हिल्बर्ट स्पेस पर कॉम्पैक्ट ऑपरेटर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 11: Line 11:
हम इस खंड में कॉम्पैक्ट ऑपरेटरों के कुछ सामान्य गुण सूचीबद्ध करते हैं।
हम इस खंड में कॉम्पैक्ट ऑपरेटरों के कुछ सामान्य गुण सूचीबद्ध करते हैं।


यदि X और Y वियोज्य हिल्बर्ट रिक्त स्थान हैं (वास्तव में, X बनच और Y मानक पर्याप्त होंगे), तो T : X → Y कॉम्पैक्ट है यदि और एकमात्र यदि यह [[क्रमिक रूप से निरंतर]] है जब इसे कमजोर अभिसरण के साथ X से मानचित्र के रूप में देखा जाता है (हिल्बर्ट अंतरिक्ष) से ​​वाई (मानक टोपोलॉजी के साथ)। (देखना {{harv|Zhu|2007|loc=प्रमेय1.14, p.11}}, और इस संदर्भ में ध्यान दें कि समान सीमा उस स्थिति में लागू होगी जहां F ⊆ X संतुष्ट करता है (∀φ ∈ Hom(X, K)) sup{x**(φ) = φ(x) : x} < ∞ , जहां K अंतर्निहित क्षेत्र है। समरूप सीमा सिद्धांत लागू होता है क्योंकि होम (एक्स, के) आदर्श टोपोलॉजी के साथ एक बैनाच स्पेस होगा, और मानचित्र x **: होम (एक्स, के) → के इस टोपोलॉजी के संबंध में निरंतर होमोमोर्फिज्म हैं।)
यदि X और Y वियोज्य हिल्बर्ट रिक्त स्थान हैं (वास्तव में, X बनच और Y मानक पर्याप्त होंगे), तो T : X → Y कॉम्पैक्ट है यदि और एकमात्र यदि यह [[क्रमिक रूप से निरंतर]] है जब इसे कमजोर अभिसरण के साथ X से मानचित्र के रूप में देखा जाता है (हिल्बर्ट अंतरिक्ष) से ​​Y  (मानक टोपोलॉजी के साथ)। (देखना {{harv|Zhu|2007|loc=प्रमेय1.14, p.11}}, और इस संदर्भ में ध्यान दें कि समान सीमा उस स्थिति में लागू होगी जहां F ⊆ X संतुष्ट करता है (∀φ ∈ Hom(X, K)) sup{x**(φ) = φ(x) : x} < ∞ , जहां K अंतर्निहित क्षेत्र है। समरूप सीमा सिद्धांत लागू होता है क्योंकि होम (एक्स, के) आदर्श टोपोलॉजी के साथ एक बैनाच स्पेस होगा, और मानचित्र x **: होम (एक्स, के) → के इस टोपोलॉजी के संबंध में निरंतर होमोमोर्फिज्म हैं।)


कॉम्पैक्ट ऑपरेटरों का परिवार एक मानक-बंद, दो-तरफा, *-एल (एच) में आदर्श है। नतीजतन, यदि एच अनंत-आयामी है तो एक कॉम्पैक्ट ऑपरेटर टी में एक बाध्य उलटा नहीं हो सकता है। यदि ST = TS = I, तो पहचान संकारक कॉम्पैक्ट होगा, एक विरोधाभास होता है।
कॉम्पैक्ट ऑपरेटरों का परिवार एक मानक-बंद, दो-तरफा, *-एल (H ) में आदर्श है। नतीजतन, यदि H अनंत-आयामी है तो एक कॉम्पैक्ट ऑपरेटर टी में एक बाध्य उलटा नहीं हो सकता है। यदि ST = TS = I, तो पहचान संकारक कॉम्पैक्ट होगा, एक विरोधाभास होता है।


यदि परिबद्ध संकारकों का अनुक्रम B<sub>n</sub>→ B, C<sub>n</sub>→ C [[मजबूत ऑपरेटर टोपोलॉजी]] में और T कॉम्पैक्ट है, फिर <math>B_nTC_n^*</math> में विलीन हो जाता है <math>BTC^*</math> आदर्श रूप में होता है।<ref>{{cite journal| last1=Widom| first1=H.| title= ब्लॉक टोप्लिट्ज मैट्रिसेस और निर्धारकों का स्पर्शोन्मुख व्यवहार। द्वितीय|journal=[[Advances in Mathematics]]| date=1976| volume=21| issue=1| pages=1–29|doi=10.1016/0001-8708(76)90113-4|doi-access=free}}</ref> उदाहरण के लिए, हिल्बर्ट स्पेस पर विचार करें <math>\ell^2(\mathbf{N}),</math> मानक आधार के साथ {ई<sub>n</sub>}. चलो P<sub>m</sub>{ई के रैखिक विस्तार पर ओर्थोगोनल प्रक्षेपण हो<sub>1</sub>, ..., यह है<sub>m</sub>}. अनुक्रम {P<sub>m</sub>} आइडेंटिटी ऑपरेटर I में दृढ़ता से परिवर्तित होता है किन्तु समान रूप से नहीं। T को परिभाषित कीजिए <math>Te_n = \tfrac{1}{n^2} e_n.</math> टी कॉम्पैक्ट है, और, जैसा कि ऊपर दावा किया गया है, पी<sub>m</sub>टी → आईटी = टी यूनिफॉर्म ऑपरेटर टोपोलॉजी में: सभी एक्स के लिए,
यदि परिबद्ध संकारकों का अनुक्रम B<sub>n</sub>→ B, C<sub>n</sub>→ C [[मजबूत ऑपरेटर टोपोलॉजी]] में और T कॉम्पैक्ट है, फिर <math>B_nTC_n^*</math> में विलीन हो जाता है <math>BTC^*</math> आदर्श रूप में होता है।<ref>{{cite journal| last1=Widom| first1=H.| title= ब्लॉक टोप्लिट्ज मैट्रिसेस और निर्धारकों का स्पर्शोन्मुख व्यवहार। द्वितीय|journal=[[Advances in Mathematics]]| date=1976| volume=21| issue=1| pages=1–29|doi=10.1016/0001-8708(76)90113-4|doi-access=free}}</ref> उदाहरण के लिए, हिल्बर्ट स्पेस पर विचार करें <math>\ell^2(\mathbf{N}),</math> मानक आधार के साथ {ई<sub>n</sub>}. चलो P<sub>m</sub>{ई के रैखिक विस्तार पर ओर्थोगोनल प्रक्षेपण हो<sub>1</sub>, ..., यह है<sub>m</sub>}. अनुक्रम {P<sub>m</sub>} आइडेंटिटी ऑपरेटर I में दृढ़ता से परिवर्तित होता है किन्तु समान रूप से नहीं। T को परिभाषित कीजिए <math>Te_n = \tfrac{1}{n^2} e_n.</math> टी कॉम्पैक्ट है, और, जैसा कि ऊपर दावा किया गया है, पी<sub>m</sub>टी → आईटी = टी यूनिफॉर्म ऑपरेटर टोपोलॉजी में: सभी एक्स के लिए,
Line 21: Line 21:
कॉम्पैक्ट ऑपरेटरों के आदर्श के मानदंड-निकटता से, इसका विलोम भी सत्य है।
कॉम्पैक्ट ऑपरेटरों के आदर्श के मानदंड-निकटता से, इसका विलोम भी सत्य है।


कॉम्पैक्ट ऑपरेटरों के एल (एच) मॉड्यूलो के अंश सी * - बीजगणित को कैल्किन बीजगणित कहा जाता है, जिसमें एक ऑपरेटर के गुणों को कॉम्पैक्ट गड़बड़ी तक माना जा सकता है।
कॉम्पैक्ट ऑपरेटरों के एल (H ) मॉड्यूलो के अंश सी * - बीजगणित को कैल्किन बीजगणित कहा जाता है, जिसमें एक ऑपरेटर के गुणों को कॉम्पैक्ट गड़बड़ी तक माना जा सकता है।


== कॉम्पैक्ट [[स्व-आसन्न ऑपरेटर]] ==
== कॉम्पैक्ट [[स्व-आसन्न ऑपरेटर]] ==
एक हिल्बर्ट स्पेस एच पर एक परिबद्ध ऑपरेटर टी को स्व-संबद्ध ऑपरेटर कहा जाता है | स्व-संयोजित यदि टी = टी *, या समकक्ष,
एक हिल्बर्ट स्पेस H पर एक परिबद्ध ऑपरेटर टी को स्व-संबद्ध ऑपरेटर कहा जाता है | स्व-संयोजित यदि टी = टी *, या समकक्ष,


<math display="block">\langle T x, y \rangle = \langle x, T y \rangle, \quad x, y \in H.</math>
<math display="block">\langle T x, y \rangle = \langle x, T y \rangle, \quad x, y \in H.</math>
यह इस प्रकार है कि ⟨Tx, x⟩ प्रत्येक x ∈ H के लिए वास्तविक है, इस प्रकार T के इगेनवैल्यूज़ , जब वे मौजूद हैं, वास्तविक हैं। जब H का एक बंद रेखीय उप-स्थान T के अंतर्गत अपरिवर्तनीय होता है, तो T से L का प्रतिबंध L पर एक स्व-आसन्न ऑपरेटर होता है, और इसके अलावा, [[ऑर्थोगोनल पूरक]] L<sup>एल का ⊥</sup> भी टी के तहत अपरिवर्तनीय है। उदाहरण के लिए, स्थान एच को दो टी-इनवेरिएंट बंद रैखिक उप-स्थानों के ऑर्थोगोनल [[प्रत्यक्ष योग]] के रूप में विघटित किया जा सकता है: टी का [[कर्नेल (रैखिक ऑपरेटर)]], और ऑर्थोगोनल पूरक {{math|(ker ''T'')<sup>⊥</sup>}कर्नेल का } (जो कि किसी भी बंधे स्व-आसन्न ऑपरेटर के लिए टी की सीमा के बंद होने के बराबर है)। ये मूल तथ्य नीचे वर्णक्रमीय प्रमेय के प्रमाण में महत्वपूर्ण भूमिका निभाते हैं।
यह इस प्रकार है कि ⟨Tx, x⟩ प्रत्येक x ∈ H के लिए वास्तविक है, इस प्रकार T के इगेनवैल्यूज़ , जब वे उपस्थित हैं, वास्तविक हैं। जब H का एक बंद रेखीय उप-स्थान T के अंतर्गत अपरिवर्तनीय होता है, तो T से L का प्रतिबंध L पर एक स्व-आसन्न ऑपरेटर होता है, और इसके अलावा, [[ऑर्थोगोनल पूरक]] L<sup>एल का ⊥</sup> भी टी के तहत अपरिवर्तनीय है। उदाहरण के लिए, स्थान को दो टी-इनवेरिएंट बंद रैखिक उप-स्थानों के ऑर्थोगोनल [[प्रत्यक्ष योग]] के रूप में विघटित किया जा सकता है: टी का [[कर्नेल (रैखिक ऑपरेटर)]], और ऑर्थोगोनल पूरक {{math|(ker ''T'')<sup>⊥</sup>}कर्नेल का } (जो कि किसी भी बंधे स्व-आसन्न ऑपरेटर के लिए टी की सीमा के बंद होने के बराबर है)। ये मूल तथ्य नीचे वर्णक्रमीय प्रमेय के प्रमाण में महत्वपूर्ण भूमिका निभाते हैं।


हर्मिटियन के लिए वर्गीकरण परिणाम {{math|''n'' × ''n''}} मेट्रिसेस स्पेक्ट्रल प्रमेय है: यदि एम = एम *, तो एम एकात्मक रूप से विकर्ण है, और एम के विकर्ण में वास्तविक प्रविष्टियाँ हैं। टी को एक हिल्बर्ट स्पेस एच पर एक कॉम्पैक्ट स्व-आसन्न ऑपरेटर होने दें। हम टी के लिए एक ही कथन साबित करेंगे: ऑपरेटर टी को ईजेनवेक्टरों के एक ऑर्थोनॉर्मल सेट द्वारा विकर्ण किया जा सकता है, जिनमें से प्रत्येक एक वास्तविक ईजेनवेल्यू से मेल खाता है।
हर्मिटियन के लिए वर्गीकरण परिणाम {{math|''n'' × ''n''}} मेट्रिसेस स्पेक्ट्रल प्रमेय है: यदि एम = एम *, तो एम एकात्मक रूप से विकर्ण है, और एम के विकर्ण में वास्तविक प्रविष्टियाँ हैं। टी को एक हिल्बर्ट स्पेस पर एक कॉम्पैक्ट स्व-आसन्न ऑपरेटर होने दें। हम टी के लिए एक ही कथन साबित करेंगे: ऑपरेटर टी को ईजेनवेक्टरों के एक ऑर्थोनॉर्मल सेट द्वारा विकर्ण किया जा सकता है, जिनमें से प्रत्येक एक वास्तविक ईजेनवेल्यू से मेल खाता है।


=== स्पेक्ट्रल प्रमेय ===
=== स्पेक्ट्रल प्रमेय ===
Line 36: Line 36:
दूसरे शब्दों में, एक कॉम्पैक्ट स्व-आसन्न ऑपरेटर को एकात्मक रूप से विकर्ण किया जा सकता है। यह वर्णक्रमीय प्रमेय है।
दूसरे शब्दों में, एक कॉम्पैक्ट स्व-आसन्न ऑपरेटर को एकात्मक रूप से विकर्ण किया जा सकता है। यह वर्णक्रमीय प्रमेय है।


जब एच [[वियोज्य स्थान]] है, तो कोई आधार {ई को मिला सकता है<sub>n</sub>} टी के कर्नेल के लिए एक गणनीय सेट ऑर्थोनॉर्मल आधार के साथ, और एक ऑर्थोनॉर्मल आधार प्राप्त करें {f<sub>n</sub>} H के लिए, T के इगेनवेक्टर्स से मिलकर वास्तविक इगेनवैल्यूज़ ​​​​{μ<sub>n</sub>} ऐसा है कि {{math|''μ<sub>n</sub>'' → 0}}.
जब [[वियोज्य स्थान]] है, तो कोई आधार {ई को मिला सकता है<sub>n</sub>} टी के कर्नेल के लिए एक गणनीय सेट ऑर्थोनॉर्मल आधार के साथ, और एक ऑर्थोनॉर्मल आधार प्राप्त करें {f<sub>n</sub>} H के लिए, T के इगेनवेक्टर्स से मिलकर वास्तविक इगेनवैल्यूज़ ​​​​{μ<sub>n</sub>} ऐसा है कि {{math|''μ<sub>n</sub>'' → 0}}.


कोरोलरी एक वास्तविक या जटिल वियोज्य अनंत-आयामी हिल्बर्ट स्पेस ''एच'' पर प्रत्येक कॉम्पैक्ट स्व-आसन्न ऑपरेटर ''टी'' के लिए, एक अनगिनत अनंत ऑर्थोनॉर्मल आधार उपस्थित है {''एफ<sub>n</sub>} का H, T के इगनवेक्टर से मिलकर बना है, इसी इगेनवैल्यूज़ ​​​​के साथ {{math|{''μ<sub>n</sub>''} ⊂ '''R'''}}, ऐसा है कि {{math|''μ<sub>n</sub>'' → 0}}.
कोरोलरी एक वास्तविक या जटिल वियोज्य अनंत-आयामी हिल्बर्ट स्पेस ''H'' पर प्रत्येक कॉम्पैक्ट स्व-आसन्न ऑपरेटर ''टी'' के लिए, एक अनगिनत अनंत ऑर्थोनॉर्मल आधार उपस्थित है {''एफ<sub>n</sub>} का H, T के इगनवेक्टर से मिलकर बना है, इसी इगेनवैल्यूज़ ​​​​के साथ {{math|{''μ<sub>n</sub>''} ⊂ '''R'''}}, ऐसा है कि {{math|''μ<sub>n</sub>'' → 0}}.


==== विचार ====
==== विचार ====
Line 48: Line 48:
# आइगेनवैल्यू को भिन्न रूप से चित्रित किया जा सकता है: सबसे बड़ा आइगेनवैल्यू फ़ंक्शन के बंद इकाई क्षेत्र पर अधिकतम है {{math|''f'': '''R'''<sup>2''n''</sup> → '''R'''}} द्वारा परिभाषित {{math|1=''f''(''x'') = ''x*Tx'' = ⟨''Tx'', ''x''⟩}}.
# आइगेनवैल्यू को भिन्न रूप से चित्रित किया जा सकता है: सबसे बड़ा आइगेनवैल्यू फ़ंक्शन के बंद इकाई क्षेत्र पर अधिकतम है {{math|''f'': '''R'''<sup>2''n''</sup> → '''R'''}} द्वारा परिभाषित {{math|1=''f''(''x'') = ''x*Tx'' = ⟨''Tx'', ''x''⟩}}.


टिप्पणी। परिमित-आयामी स्थितियों में, पहले दृष्टिकोण का भाग बहुत अधिक सामान्यता में काम करता है; किसी भी वर्ग मैट्रिक्स, जरूरी नहीं कि हर्मिटियन, में एक ईजेनवेक्टर हो। हिल्बर्ट स्पेस पर सामान्य ऑपरेटरों के लिए यह बिल्कुल सच नहीं है। अनंत आयामों में, यह भी तत्काल नहीं है कि विशिष्ट बहुपद की अवधारणा को सामान्य कैसे किया जाए।
टिप्पणी। परिमित-आयामी स्थितियों में, पहले दृष्टिकोण का भाग बहुत अधिक सामान्यता में काम करता है; किसी भी वर्ग मैट्रिक्स, जरूरी नहीं कि हर्मिटियन, में एक ईजेनवेक्टर हो। हिल्बर्ट स्पेस पर सामान्य ऑपरेटरों के लिए यह बिल्कुल सच नहीं है। अनंत आयामों में, यह भी तत्काल नहीं है कि विशिष्ट बहुपद की अवधारणा को सामान्य कैसे किया जाए।


कॉम्पैक्ट स्व-आसन्न स्थितियों के लिए वर्णक्रमीय प्रमेय समान रूप से प्राप्त किया जा सकता है: ऊपर दूसरे परिमित-आयामी तर्क का विस्तार करके एक ईजेनवेक्टर पाता है, फिर प्रेरण लागू करें। हम पहले मेट्रिसेस के लिए तर्क को स्केच करते हैं।
कॉम्पैक्ट स्व-आसन्न स्थितियों के लिए वर्णक्रमीय प्रमेय समान रूप से प्राप्त किया जा सकता है: ऊपर दूसरे परिमित-आयामी तर्क का विस्तार करके एक ईजेनवेक्टर पाता है, फिर प्रेरण लागू करें। हम पहले मेट्रिसेस के लिए तर्क को स्केच करते हैं।
Line 74: Line 74:
कुछ बीजगणित के बाद उपरोक्त व्यंजक बन जाता है ({{math|Re}} एक जटिल संख्या के वास्तविक भाग को दर्शाता है)
कुछ बीजगणित के बाद उपरोक्त व्यंजक बन जाता है ({{math|Re}} एक जटिल संख्या के वास्तविक भाग को दर्शाता है)
<math display="block">\operatorname{Re}(\langle T y - m y, z \rangle) = 0.</math>
<math display="block">\operatorname{Re}(\langle T y - m y, z \rangle) = 0.</math>
किन्तु z मनमाना है, इसलिए {{math|1=''Ty'' − ''my'' = 0}}. यह मैट्रिक मामले में वर्णक्रमीय प्रमेय के लिए प्रमाण का सार है।
किन्तु z मनमाना है, इसलिए {{math|1=''Ty'' − ''my'' = 0}}. यह मैट्रिक स्थितियों में वर्णक्रमीय प्रमेय के लिए प्रमाण का सार है।


ध्यान दें कि जबकि लैग्रेंज गुणक अनंत-आयामी मामले के लिए सामान्यीकरण करते हैं, इकाई क्षेत्र की कॉम्पैक्टनेस खो जाती है। यह वह जगह है जहां ऑपरेटर 'टी' कॉम्पैक्ट होना उपयोगी है।
ध्यान दें कि जबकि लैग्रेंज गुणक अनंत-आयामी स्थितियों के लिए सामान्यीकरण करते हैं, इकाई क्षेत्र की कॉम्पैक्टनेस खो जाती है। यह वह जगह है जहां ऑपरेटर 'टी' कॉम्पैक्ट होना उपयोगी है।


==== विवरण ====
==== विवरण ====
दावा यदि ''टी'' गैर-शून्य हिल्बर्ट स्पेस ''एच'' पर एक कॉम्पैक्ट सेल्फ़-एडज्वाइंट ऑपरेटर है और
दावा यदि ''टी'' गैर-शून्य हिल्बर्ट स्पेस ''H'' पर एक कॉम्पैक्ट सेल्फ़-एडज्वाइंट ऑपरेटर है और
<math display="block">m(T) := \sup \bigl\{ |\langle T x, x \rangle| : x \in H, \, \|x\| \le 1 \bigr\},</math>
<math display="block">m(T) := \sup \bigl\{ |\langle T x, x \rangle| : x \in H, \, \|x\| \le 1 \bigr\},</math>
तब m(T) या −m(T) T का एक इगनवैल्यू है।
तब m(T) या −m(T) T का एक इगनवैल्यू है।
Line 87: Line 87:
यदि आवश्यक हो तो T को −T से बदलना, कोई यह मान सकता है कि बंद यूनिट बॉल B ⊂ H पर f का सर्वोच्च बराबर है {{math|''m''(''T'') > 0}}. यदि f किसी इकाई सदिश y पर B पर अपना अधिकतम m(T) प्राप्त करता है, तो, मैट्रिक्स के लिए उपयोग किए जाने वाले समान तर्क द्वारा, y, T का एक आइगेनवेक्टर है, जिसके संगत आइगेनवैल्यू है {{math|1=λ = ⟨''λy'', ''y''⟩}} = {{math|1=⟨''Ty'', ''y''⟩ = ''f''(''y'') = ''m''(''T'')}}.
यदि आवश्यक हो तो T को −T से बदलना, कोई यह मान सकता है कि बंद यूनिट बॉल B ⊂ H पर f का सर्वोच्च बराबर है {{math|''m''(''T'') > 0}}. यदि f किसी इकाई सदिश y पर B पर अपना अधिकतम m(T) प्राप्त करता है, तो, मैट्रिक्स के लिए उपयोग किए जाने वाले समान तर्क द्वारा, y, T का एक आइगेनवेक्टर है, जिसके संगत आइगेनवैल्यू है {{math|1=λ = ⟨''λy'', ''y''⟩}} = {{math|1=⟨''Ty'', ''y''⟩ = ''f''(''y'') = ''m''(''T'')}}.


बनच-अलाग्लू प्रमेय और एच की रिफ्लेक्सीविटी द्वारा, बंद यूनिट बॉल बी कमजोर रूप से कॉम्पैक्ट है। साथ ही, T की सघनता का अर्थ है (ऊपर देखें) कि T: X कमजोर टोपोलॉजी के साथ → X मानक टोपोलॉजी के साथ निरंतर है। इन दो तथ्यों का अर्थ है कि कमजोर टोपोलॉजी से लैस बी पर एफ निरंतर है, और एफ कुछ पर बी पर अधिकतम एम प्राप्त करता है {{math|''y'' ∈ ''B''}}. अधिकतमता से, <math>\|y\|=1,</math> जो बदले में यह दर्शाता है कि y रेले भागफल g(x) (ऊपर देखें) को भी अधिकतम करता है। इससे पता चलता है कि y, T का आइजनवेक्टर है, और दावे के प्रमाण को समाप्त करता है।
बनच-अलाग्लू प्रमेय और की रिफ्लेक्सीविटी द्वारा, बंद यूनिट बॉल बी कमजोर रूप से कॉम्पैक्ट है। साथ ही, T की सघनता का अर्थ है (ऊपर देखें) कि T: X कमजोर टोपोलॉजी के साथ → X मानक टोपोलॉजी के साथ निरंतर है। इन दो तथ्यों का अर्थ है कि कमजोर टोपोलॉजी से लैस बी पर एफ निरंतर है, और एफ कुछ पर बी पर अधिकतम एम प्राप्त करता है {{math|''y'' ∈ ''B''}}. अधिकतमता से, <math>\|y\|=1,</math> जो बदले में यह दर्शाता है कि y रेले भागफल g(x) (ऊपर देखें) को भी अधिकतम करता है। इससे पता चलता है कि y, T का आइजनवेक्टर है, और दावे के प्रमाण को समाप्त करता है।


'टिप्पणी।' टी की कॉम्पैक्टनेस महत्वपूर्ण है। सामान्यतः, यूनिट बॉल बी पर कमजोर टोपोलॉजी के लिए एफ को निरंतर होने की आवश्यकता नहीं है। उदाहरण के लिए, टी को पहचान ऑपरेटर होने दें, जो एच अनंत-आयामी होने पर कॉम्पैक्ट नहीं है। कोई भी असामान्य अनुक्रम लें {y<sub>n</sub>}. फिर वाई<sub>n</sub>0 पर कमजोर रूप से परिवर्तित होता है, किन्तु lim f(y<sub>n</sub>) = 1 ≠ 0 = f(0)।
'टिप्पणी।' टी की कॉम्पैक्टनेस महत्वपूर्ण है। सामान्यतः, यूनिट बॉल बी पर कमजोर टोपोलॉजी के लिए एफ को निरंतर होने की आवश्यकता नहीं है। उदाहरण के लिए, टी को पहचान ऑपरेटर होने दें, जो अनंत-आयामी होने पर कॉम्पैक्ट नहीं है। कोई भी असामान्य अनुक्रम लें {y<sub>n</sub>}. फिर Y <sub>n</sub>0 पर कमजोर रूप से परिवर्तित होता है, किन्तु lim f(y<sub>n</sub>) = 1 ≠ 0 = f(0)।


बता दें कि टी हिल्बर्ट स्पेस एच पर एक कॉम्पैक्ट ऑपरेटर है। एक परिमित (संभवतः खाली) या अनगिनत अनंत ऑर्थोनॉर्मल अनुक्रम<sub>n</sub>T के इगेनवेक्टर्स का }, गैर-शून्य इगेनवैल्यूज़ ​​​​के साथ, निम्नानुसार प्रेरण द्वारा निर्मित किया गया है। चलो एच<sub>0</sub> = एच और टी<sub>0</sub> = टी। यदि एम (टी<sub>0</sub>) = 0, फिर T = 0 और निर्माण किसी भी ईजेनवेक्टर ई के उत्पादन के बिना रुक जाता है<sub>n</sub>. मान लीजिए कि ऑर्थोनॉर्मल ईजेनवेक्टर {{math|''e''<sub>0</sub>, ..., ''e''<sub>''n'' − 1</sub>}} का टी पाया गया है। तब {{math|1=''E<sub>n</sub>'' := span(''e''<sub>0</sub>, ..., ''e''<sub>''n'' − 1</sub>)}} टी के तहत अपरिवर्तनीय है, और स्व-आसन्नता से, ऑर्थोगोनल पूरक एच<sub>n</sub>ई. का<sub>''n''</sub> T की एक अपरिवर्तनीय उपसमष्टि है। मान लीजिए T<sub>n</sub>T से H के प्रतिबंध को निरूपित करें<sub>n</sub>. यदि एम (टी<sub>n</sub>) = 0, फिर टी<sub>n</sub>= 0, और निर्माण बंद हो जाता है। अन्यथा, टी पर लागू दावे से<sub>n</sub>, एक आदर्श एक ईजेनवेक्टर ई है<sub>n</sub>टी में एच<sub>n</sub>, इसी गैर-शून्य इगनवैल्यू λ के साथ<sub>''n''</sub> = {{math|± ''m''(''T<sub>n</sub>'')}}.
बता दें कि टी हिल्बर्ट स्पेस पर एक कॉम्पैक्ट ऑपरेटर है। एक परिमित (संभवतः खाली) या अनगिनत अनंत ऑर्थोनॉर्मल अनुक्रम<sub>n</sub>T के इगेनवेक्टर्स का }, गैर-शून्य इगेनवैल्यूज़ ​​​​के साथ, निम्नानुसार प्रेरण द्वारा निर्मित किया गया है। चलो H <sub>0</sub> = और टी<sub>0</sub> = टी। यदि एम (टी<sub>0</sub>) = 0, फिर T = 0 और निर्माण किसी भी ईजेनवेक्टर ई के उत्पादन के बिना रुक जाता है<sub>n</sub>. मान लीजिए कि ऑर्थोनॉर्मल ईजेनवेक्टर {{math|''e''<sub>0</sub>, ..., ''e''<sub>''n'' − 1</sub>}} का टी पाया गया है। तब {{math|1=''E<sub>n</sub>'' := span(''e''<sub>0</sub>, ..., ''e''<sub>''n'' − 1</sub>)}} टी के तहत अपरिवर्तनीय है, और स्व-आसन्नता से, ऑर्थोगोनल पूरक H <sub>n</sub>ई. का<sub>''n''</sub> T की एक अपरिवर्तनीय उपसमष्टि है। मान लीजिए T<sub>n</sub>T से H के प्रतिबंध को निरूपित करें<sub>n</sub>. यदि एम (टी<sub>n</sub>) = 0, फिर टी<sub>n</sub>= 0, और निर्माण बंद हो जाता है। अन्यथा, टी पर लागू दावे से<sub>n</sub>, एक आदर्श एक ईजेनवेक्टर ई है<sub>n</sub>टी में H <sub>n</sub>, इसी गैर-शून्य इगनवैल्यू λ के साथ<sub>''n''</sub> = {{math|± ''m''(''T<sub>n</sub>'')}}.


चलो एफ = (अवधि {ई<sub>n</sub>})<sup>⊥</sup>, जहां {ई<sub>n</sub>} आगमनात्मक प्रक्रिया द्वारा निर्मित परिमित या अनंत अनुक्रम है; स्व-आसन्नता द्वारा, F, T के अंतर्गत अपरिवर्तनीय है। मान लीजिए कि S, T से F के प्रतिबंध को निरूपित करता है। यदि अंतिम सदिश e के साथ, अंतिम रूप से कई चरणों के बाद प्रक्रिया को रोक दिया गया था<sub>''m''−1</sub>, फिर एफ = H<sub>m</sub>और एस = T<sub>m</sub>= 0 निर्माण द्वारा। अनंत स्थितियों में, T की सघनता और e का कमजोर-अभिसरण<sub>n</sub>0 से इसका अर्थ है {{math|1=''Te<sub>n</sub>'' = ''λ<sub>n</sub>e<sub>n</sub>'' → 0}}, इसलिए {{math|''λ<sub>n</sub>'' → 0}}. चूँकि F, H में समाहित है<sub>n</sub>प्रत्येक n के लिए, यह अनुसरण करता है कि m(S) ≤ m({T<sub>n</sub>}) = |L<sub>n</sub>| प्रत्येक n के लिए, इसलिए m(S) = 0. इसका तात्पर्य यह है कि {{math|1=''S'' = 0}}.
चलो एफ = (अवधि {ई<sub>n</sub>})<sup>⊥</sup>, जहां {ई<sub>n</sub>} आगमनात्मक प्रक्रिया द्वारा निर्मित परिमित या अनंत अनुक्रम है; स्व-आसन्नता द्वारा, F, T के अंतर्गत अपरिवर्तनीय है। मान लीजिए कि S, T से F के प्रतिबंध को निरूपित करता है। यदि अंतिम सदिश e के साथ, अंतिम रूप से कई चरणों के बाद प्रक्रिया को रोक दिया गया था<sub>''m''−1</sub>, फिर एफ = H<sub>m</sub>और एस = T<sub>m</sub>= 0 निर्माण द्वारा। अनंत स्थितियों में, T की सघनता और e का कमजोर-अभिसरण<sub>n</sub>0 से इसका अर्थ है {{math|1=''Te<sub>n</sub>'' = ''λ<sub>n</sub>e<sub>n</sub>'' → 0}}, इसलिए {{math|''λ<sub>n</sub>'' → 0}}. चूँकि F, H में समाहित है<sub>n</sub>प्रत्येक n के लिए, यह अनुसरण करता है कि m(S) ≤ m({T<sub>n</sub>}) = |L<sub>n</sub>| प्रत्येक n के लिए, इसलिए m(S) = 0. इसका तात्पर्य यह है कि {{math|1=''S'' = 0}}.


तथ्य यह है कि S = 0 का अर्थ है कि F, T के कर्नेल में समाहित है। इसके विपरीत, यदि x ∈ ker(T) तो आत्म-संलग्नता से, x प्रत्येक इगेनवेक्टर्स {e के लिए ओर्थोगोनल है<sub>n</sub>} गैर-शून्य इगनवैल्यू के साथ। यह इस प्रकार है कि {{math|1=''F'' = ker(''T'')}}, और वह {ई<sub>n</sub>} टी के कर्नेल के ऑर्थोगोनल पूरक के लिए एक ऑर्थोनॉर्मल आधार है। कोई कर्नेल के ऑर्थोनॉर्मल आधार का चयन करके टी के विकर्णकरण को पूरा कर सकता है। यह वर्णक्रमीय प्रमेय सिद्ध करता है।
तथ्य यह है कि S = 0 का अर्थ है कि F, T के कर्नेल में समाहित है। इसके विपरीत, यदि x ∈ ker(T) तो आत्म-संलग्नता से, x प्रत्येक इगेनवेक्टर्स {e के लिए ओर्थोगोनल है<sub>n</sub>} गैर-शून्य इगनवैल्यू के साथ। यह इस प्रकार है कि {{math|1=''F'' = ker(''T'')}}, और वह {ई<sub>n</sub>} टी के कर्नेल के ऑर्थोगोनल पूरक के लिए एक ऑर्थोनॉर्मल आधार है। कोई कर्नेल के ऑर्थोनॉर्मल आधार का चयन करके टी के विकर्णकरण को पूरा कर सकता है। यह वर्णक्रमीय प्रमेय सिद्ध करता है।


एक छोटा किन्तु अधिक सार प्रमाण इस प्रकार है: ज़ोर्न के लेम्मा द्वारा, निम्नलिखित तीन गुणों के साथ एच का अधिकतम उपसमुच्चय होने के लिए यू का चयन करें: यू के सभी तत्व टी के ईजेनवेक्टर हैं, उनके पास मानक एक है, और यू के दो अलग-अलग तत्व हैं। ओर्थोगोनल हैं। F को U के रैखिक विस्तार का ऑर्थोगोनल पूरक होने दें। यदि F ≠ {0} है, तो यह T का एक गैर-तुच्छ अपरिवर्तनीय उपस्थान है, और प्रारंभिक दावे से, F में T का एक आदर्श एक इगेनवेक्टर्स y उपस्थित होना चाहिए। किन्तु तब U ∪ {y}, U की अधिकतमता का खंडन करता है। यह F = {0} का अनुसरण करता है, इसलिए H में स्पैन (U) सघन है। इससे पता चलता है कि U, T के इगेनवेक्टर्स से मिलकर H का एक ऑर्थोनॉर्मल आधार है।
एक छोटा किन्तु अधिक सार प्रमाण इस प्रकार है: ज़ोर्न के लेम्मा द्वारा, निम्नलिखित तीन गुणों के साथ का अधिकतम उपसमुच्चय होने के लिए यू का चयन करें: यू के सभी तत्व टी के ईजेनवेक्टर हैं, उनके पास मानक एक है, और यू के दो अलग-अलग तत्व हैं। ओर्थोगोनल हैं। F को U के रैखिक विस्तार का ऑर्थोगोनल पूरक होने दें। यदि F ≠ {0} है, तो यह T का एक गैर-तुच्छ अपरिवर्तनीय उपस्थान है, और प्रारंभिक दावे से, F में T का एक आदर्श एक इगेनवेक्टर्स y उपस्थित होना चाहिए। किन्तु तब U ∪ {y}, U की अधिकतमता का खंडन करता है। यह F = {0} का अनुसरण करता है, इसलिए H में स्पैन (U) सघन है। इससे पता चलता है कि U, T के इगेनवेक्टर्स से मिलकर H का एक ऑर्थोनॉर्मल आधार है।


=== कार्यात्मक पथरी ===
=== कार्यात्मक पथरी ===
Line 106: Line 106:
'प्रमेय।' चलो C(σ(T)) σ(T) पर निरंतर कार्यों के C*-बीजगणित को दर्शाता है। एक अद्वितीय आइसोमेट्रिक समरूपता उपस्थित है {{math|Φ : ''C''(σ(''T'')) → ''L''(''H'')}} जैसे कि Φ(1) = I और, यदि f पहचान फलन है {{math|1=''f''(''λ'') = ''λ''}}, तब {{math|1=Φ(''f'') = ''T''}}. इसके अतिरिक्त, {{math|1=σ(''f''(''T'')) = ''f''(σ(''T''))}}.
'प्रमेय।' चलो C(σ(T)) σ(T) पर निरंतर कार्यों के C*-बीजगणित को दर्शाता है। एक अद्वितीय आइसोमेट्रिक समरूपता उपस्थित है {{math|Φ : ''C''(σ(''T'')) → ''L''(''H'')}} जैसे कि Φ(1) = I और, यदि f पहचान फलन है {{math|1=''f''(''λ'') = ''λ''}}, तब {{math|1=Φ(''f'') = ''T''}}. इसके अतिरिक्त, {{math|1=σ(''f''(''T'')) = ''f''(σ(''T''))}}.


कार्यात्मक कैलकुस मानचित्र Φ को प्राकृतिक विधि से परिभाषित किया गया है: {<sub>n</sub>} H के लिए इगेनवेक्टर्स का एक सामान्य आधार हो, इसी इगेनवैल्यूज़ ​​​​{λ के साथ<sub>n</sub>}; के लिए {{math|''f'' ∈ ''C''(σ(''T''))}}, ऑपरेटर Φ(f), ऑर्थोनॉर्मल आधार के संबंध में विकर्ण {e<sub>n</sub>}, सेटिंग द्वारा परिभाषित किया गया है ।
कार्यात्मक कैलकुस मानचित्र Φ को प्राकृतिक विधि से परिभाषित किया गया है: {e<sub>n</sub>} H के लिए इगेनवेक्टर्स का एक सामान्य आधार हो, इसी इगेनवैल्यूज़ ​​​​{λ के साथ<sub>n</sub>}; के लिए {{math|''f'' ∈ ''C''(σ(''T''))}}, ऑपरेटर Φ(f), ऑर्थोनॉर्मल आधार के संबंध में विकर्ण {e<sub>n</sub>}, सेटिंग द्वारा परिभाषित किया गया है ।
<math display="block">\Phi(f)(e_n) = f(\lambda_n) e_n</math>
<math display="block">\Phi(f)(e_n) = f(\lambda_n) e_n</math>
हर एन के लिए चूँकि Φ(f) ऑर्थोनॉर्मल आधार के संबंध में विकर्ण है, इसका मानदंड विकर्ण गुणांकों के मापांक के सर्वोच्च के बराबर है ।
हर एन के लिए चूँकि Φ(f) ऑर्थोनॉर्मल आधार के संबंध में विकर्ण है, इसका मानदंड विकर्ण गुणांकों के मापांक के सर्वोच्च के बराबर है ।
Line 115: Line 115:


=== एक साथ विकर्णकरण ===
=== एक साथ विकर्णकरण ===
हिल्बर्ट स्पेस एच पर विचार करें (उदाहरण के लिए परिमित-आयामी 'सी'<sup>n</sup>), और एक आने-जाने वाला सेट <math>\mathcal{F}\subseteq\operatorname{Hom}(H,H)</math> स्व-आसन्न ऑपरेटरों की। फिर उपयुक्त परिस्थितियों में, यह एक साथ (एकात्मक रूप से) विकर्ण हो सकता है। अर्थात, ऑपरेटरों के लिए सामान्य ईजेनवेक्टरों से मिलकर एक ऑर्थोनॉर्मल आधार Q उपस्थित है -  
हिल्बर्ट स्पेस पर विचार करें (उदाहरण के लिए परिमित-आयामी 'सी'<sup>n</sup>), और एक आने-जाने वाला सेट <math>\mathcal{F}\subseteq\operatorname{Hom}(H,H)</math> स्व-आसन्न ऑपरेटरों की। फिर उपयुक्त परिस्थितियों में, यह एक साथ (एकात्मक रूप से) विकर्ण हो सकता है। अर्थात, ऑपरेटरों के लिए सामान्य ईजेनवेक्टरों से मिलकर एक ऑर्थोनॉर्मल आधार Q उपस्थित है -  


अर्थात,
अर्थात,
Line 131: Line 131:


{{math theorem | name = प्रमेय 2 | math_statement = यदि <math>\mathcal{F}</math> में एक आदेशशील कॉम्पैक्ट ऑपरेटर है, तो ऑपरेटरों को समय-समरूप (यूनिटेरिली) डायगोनलाइज़ किया जा सकता है।}}
{{math theorem | name = प्रमेय 2 | math_statement = यदि <math>\mathcal{F}</math> में एक आदेशशील कॉम्पैक्ट ऑपरेटर है, तो ऑपरेटरों को समय-समरूप (यूनिटेरिली) डायगोनलाइज़ किया जा सकता है।}}
{{math proof | proof = <math>T_0\in\mathcal{F}</math> को कॉम्पैक्ट इन्जेक्टिव के रूप में ठीक करें। फिर हमें, Hilbert स्थान पर संकीर्ण सममित ऑपरेटरों के स्पेक्ट्रल सिद्धांत के द्वारा निम्नलिखित मिलता है:
{{math proof | proof = <math>T_0\in\mathcal{F}</math> को कॉम्पैक्ट इन्जेक्टिव के रूप में ठीक करें। फिर हमें, हिल्बर्ट स्थान पर संकीर्ण सममित ऑपरेटरों के स्पेक्ट्रल सिद्धांत के द्वारा निम्नलिखित मिलता है:
<math display="block">H=\overline{\bigoplus_{\lambda\in\sigma(T_0)} \ker(T_0-\sigma)},</math>
<math display="block">H=\overline{\bigoplus_{\lambda\in\sigma(T_0)} \ker(T_0-\sigma)},</math>
यहां <math>\sigma(T_0)</math> सक्रिय, गणनीय संख्या के द्वारा पूरा किया गया है। सभी अवयव अंतराल सीमित-आयाम होते हैं। <math>\mathcal{F}</math> एक एकत्रित सेट होने के कारण, हमें सभी अवयव अंतराल संरक्षित होते हैं। अवयव-स्थानों पर प्रतिबंधित ऑपरेटरों के लिए (जो सीमित-आयाम होते हैं), स्वचालित रूप से सभी कॉम्पैक्ट ऑपरेटरों को लागू कर सकते हैं, और प्रत्येक के लिए प्राथमिकता 1 लागू कर सकते हैं, और <math>\ker(T_0-\sigma)</math> के लिए अर्द्धसंरचित बेस ''Q''<sub>σ</sub> खोजें। <math>T_0</math> सममित होने के कारण, हमारे पास यह है कि  
यहां <math>\sigma(T_0)</math> सक्रिय, गणनीय संख्या के द्वारा पूरा किया गया है। सभी अवयव अंतराल सीमित-आयाम होते हैं। <math>\mathcal{F}</math> एक एकत्रित सेट होने के कारण, हमें सभी अवयव अंतराल संरक्षित होते हैं। अवयव-स्थानों पर प्रतिबंधित ऑपरेटरों के लिए (जो सीमित-आयाम होते हैं), स्वचालित रूप से सभी कॉम्पैक्ट ऑपरेटरों को लागू कर सकते हैं, और प्रत्येक के लिए प्राथमिकता 1 लागू कर सकते हैं, और <math>\ker(T_0-\sigma)</math> के लिए अर्द्धसंरचित बेस ''Q''<sub>σ</sub> खोजें। <math>T_0</math> सममित होने के कारण, हमारे पास यह है कि  
Line 148: Line 148:
हम उपरोक्त स्थितियों को मजबूत कर सकते हैं जहां सभी ऑपरेटर एकमात्र अपने आस-पास के साथ यात्रा करते हैं; इस स्थितियों में हम विकर्णीकरण से ओर्थोगोनल शब्द को हटा देते हैं। वेइल-पीटर के कारण अभ्यावेदन से उत्पन्न होने वाले ऑपरेटरों के लिए कमजोर परिणाम हैं। G को एक निश्चित स्थानीय रूप से कॉम्पैक्ट हॉसडॉर्फ समूह होने दें, और <math>H=L^2(G)</math> (जी पर अद्वितीय-अप-टू-स्केल हार माप के संबंध में स्क्वायर इंटीग्रेबल मापने योग्य कार्यों का स्थान)। निरंतर बदलाव की कार्रवाई पर विचार करें:
हम उपरोक्त स्थितियों को मजबूत कर सकते हैं जहां सभी ऑपरेटर एकमात्र अपने आस-पास के साथ यात्रा करते हैं; इस स्थितियों में हम विकर्णीकरण से ओर्थोगोनल शब्द को हटा देते हैं। वेइल-पीटर के कारण अभ्यावेदन से उत्पन्न होने वाले ऑपरेटरों के लिए कमजोर परिणाम हैं। G को एक निश्चित स्थानीय रूप से कॉम्पैक्ट हॉसडॉर्फ समूह होने दें, और <math>H=L^2(G)</math> (जी पर अद्वितीय-अप-टू-स्केल हार माप के संबंध में स्क्वायर इंटीग्रेबल मापने योग्य कार्यों का स्थान)। निरंतर बदलाव की कार्रवाई पर विचार करें:
<math display="block">\begin{cases} G\times H\to H \\ (gf)(x)=f(g^{-1}x) \end{cases}</math>
<math display="block">\begin{cases} G\times H\to H \\ (gf)(x)=f(g^{-1}x) \end{cases}</math>
फिर यदि जी कॉम्पैक्ट थे तो परिमित-आयामी, इरेड्यूसिबल, अपरिवर्तनीय उप-स्थानों के एक गणनीय प्रत्यक्ष योग में H का एक अद्वितीय अपघटन होता है (यह अनिवार्य रूप से ऑपरेटरों के परिवार का विकर्णीकरण है <math>G\subseteq U(H)</math>). यदि जी कॉम्पैक्ट नहीं थे, किन्तु एबेलियन थे, तो विकर्णीकरण प्राप्त नहीं किया गया था, किन्तु हम एच के एक-आयामी अपरिवर्तनीय उप-स्थानों में एक अद्वितीय निरंतर अपघटन प्राप्त करते हैं।
फिर यदि जी कॉम्पैक्ट थे तो परिमित-आयामी, इरेड्यूसिबल, अपरिवर्तनीय उप-स्थानों के एक गणनीय प्रत्यक्ष योग में H का एक अद्वितीय अपघटन होता है (यह अनिवार्य रूप से ऑपरेटरों के परिवार का विकर्णीकरण है <math>G\subseteq U(H)</math>). यदि जी कॉम्पैक्ट नहीं थे, किन्तु एबेलियन थे, तो विकर्णीकरण प्राप्त नहीं किया गया था, किन्तु हम के एक-आयामी अपरिवर्तनीय उप-स्थानों में एक अद्वितीय निरंतर अपघटन प्राप्त करते हैं।


== कॉम्पैक्ट सामान्य ऑपरेटर ==
== कॉम्पैक्ट सामान्य ऑपरेटर ==

Revision as of 21:32, 18 May 2023

कार्यात्मक विश्लेषण के गणितीय अनुशासन में, हिल्बर्ट अंतरिक्ष पर एक कॉम्पैक्ट ऑपरेटर की अवधारणा परिमित-आयामी वेक्टर स्पेस पर अभिनय करने वाले मैट्रिक्स की अवधारणा का विस्तार है; हिल्बर्ट स्पेस में, कॉम्पैक्ट ऑपरेटर ऑपरेटर मानदंड से प्रेरित टोपोलॉजी में परिमित-रैंक ऑपरेटर (परिमित-आयामी मैट्रिसेस द्वारा प्रतिनिधित्व योग्य) के ठीक से बंद होते हैं। जैसे, मैट्रिक्स सिद्धांत के परिणाम कभी-कभी समान तर्कों का उपयोग करके कॉम्पैक्ट ऑपरेटरों तक बढ़ाए जा सकते हैं। इसके विपरीत, अनंत-आयामी स्थानों पर सामान्य संचालकों के अध्ययन के लिए अधिकांशतः वास्तव में अलग दृष्टिकोण की आवश्यकता होती है।

उदाहरण के लिए, बनच रिक्त स्थान पर कॉम्पैक्ट ऑपरेटरों के वर्णक्रमीय सिद्धांत एक ऐसा रूप लेता है जो मैट्रिसेस के जॉर्डन विहित रूप के समान है। हिल्बर्ट रिक्त स्थान के संदर्भ में, एक वर्ग मैट्रिक्स एकात्मक रूप से विकर्णीय है यदि और एकमात्र यदि यह सामान्य ऑपरेटर है। हिल्बर्ट रिक्त स्थान पर सामान्य कॉम्पैक्ट ऑपरेटरों के लिए एक समान परिणाम होता है। अधिक सामान्यतः, कॉम्पैक्टनेस धारणा को छोड़ा जा सकता है। जैसा कि ऊपर कहा गया है, परिणामों को सिद्ध करने के लिए उपयोग की जाने वाली तकनीकें, उदाहरण के लिए, गैर-कॉम्पैक्ट स्थितियों में वर्णक्रमीय प्रमेय, सामान्यतः भिन्न होती हैं, जिसमें स्पेक्ट्रम (कार्यात्मक विश्लेषण) पर ऑपरेटर-मूल्यवान माप (गणित) सम्मलित होते हैं।

हिल्बर्ट स्पेस पर कॉम्पैक्ट ऑपरेटरों के कुछ परिणामों पर चर्चा की जाएगी, कॉम्पैक्ट ऑपरेटरों के उपवर्गों पर विचार करने से पहले सामान्य गुणों के साथ प्रारंभ करना होता है।

परिभाषा

होने देना हिल्बर्ट स्पेस बनें और बंधे हुए ऑपरेटरों का सेट हो. फिर, एक ऑपरेटर एक कॉम्पैक्ट ऑपरेटर कहा जाता है यदि प्रत्येक बाउंड की छवि के अनुसार सेट किया गया हो अपेक्षाकृत कॉम्पैक्ट सबस्पेस है।

कुछ सामान्य गुण

हम इस खंड में कॉम्पैक्ट ऑपरेटरों के कुछ सामान्य गुण सूचीबद्ध करते हैं।

यदि X और Y वियोज्य हिल्बर्ट रिक्त स्थान हैं (वास्तव में, X बनच और Y मानक पर्याप्त होंगे), तो T : X → Y कॉम्पैक्ट है यदि और एकमात्र यदि यह क्रमिक रूप से निरंतर है जब इसे कमजोर अभिसरण के साथ X से मानचित्र के रूप में देखा जाता है (हिल्बर्ट अंतरिक्ष) से ​​Y (मानक टोपोलॉजी के साथ)। (देखना (Zhu 2007, प्रमेय1.14, p.11), और इस संदर्भ में ध्यान दें कि समान सीमा उस स्थिति में लागू होगी जहां F ⊆ X संतुष्ट करता है (∀φ ∈ Hom(X, K)) sup{x**(φ) = φ(x) : x} < ∞ , जहां K अंतर्निहित क्षेत्र है। समरूप सीमा सिद्धांत लागू होता है क्योंकि होम (एक्स, के) आदर्श टोपोलॉजी के साथ एक बैनाच स्पेस होगा, और मानचित्र x **: होम (एक्स, के) → के इस टोपोलॉजी के संबंध में निरंतर होमोमोर्फिज्म हैं।)

कॉम्पैक्ट ऑपरेटरों का परिवार एक मानक-बंद, दो-तरफा, *-एल (H ) में आदर्श है। नतीजतन, यदि H अनंत-आयामी है तो एक कॉम्पैक्ट ऑपरेटर टी में एक बाध्य उलटा नहीं हो सकता है। यदि ST = TS = I, तो पहचान संकारक कॉम्पैक्ट होगा, एक विरोधाभास होता है।

यदि परिबद्ध संकारकों का अनुक्रम Bn→ B, Cn→ C मजबूत ऑपरेटर टोपोलॉजी में और T कॉम्पैक्ट है, फिर में विलीन हो जाता है आदर्श रूप में होता है।[1] उदाहरण के लिए, हिल्बर्ट स्पेस पर विचार करें मानक आधार के साथ {ईn}. चलो Pm{ई के रैखिक विस्तार पर ओर्थोगोनल प्रक्षेपण हो1, ..., यह हैm}. अनुक्रम {Pm} आइडेंटिटी ऑपरेटर I में दृढ़ता से परिवर्तित होता है किन्तु समान रूप से नहीं। T को परिभाषित कीजिए टी कॉम्पैक्ट है, और, जैसा कि ऊपर दावा किया गया है, पीmटी → आईटी = टी यूनिफॉर्म ऑपरेटर टोपोलॉजी में: सभी एक्स के लिए,

प्रत्येक Pm पर ध्यान दें एक परिमित-रैंक ऑपरेटर है। इसी तरह के तर्क से पता चलता है कि यदि टी कॉम्पैक्ट है, तो टी परिमित-रैंक ऑपरेटरों के कुछ अनुक्रमों की एक समान सीमा है।

कॉम्पैक्ट ऑपरेटरों के आदर्श के मानदंड-निकटता से, इसका विलोम भी सत्य है।

कॉम्पैक्ट ऑपरेटरों के एल (H ) मॉड्यूलो के अंश सी * - बीजगणित को कैल्किन बीजगणित कहा जाता है, जिसमें एक ऑपरेटर के गुणों को कॉम्पैक्ट गड़बड़ी तक माना जा सकता है।

कॉम्पैक्ट स्व-आसन्न ऑपरेटर

एक हिल्बर्ट स्पेस H पर एक परिबद्ध ऑपरेटर टी को स्व-संबद्ध ऑपरेटर कहा जाता है | स्व-संयोजित यदि टी = टी *, या समकक्ष,

यह इस प्रकार है कि ⟨Tx, x⟩ प्रत्येक x ∈ H के लिए वास्तविक है, इस प्रकार T के इगेनवैल्यूज़ , जब वे उपस्थित हैं, वास्तविक हैं। जब H का एक बंद रेखीय उप-स्थान T के अंतर्गत अपरिवर्तनीय होता है, तो T से L का प्रतिबंध L पर एक स्व-आसन्न ऑपरेटर होता है, और इसके अलावा, ऑर्थोगोनल पूरक Lएल का ⊥ भी टी के तहत अपरिवर्तनीय है। उदाहरण के लिए, स्थान H को दो टी-इनवेरिएंट बंद रैखिक उप-स्थानों के ऑर्थोगोनल प्रत्यक्ष योग के रूप में विघटित किया जा सकता है: टी का कर्नेल (रैखिक ऑपरेटर), और ऑर्थोगोनल पूरक {{math|(ker T)}कर्नेल का } (जो कि किसी भी बंधे स्व-आसन्न ऑपरेटर के लिए टी की सीमा के बंद होने के बराबर है)। ये मूल तथ्य नीचे वर्णक्रमीय प्रमेय के प्रमाण में महत्वपूर्ण भूमिका निभाते हैं।

हर्मिटियन के लिए वर्गीकरण परिणाम n × n मेट्रिसेस स्पेक्ट्रल प्रमेय है: यदि एम = एम *, तो एम एकात्मक रूप से विकर्ण है, और एम के विकर्ण में वास्तविक प्रविष्टियाँ हैं। टी को एक हिल्बर्ट स्पेस H पर एक कॉम्पैक्ट स्व-आसन्न ऑपरेटर होने दें। हम टी के लिए एक ही कथन साबित करेंगे: ऑपरेटर टी को ईजेनवेक्टरों के एक ऑर्थोनॉर्मल सेट द्वारा विकर्ण किया जा सकता है, जिनमें से प्रत्येक एक वास्तविक ईजेनवेल्यू से मेल खाता है।

स्पेक्ट्रल प्रमेय

प्रमेय एक वास्तविक या जटिल हिल्बर्ट स्पेस H पर प्रत्येक कॉम्पैक्ट स्व-आसन्न ऑपरेटर T के लिए, T के इगेनवेक्टर्स से मिलकर H का एक असामान्य आधार उपस्थित है। अधिक विशेष रूप से, 'टी' के कर्नेल का ऑर्थोगोनल पूरक या तो टी के ईजेनवेक्टरों के परिमित ऑर्थोनॉर्मल आधार को स्वीकार करता है, या एक गणनीय सेट ऑर्थोनॉर्मल आधार {en} T के इगनवेक्टर , इसी इगनवैल्यू ​​​​के साथ {λn} ⊂ R, ऐसा है कि λn → 0.

दूसरे शब्दों में, एक कॉम्पैक्ट स्व-आसन्न ऑपरेटर को एकात्मक रूप से विकर्ण किया जा सकता है। यह वर्णक्रमीय प्रमेय है।

जब H वियोज्य स्थान है, तो कोई आधार {ई को मिला सकता हैn} टी के कर्नेल के लिए एक गणनीय सेट ऑर्थोनॉर्मल आधार के साथ, और एक ऑर्थोनॉर्मल आधार प्राप्त करें {fn} H के लिए, T के इगेनवेक्टर्स से मिलकर वास्तविक इगेनवैल्यूज़ ​​​​{μn} ऐसा है कि μn → 0.

कोरोलरी एक वास्तविक या जटिल वियोज्य अनंत-आयामी हिल्बर्ट स्पेस H पर प्रत्येक कॉम्पैक्ट स्व-आसन्न ऑपरेटर टी के लिए, एक अनगिनत अनंत ऑर्थोनॉर्मल आधार उपस्थित है {एफn} का H, T के इगनवेक्टर से मिलकर बना है, इसी इगेनवैल्यूज़ ​​​​के साथ {μn} ⊂ R, ऐसा है कि μn → 0.

विचार

आइए पहले हम परिमित-विम उपपत्ति पर चर्चा करें। यह एक हर्मिटियन n × n मैट्रिक्स T के लिए वर्णक्रमीय प्रमेय को साबित करता है जो एक ईजेनवेक्टर x के अस्तित्व को दर्शाता है। एक बार यह हो जाने के बाद, हर्मिटिसिटी का अर्थ है कि एक्स (आयाम n-1 के) के रैखिक विस्तार और ऑर्थोगोनल पूरक दोनों टी के अपरिवर्तनीय उप-स्थान हैं। वांछित परिणाम तब के लिए प्रेरण द्वारा प्राप्त किया जाता है .

एक ईजेनवेक्टर के अस्तित्व को (कम से कम) दो वैकल्पिक तरीकों से दिखाया जा सकता है:

  1. कोई बीजगणितीय रूप से बहस कर सकता है: T की विशेषता बहुपद की एक जटिल जड़ है, इसलिए T का एक संबंधित ईजेनवेक्टर क साथ एक आइगेनवैल्यू है।
  2. आइगेनवैल्यू को भिन्न रूप से चित्रित किया जा सकता है: सबसे बड़ा आइगेनवैल्यू फ़ंक्शन के बंद इकाई क्षेत्र पर अधिकतम है f: R2nR द्वारा परिभाषित f(x) = x*Tx = ⟨Tx, x.

टिप्पणी। परिमित-आयामी स्थितियों में, पहले दृष्टिकोण का भाग बहुत अधिक सामान्यता में काम करता है; किसी भी वर्ग मैट्रिक्स, जरूरी नहीं कि हर्मिटियन, में एक ईजेनवेक्टर हो। हिल्बर्ट स्पेस पर सामान्य ऑपरेटरों के लिए यह बिल्कुल सच नहीं है। अनंत आयामों में, यह भी तत्काल नहीं है कि विशिष्ट बहुपद की अवधारणा को सामान्य कैसे किया जाए।

कॉम्पैक्ट स्व-आसन्न स्थितियों के लिए वर्णक्रमीय प्रमेय समान रूप से प्राप्त किया जा सकता है: ऊपर दूसरे परिमित-आयामी तर्क का विस्तार करके एक ईजेनवेक्टर पाता है, फिर प्रेरण लागू करें। हम पहले मेट्रिसेस के लिए तर्क को स्केच करते हैं।

चूंकि बंद इकाई क्षेत्र आर में एस है2n कॉम्पैक्ट है, और f निरंतर है, f(S) वास्तविक रेखा पर कॉम्पैक्ट है, इसलिए f किसी इकाई वेक्टर y पर S पर अधिकतम प्राप्त करता है। लैग्रेंज गुणक द्वारा | लैग्रेंज गुणक प्रमेय, y संतुष्ट करता है

कुछ λ के लिए। हर्मिटिसिटी द्वारा, Ty = λy.

वैकल्पिक रूप से, मान लीजिए z ∈ 'C'n कोई सदिश हो। ध्यान दें कि यदि एक इकाई सदिश y अधिकतम ⟨Tx, x⟩ इकाई क्षेत्र (या इकाई गेंद पर) पर है, तो यह रेले भागफल को भी अधिकतम करता है:

समारोह पर विचार करें:
कलन द्वारा, h′(0) = 0, अर्थात।,