ध्वनिक प्रतिबाधा: Difference between revisions
m (21 revisions imported from alpha:ध्वनिक_प्रतिबाधा) |
No edit summary |
||
Line 212: | Line 212: | ||
{{Authority control}} | {{Authority control}} | ||
[[Category:All articles with unsourced statements]] | |||
[[Category:Articles with unsourced statements from November 2022]] | |||
[[Category: | |||
[[Category:Created On 26/04/2023]] | [[Category:Created On 26/04/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Lua-based templates]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Multi-column templates]] | |||
[[Category:Pages using div col with small parameter]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Templates using under-protected Lua modules]] | |||
[[Category:Wikipedia fully protected templates|Div col]] | |||
[[Category:आवाज़]] | |||
[[Category:ध्वनि-विज्ञान]] | |||
[[Category:ध्वनि माप]] | |||
[[Category:भौतिक मात्रा]] |
Revision as of 17:49, 26 May 2023
ध्वनिक प्रतिबाधा एवं विशिष्ट ध्वनिक प्रतिबाधा विपक्ष की प्रविधियां हैं जो प्रणाली पर प्रारम्भ ध्वनिक दबाव से उत्पन्न ध्वनिक प्रवाह को प्रस्तुत करते हैं। ध्वनिक प्रतिबाधा की इकाइयों अंतर्राष्ट्रीय प्रणाली (Pa·s/m3) पास्कल-सेकंड प्रति घन मीटर होती है या इकाइयों की एमकेएस प्रणाली में (rayl/m2) प्रति वर्ग मीटर, जबकि विशिष्ट ध्वनिक प्रतिबाधा (Pa·s/m) पास्कल-सेकंड प्रति मीटर होती है।[1] विद्युत प्रतिबाधा के साथ यांत्रिक-विद्युत प्रतिबाधा अनुरूपताएं होती हैं, जो उस विरोध को मापती हैं जो प्रणाली पर प्रारम्भ विद्युत दाब से उत्पन्न विद्युत प्रवाह को प्रस्तुत करती है।
गणितीय परिभाषाएँ
ध्वनिक प्रतिबाधा
एलटीआई प्रणाली सिद्धांत के लिए रैखिक समय-अपरिवर्तनीय प्रणाली, पर प्रारम्भ ध्वनिक दबाव एवं उसके आवेदन के बिंदु पर उस दबाव की दिशा के लंबवत सतह के माध्यम से परिणामी ध्वनिक मात्रा प्रवाह दर के मध्य संबंध द्वारा दिया गया है।
या समकक्ष द्वारा
जहाँ
- p ध्वनिक दबाव है।
- Q ध्वनिक आयतन प्रवाह दर है।
- सवलन ऑपरेटर है।
- R 'समय डोमेन में ध्वनिक प्रतिरोध' है।
- G = R −1 समय डोमेन में ध्वनिक चालन है (R −1R का सवलन व्युत्क्रम है)।
'ध्वनिक प्रतिबाधा', जिसे Z के रूप में दर्शाया गया है, लाप्लास रूपांतरण, या फूरियर रूपांतरण, या समय डोमेन ध्वनिक प्रतिरोध का विश्लेषणात्मक संकेत है।[1]
जहाँ
- लाप्लास रूपांतरण ऑपरेटर होता है।
- फूरियर ट्रांसफॉर्म ऑपरेटर होता है।
- सबस्क्रिप्ट "a" विश्लेषणात्मक प्रतिनिधित्व ऑपरेटर होता है।
- Q −1 Q का सवलन व्युत्क्रम है।
'ध्वनिक प्रतिरोध', निरूपित R एवं 'ध्वनिक प्रतिघात' निरूपित X, क्रमशः ध्वनिक प्रतिबाधा का वास्तविक भाग एवं काल्पनिक भाग होता हैं।
जहाँ
- i काल्पनिक इकाई है।
- Z(s) में R(s) समय डोमेन ध्वनिक प्रतिरोध R(t), Z(s) का लाप्लास परिवर्तन नहीं होता है।
- Z(ω) में, R(ω) समय डोमेन ध्वनिक प्रतिरोध R(t), Z(ω) का फूरियर रूपांतरण नहीं होता है।
- Z(t) में, R(t) समय डोमेन ध्वनिक प्रतिरोध है एवं X(t) विश्लेषणात्मक प्रतिनिधित्व की परिभाषा के अनुसार समय डोमेन ध्वनिक प्रतिरोध R(t) का हिल्बर्ट रूपांतरण होता है।
'आगमनात्मक ध्वनिक प्रतिक्रिया', निरूपित XL एवं संधारित्र ध्वनिक प्रतिक्रिया, जिसे XC की प्रविधि से दिखाया गया है, क्रमशः ध्वनिक प्रतिक्रिया का सकारात्मक एवं नकारात्मक भाग होता हैं।
ध्वनिक प्रवेश, जिसे Y के रूप में चिह्नित किया गया है, लाप्लास रूपांतरण, या फूरियर रूपांतरण, या समय डोमेन ध्वनिक चालन का विश्लेषणात्मक प्रतिनिधित्व है।[1]
जहाँ
- Z −1 Z का सवलन व्युत्क्रम है।
- p −1 p का सवलन व्युत्क्रम है।
'ध्वनिक चालन', निरूपित G, एवं 'ध्वनिक संवेदनशीलता', निरूपित B, क्रमशः ध्वनिक प्रवेश का वास्तविक एवं काल्पनिक भाग होता हैं।
जहाँ
- Y(s) में, G(s) समय डोमेन ध्वनिक चालन G(t), Y(s) का लाप्लास रूपांतरण नहीं होता है।
- Y(ω) में, G(ω) समय डोमेन ध्वनिक चालन G(t), Y(ω) का फूरियर रूपांतरण नहीं होता है।
- Y(t) में, G(t) समय डोमेन ध्वनिक प्रवाहकत्त्व है एवं B(t) विश्लेषणात्मक प्रतिनिधित्व की परिभाषा के अनुसार समय डोमेन ध्वनिक प्रवाहकत्त्व G(t) का हिल्बर्ट रूपांतरण होता है।
ध्वनिक प्रतिरोध ध्वनिक तरंग के ऊर्जा हस्तांतरण का प्रतिनिधित्व करता है। दबाव एवं गति चरण में है, इसलिए तरंग के आगे के माध्यम पर कार्य किया जाता है। ध्वनिक प्रतिक्रिया उस दबाव का प्रतिनिधित्व करती है जो गति के साथ चरण से बाहर है एवं औसत ऊर्जा हस्तांतरण का कारण नहीं बनता है। उदाहरण के लिए, अंग पाइप से जुड़े संवृत बल्ब में वायु चलती है, किन्तु वे चरण से बाहर होते हैं इसलिए इसमें कोई शुद्ध ऊर्जा संचारित नहीं होती है। जबकि दबाव बढ़ता है, वायु अंदर आती है, एवं जब यह गिरती है, तो यह बाहर निकलती है, किन्तु जब वायु चलती है तो औसत दबाव वही होता है जब यह बाहर निकलती है, इसलिए शक्ति आगे एवं पूर्व में प्रवाहित होती है, किन्तु बिना समय औसत ऊर्जा के स्थानांतरण करना एवं विद्युत सादृश्य विद्युत रेखा से जुड़ा संधारित्र होता है। संधारित्र के माध्यम से धारा प्रवाहित होती है किन्तु यह विद्युत दाब के साथ चरण से बाहर है, इसलिए एसी शक्ति इसमें संचारित होती है।
विशिष्ट ध्वनिक प्रतिबाधा
रैखिक समय-अपरिवर्तनीय प्रणाली पर प्रारम्भ ध्वनिक दबाव एवं उसके आवेदन के बिंदु पर उस दबाव की दिशा में परिणामी कण वेग के मध्य संबंध द्वारा दिया जाता है।
या समकक्ष द्वारा
जहाँ
- p ध्वनिक दबाव है।
- v कण वेग है।
- r 'समय डोमेन में विशिष्ट ध्वनिक प्रतिरोध' है।
- G = R −1 समय डोमेन में ध्वनिक चालन है (R −1R का सवलन व्युत्क्रम है)।
विशिष्ट ध्वनिक प्रतिबाधा, निरूपित z लाप्लास रूपांतरण, या फूरियर रूपांतरण, या समय डोमेन विशिष्ट ध्वनिक प्रतिरोध का विश्लेषणात्मक प्रतिनिधित्व है।[1]
जहां v −1 का सवलन व्युत्क्रम है।
'विशिष्ट ध्वनिक प्रतिरोध', निरूपित r, एवं 'विशिष्ट ध्वनिक प्रतिघात', निरूपित x, क्रमशः विशिष्ट ध्वनिक प्रतिबाधा का वास्तविक एवं काल्पनिक भाग होता हैं।
जहाँ
- z(s) में, r(s) समय डोमेन विशिष्ट ध्वनिक प्रतिरोध r(t), z(s) का लाप्लास रूपांतरण नहीं होता है।
- z(ω) में, r(ω) समय डोमेन विशिष्ट ध्वनिक प्रतिरोध r(t), z(ω) का फूरियर रूपांतरण नहीं होता है।
- Z(t) में, R(t) समय डोमेन ध्वनिक प्रतिरोध है एवं X(t) विश्लेषणात्मक प्रतिनिधित्व की परिभाषा के अनुसार समय डोमेन ध्वनिक प्रतिरोध R(t) का हिल्बर्ट रूपांतरण है।
'विशिष्ट आगमनात्मक ध्वनिक प्रतिक्रिया', निरूपित xL, एवं विशिष्ट संधारित्र ध्वनिक प्रतिक्रिया, जिसे xC के रूप में दर्शाया गया है, क्रमशः विशिष्ट ध्वनिक प्रतिक्रिया का सकारात्मक एवं नकारात्मक भाग होता हैं।
विशिष्ट ध्वनिक प्रवेश, निरूपित 'y', लाप्लास परिवर्तन, या फूरियर रूपांतरण, या 'समय डोमेन' विशिष्ट ध्वनिक चालन का विश्लेषणात्मक प्रतिनिधित्व है।[1]
जहाँ
- z −1 z का सवलन व्युत्क्रम होता है।
- p −1 p का सवलन व्युत्क्रम होता है।
'विशिष्ट ध्वनिक चालन', निरूपित g, एवं 'विशिष्ट ध्वनिक संवेदनशीलता', निरूपित b, क्रमशः विशिष्ट ध्वनिक प्रवेश का वास्तविक भाग एवं काल्पनिक भाग हैं।
जहाँ
- y(s) में, g(s) समय डोमेन ध्वनिक चालन g(t), y(s) का लाप्लास रूपांतरण नहीं है।
- y(ω) में, g(ω) समय डोमेन ध्वनिक चालन g(t), y(ω) का फूरियर रूपांतरण नहीं है।
- y(t) में, g(t) समय डोमेन ध्वनिक चालन है एवं b(t) विश्लेषणात्मक प्रतिनिधित्व की परिभाषा के अनुसार समय डोमेन ध्वनिक चालन g(t) का हिल्बर्ट रूपांतरण है।
विशिष्ट ध्वनिक प्रतिबाधा z विशेष माध्यम का गहन एवं व्यापक गुण है (उदाहरण के लिए, वायु या पानी का z निर्दिष्ट किया जा सकता है) दूसरी ओर, ध्वनिक प्रतिबाधा Z विशेष माध्यम एवं ज्यामिति का गहन एवं व्यापक गुण है (उदाहरण के लिए, वायु से भर विशेष वाहिनी का Z निर्दिष्ट किया जा सकता है)।
संबंध
क्षेत्र a के साथ छिद्र के माध्यम से प्रवाहित होने वाली आयामी तरंग के लिए, ध्वनिक मात्रा प्रवाह दर Q छिद्र के माध्यम से प्रति सेकंड प्रवाहित होने वाली माध्यम की मात्रा है; यदि ध्वनिक प्रवाह dx = v dt की दूरी निर्धारित करता है, तो प्रवाहित होने वाले माध्यम का आयतन dV = A dx होता है, इसलिए
कि तरंग केवल आयामी हो, यह उपज देती है
विशेषता ध्वनिक प्रतिबाधा
विशेषता विशिष्ट ध्वनिक प्रतिबाधा
आयाम में अविक्षेपी रैखिक ध्वनिकी का संवैधानिक नियम एवं तनाव के मध्य संबंध स्थापित करता है।[1]
जहाँ
- p माध्यम में ध्वनि का दबाव है।
- ρ माध्यम का घनत्व है।
- c माध्यम में चलने वाली ध्वनि तरंगों की गति है।
- δ कण विस्थापन है।
- x ध्वनि तरंगों के प्रसार की दिशा के साथ-साथ अंतरिक्ष चर है।
यह समीकरण तरल एवं ठोस दोनों के लिए मान्य है।
- तरल पदार्थ, ρc2 = K (K बल्क मापांक के लिए खड़ा है)।
- ठोस, ρc2 = K + 4/3 G (G अपरूपण मापांक के लिए खड़ा है) अनुदैर्ध्य तरंगों एवं ρc2 = G के लिए अनुप्रस्थ तरंगो के लिए है।
माध्यम में स्थानीय रूप से प्रारम्भ न्यूटन का दूसरा नियम द्वारा दिया जाता है।[2]
इस समीकरण को अंतिम के साथ जोड़कर आयामी तरंग समीकरण प्राप्त होता है।
विमान लहरें
इस तरंग समीकरण के समाधान x के साथ समान गति एवं विपरीत प्रविधियो से यात्रा करने वाली दो प्रगतिशील समतल तरंगों के योग से बने हैं।
जिससे निकाला जा सकता है,
प्रगतिशील समतल तरंगों के लिए,
या
अंत में, विशिष्ट ध्वनिक प्रतिबाधा z है,
इस विशिष्ट ध्वनिक प्रतिबाधा के निरपेक्ष मूल्य को प्रायः विशेषता विशिष्ट ध्वनिक प्रतिबाधा कहा जाता है एवं इसे z0 के रूप में निरूपित किया जाता है।[1]
समीकरण भी यही बताते हैं,
तापमान का प्रभाव
तापमान ध्वनि की गति एवं द्रव्यमान घनत्व पर एवं इस प्रकार विशिष्ट ध्वनिक प्रतिबाधा कार्य करती है ।[citation needed]
Celsius temperature θ (°C) |
Speed of sound c (m/s) |
Density of air ρ (kg/m3) |
Characteristic specific acoustic impedance z0 (Pa·s/m) |
---|---|---|---|
35 | 351.88 | 1.1455 | 403.2 |
30 | 349.02 | 1.1644 | 406.5 |
25 | 346.13 | 1.1839 | 409.4 |
20 | 343.21 | 1.2041 | 413.3 |
15 | 340.27 | 1.2250 | 416.9 |
10 | 337.31 | 1.2466 | 420.5 |
5 | 334.32 | 1.2690 | 424.3 |
0 | 331.30 | 1.2922 | 428.0 |
−5 | 328.25 | 1.3163 | 432.1 |
−10 | 325.18 | 1.3413 | 436.1 |
−15 | 322.07 | 1.3673 | 440.3 |
−20 | 318.94 | 1.3943 | 444.6 |
−25 | 315.77 | 1.4224 | 449.1 |
विशेषता ध्वनिक प्रतिबाधा
क्षेत्र A, Z = z/A के साथ छिद्र के माध्यम से प्रवाहित होने वाली आयामी लहर के लिए, यदि लहर प्रगतिशील विमान लहर है, तो
इस ध्वनिक प्रतिबाधा के निरपेक्ष मूल्य को प्रायः विशिष्ट ध्वनिक प्रतिबाधा कहा जाता है एवं इसे Z0 के रूप में निरूपित किया जाता है।[1]
एवं विशेषता विशिष्ट ध्वनिक प्रतिबाधा होती है।
यदि क्षेत्र A के साथ छिद्र पाइप का प्रारम्भ होता है एवं पाइप में समतल तरंग भेजी जाती है, तो छिद्र से प्रवाहित होने वाली तरंग प्रतिबिंबों की अनुपस्थिति में प्रगतिशील समतल तरंग होती है, एवं सामान्यतः पाइप के दूसरे सिरे से प्रतिबिंब, चाहे विवृत हो या संवृत, सिरे से दूसरे सिरे तक यात्रा करने वाली तरंगों का योग है।[3] (यह संभव है कि जब पाइप अधिक लंबा हो तो कोई प्रतिबिंब न हो, क्योंकि परावर्तित तरंगों को लौटने में समय लगता है, एवं पाइप की दीवार पर हानि के माध्यम से उनका क्षीणन होता है।[3] इस प्रकार के प्रतिबिंब एवं परिणामी स्थायी तरंगें संगीत वाद्य यंत्रों के आकृति एवं संचालन में अधिक महत्वपूर्ण होता हैं।[4]
यह भी देखें
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Kinsler L, Frey A, Coppens A, Sanders J (2000). ध्वनिकी की मूल बातें. Hoboken: Wiley. ISBN 0-471-84789-5.
- ↑ Attenborough K, Postema M (2008). ध्वनिकी के लिए एक जेब के आकार का परिचय. Kingston upon Hull: University of Hull. doi:10.5281/zenodo.7504060. ISBN 978-90-812588-2-1.
- ↑ 3.0 3.1 Rossing TD, Fletcher NH (2004). कंपन और ध्वनि के सिद्धांत (2nd ed.). Heidelberg: Springer. ISBN 978-1-4757-3822-3. OCLC 851835364.
- ↑ Fletcher NH, Rossing TD (1998). संगीत वाद्ययंत्र की भौतिकी (2nd ed.). Heidelberg: Springer. ISBN 978-0-387-21603-4. OCLC 883383570.