किया जाता है।[3]


आदर्श तरल पदार्थ

एक पूर्ण द्रव की स्थिति में कुछ ऊर्जा स्थितियों के मध्य निहितार्थ।

द्रव विलयन में पदार्थ के रूप का टेन्सर होता है

जहाँ, पदार्थ के कणों का चार-वेग है और जहाँ प्रत्येक घटना में चार-वेग के ऑर्थोगोनल स्थानिक हाइपरप्लेन तत्वों पर प्रक्षेपण टेंसर है। (ध्यान दें कि ये हाइपरप्लेन तत्व एक स्थानिक हाइपरस्लाइस नहीं बनाएंगे, जब तक कि वेग वर्टिसिटी-फ्री, यानी इरोटेशनल न हो।) पदार्थ के कणों की गति के साथ संरेखित एक फ्रेम के संबंध में, पदार्थ टेंसर के घटक विकर्ण रूप लेते हैं

यहाँ, ऊर्जा घनत्व है और दबाव है।

फिर इन आइगेन मान के संदर्भ में ऊर्जा की स्थिति में सुधार किया जा सकता है:

  • अशक्त ऊर्जा की स्थिति यह निर्धारित करती है
  • निर्बल ऊर्जा की स्थिति यह निर्धारित करती है
  • प्रमुख ऊर्जा स्थिति यह निर्धारित करती है
  • शक्तिशाली ऊर्जा की स्थिति यह निर्धारित करती है

इन स्थितियों के मध्य के प्रभावों को दाईं ओर दिए गए चित्र में दर्शाया गया है। ध्यान दें कि इनमें से कुछ स्थितियां नकारात्मक दबाव की अनुमति देती हैं। इसके अतिरिक्त, ध्यान दें कि नामों के बाद भी शक्तिशाली ऊर्जा की स्थिति का अर्थ पूर्ण तरल पदार्थों के संदर्भ में भी निर्बल ऊर्जा की स्थिति नहीं है।

ऊर्जा की स्थिति को असत्य सिद्ध करने का प्रयास

यद्यपि ऊर्जा की स्थिति का उद्देश्य सरल मानदंड प्रदान करना है जो किसी भी शारीरिक रूप से उचित स्थिति को स्वीकार करते हुए विभिन्न अभौतिक स्थितियों को नियंत्रित करता है, वास्तव में, न्यूनतम जब कोई कुछ क्वांटम यांत्रिक प्रभावों के प्रभावी क्षेत्र मॉडलिंग का परिचय देता है, तो कुछ संभावित पदार्थ टेंसर जो भौतिक रूप से उचित और यहां तक ​​कि यथार्थवादी होने के लिए जाने जाते हैं क्योंकि वे प्रयोगात्मक रूप से सत्यापित किए गए हैं, वास्तव में विभिन्न ऊर्जा स्थितियों को विफल करते हैं।विशेष रूप से, कासिमिर प्रभाव में, दो संवाहक प्लेटों के मध्य के क्षेत्र में एक बहुत ही छोटे पृथक्करण d पर समानांतर रखा जाता है, एक नकारात्मक ऊर्जा घनत्व होता है

प्लेटों के मध्य। (ध्यान रखें, चूँकि, कासिमिर प्रभाव टोपोलॉजिकल है, जिसमें वैक्यूम ऊर्जा का संकेत ज्यामिति और विन्यास की टोपोलॉजी दोनों पर निर्भर करता है। समानांतर प्लेटों के लिए नकारात्मक होने के कारण, निर्वात ऊर्जा एक संवाहक क्षेत्र के लिए सकारात्मक है।) चूँकि, विभिन्न क्वांटम असमानताएँ बताती हैं कि ऐसी स्तिथियों में एक उपयुक्त औसत ऊर्जा स्थिति संतुष्ट हो सकती है। विशेष रूप से, कासिमिर प्रभाव में औसत अशक्त ऊर्जा की स्थिति संतुष्ट होती है। वास्तव में, मिन्कोव्स्की स्पेसटाइम पर प्रभावी क्षेत्र सिद्धांतों से उत्पन्न होने वाले ऊर्जा-संवेग टेंसरों के लिए, औसत अशक्त ऊर्जा की स्थिति हर रोज़ क्वांटम फ़ील्ड के लिए होती है। इन परिणामों का विस्तार एक सीधी समस्या है।

शक्तिशाली ऊर्जा की स्थिति का सभी सामान्य/न्यूटोनियन पदार्थ द्वारा पालन किया जाता है, किन्तु एक गलत वैक्यूम इसका उल्लंघन कर सकता है। रैखिक बैरोट्रोपिक समीकरण स्थिति पर विचार करें

जहाँ, पदार्थ ऊर्जा घनत्व है, पदार्थ दबाव है, और एक स्थिरांक है। तब शक्तिशाली ऊर्जा की स्थिति की आवश्यकता होती है ; किन्तु राज्य के लिए एक झूठे निर्वात के रूप में जाना जाता है, हमारे पास है .[4]


यह भी देखें

टिप्पणियाँ

  1. Curiel, E. (2014). "ऊर्जा की स्थिति पर एक प्राइमर". arXiv:1405.0403.
  2. Farnes, J.S. (2018). "A Unifying Theory of Dark Energy and Dark Matter: Negative Masses and Matter Creation within a Modified ΛCDM Framework". Astronomy & Astrophysics. 620: A92. arXiv:1712.07962. Bibcode:2018A&A...620A..92F. doi:10.1051/0004-6361/201832898. S2CID 53600834.
  3. 3.0 3.1 Visser, Matt; Barceló, Carlos (2000). "Energy Conditions and Their Cosmological Implications". Cosmo-99. pp. 98–112. arXiv:gr-qc/0001099. doi:10.1142/9789812792129_0014. ISBN 978-981-02-4456-9. S2CID 119446302.
  4. G.F.R. Ellis; R. Maartens; M.A.H. MacCallum (2012). "Section 6.1". सापेक्षतावादी ब्रह्मांड विज्ञान. Cambridge University Press.


संदर्भ