डिरिचलेट ऊर्जा: Difference between revisions
(Created page with "{{Short description|A mathematical measure of a function's variability}} गणित में, डिरिचलेट ऊर्जा इस बात का माप ह...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|A mathematical measure of a function's variability}} | {{Short description|A mathematical measure of a function's variability}} | ||
गणित में, डिरिचलेट ऊर्जा इस बात का माप है कि कोई फलन (गणित) कितना ''चर'' है। अधिक संक्षेप में, यह सोबोलिव अंतरिक्ष | गणित में, डिरिचलेट ऊर्जा इस बात का माप है कि कोई फलन (गणित) कितना ''चर'' है। अधिक संक्षेप में, यह सोबोलिव अंतरिक्ष {{math|''H''<sup>1</sup>}} पर एक द्विघात कार्य [[कार्यात्मक (गणित)]] है। डिरिचलेट ऊर्जा लाप्लास के समीकरण से घनिष्ठ रूप से जुड़ी हुई है और इसका नाम जर्मन गणितज्ञ [[पीटर गुस्ताव लेज्यून डिरिचलेट]] के नाम पर रखा गया है। | ||
'''पर रखा गया है।''' | |||
== परिभाषा == | == परिभाषा == |
Revision as of 15:43, 23 April 2023
गणित में, डिरिचलेट ऊर्जा इस बात का माप है कि कोई फलन (गणित) कितना चर है। अधिक संक्षेप में, यह सोबोलिव अंतरिक्ष H1 पर एक द्विघात कार्य कार्यात्मक (गणित) है। डिरिचलेट ऊर्जा लाप्लास के समीकरण से घनिष्ठ रूप से जुड़ी हुई है और इसका नाम जर्मन गणितज्ञ पीटर गुस्ताव लेज्यून डिरिचलेट के नाम पर रखा गया है।
पर रखा गया है।
परिभाषा
एक खुला सेट दिया Ω ⊆ Rn और एक समारोह u : Ω → R फ़ंक्शन की डिरिचलेट ऊर्जाu वास्तविक संख्या है
कहाँ ∇u : Ω → Rn फ़ंक्शन के ढाल वेक्टर क्षेत्र को दर्शाता हैu.
गुण और अनुप्रयोग
चूँकि यह एक गैर-नकारात्मक मात्रा का अभिन्न अंग है, इसलिए डिरिचलेट ऊर्जा स्वयं गैर-ऋणात्मक है, अर्थात E[u] ≥ 0 हर समारोह के लिएu.
लाप्लास के समीकरण को हल करना सभी के लिए , उचित सीमा शर्तों के अधीन, एक फ़ंक्शन खोजने की विविधताओं की कलन को हल करने के बराबर हैu जो सीमा की स्थितियों को संतुष्ट करता है और न्यूनतम डिरिचलेट ऊर्जा रखता है।
इस तरह के समाधान को हार्मोनिक फ़ंक्शन कहा जाता है और ऐसे समाधान संभावित सिद्धांत में अध्ययन का विषय हैं।
अधिक सामान्य सेटिंग में, जहाँ Ω ⊆ Rn को किसी भी रीमैनियन कई गुना द्वारा प्रतिस्थापित किया जाता है M, और u : Ω → R द्वारा प्रतिस्थापित किया जाता है u : M → Φ दूसरे (अलग) रीमैनियन मैनिफोल्ड के लिए Φ, डिरिचलेट ऊर्जा सिग्मा मॉडल द्वारा दी गई है। सिग्मा मॉडल Lagrangian (क्षेत्र सिद्धांत) के लिए लैग्रेंज समीकरणों के समाधान वे कार्य हैं u जो डिरिचलेट ऊर्जा को न्यूनतम/अधिकतम करता है। इस सामान्य मामले को वापस विशिष्ट मामले तक सीमित करना u : Ω → R बस दिखाता है कि लैग्रेंज समीकरण (या, समतुल्य, हैमिल्टन-जैकोबी समीकरण) चरम समाधान प्राप्त करने के लिए बुनियादी उपकरण प्रदान करते हैं।
यह भी देखें
- डिरिक्लेट का सिद्धांत
- डिरिचलेट आइगेनवैल्यू
- कुल भिन्नता
- परिबद्ध माध्य दोलन
हार्मोनिक नक्शा मानचित्र
संदर्भ
- Lawrence C. Evans (1998). Partial Differential Equations. American Mathematical Society. ISBN 978-0821807729.