बिनेट समीकरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 11: Line 11:
कोणीय संवेग के संरक्षण के लिए इसकी आवश्यकता होती है
कोणीय संवेग के संरक्षण के लिए इसकी आवश्यकता होती है
<math display="block">r^{2}\dot{\theta } = h = \text{constant}.</math>
<math display="block">r^{2}\dot{\theta } = h = \text{constant}.</math>
के डेरिवेटिव <math>r</math> समय के संबंध में डेरिवेटिव के रूप में फिर से लिखा जा सकता है <math>u=1/r</math> कोण के संबंध में:
समय के सापेक्ष <math>r</math> के व्युत्पन्न को कोण के सापेक्ष <math>u=1/r</math> के व्युत्पन्न रूप में फिर से लिखा जा सकता है :
<math display="block">\begin{align}
<math display="block">\begin{align}
  &\frac{\mathrm{d}u}{\mathrm{d}\theta } = \frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{1}{r}\right)\frac{\mathrm{d}t}{\mathrm{d}\theta }=-\frac{{\dot{r}}}{r^{2}\dot{\theta }}=-\frac{{\dot{r}}}{h} \\  
  &\frac{\mathrm{d}u}{\mathrm{d}\theta } = \frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{1}{r}\right)\frac{\mathrm{d}t}{\mathrm{d}\theta }=-\frac{{\dot{r}}}{r^{2}\dot{\theta }}=-\frac{{\dot{r}}}{h} \\  
Line 26: Line 26:
=== केप्लर समस्या ===
=== केप्लर समस्या ===


==== शास्त्रीय ====
==== पारंपरिक ====
[[व्युत्क्रम वर्ग नियम]] की कक्षा की गणना करने की पारंपरिक केपलर समस्या को बिनेट समीकरण से अंतर समीकरण के समाधान के रूप में पढ़ा जा सकता है।
[[व्युत्क्रम वर्ग नियम]] की कक्षा की गणना करने की पारंपरिक केपलर समस्या को बिनेट समीकरण से अवकलन समीकरण के समाधान के रूप में पढ़ा जा सकता है।
<math display="block">-k u^2 = -m h^2 u^2 \left(\frac{\mathrm{d}^{2}u}{\mathrm{d}\theta ^{2}}+u\right)</math>
<math display="block">-k u^2 = -m h^2 u^2 \left(\frac{\mathrm{d}^{2}u}{\mathrm{d}\theta ^{2}}+u\right)</math>
<math display="block">\frac{\mathrm{d}^{2}u}{\mathrm{d}\theta ^{2}}+u = \frac{k}{mh^2} \equiv \text{constant}>0.</math>
<math display="block">\frac{\mathrm{d}^{2}u}{\mathrm{d}\theta ^{2}}+u = \frac{k}{mh^2} \equiv \text{constant}>0.</math>
यदि कोण <math>\theta</math> [[पेरीपसिस]] से मापा जाता है, तो (पारस्परिक) ध्रुवीय निर्देशांक में व्यक्त कक्षा के लिए सामान्य समाधान है
यदि कोण <math>\theta</math> [[पेरीपसिस]] से मापा जाता है, तो (पारस्परिक) ध्रुवीय निर्देशांक में व्यक्त कक्षा के लिए सामान्य समाधान है
<math display="block">l u = 1 + \varepsilon \cos\theta.</math>
<math display="block">l u = 1 + \varepsilon \cos\theta.</math>
उपरोक्त ध्रुवीय समीकरण शंकु वर्गों का वर्णन करता है, साथ में <math>l</math> [[ अर्ध-सीधी तरफ ]] (के बराबर <math>h^2/\mu = h^2m/k</math>) और <math>\varepsilon</math> [[कक्षीय सनकीपन]]।
उपरोक्त ध्रुवीय समीकरण शंकु वर्गों का वर्णन करता है, साथ में <math>l</math> [[Index.php?title=अर्ध- लेटस रेक्टम|अर्ध- '''लेटस रेक्टम''']] (के बराबर <math>h^2/\mu = h^2m/k</math>) और <math>\varepsilon</math> [[Index.php?title= कक्षीय विकेन्द्रता|कक्षीय विकेन्द्रता]]।


==== सापेक्षतावादी ====
==== आपेक्षिकीय ====
श्वार्जस्चिल्ड निर्देशांक के लिए व्युत्पन्न सापेक्ष समीकरण है<ref>{{Cite web |url=http://www.wbabin.net/science/kren3.pdf |title=संग्रहीत प्रति|access-date=2010-11-15 |archive-url=https://web.archive.org/web/20100619014831/http://wbabin.net/science/kren3.pdf |archive-date=2010-06-19 |url-status=dead }}</ref>
श्वार्जस्चिल्ड निर्देशांक के लिए व्युत्पन्न सापेक्ष समीकरण है<ref>{{Cite web |url=http://www.wbabin.net/science/kren3.pdf |title=संग्रहीत प्रति|access-date=2010-11-15 |archive-url=https://web.archive.org/web/20100619014831/http://wbabin.net/science/kren3.pdf |archive-date=2010-06-19 |url-status=dead }}</ref>
<math display="block">\frac{\mathrm{d}^{2}u}{\mathrm{d}\theta ^{2}}+u=\frac{r_s c^2}{2 h^{2}}+\frac{3 r_s}{2}u^{2}</math>
<math display="block">\frac{\mathrm{d}^{2}u}{\mathrm{d}\theta ^{2}}+u=\frac{r_s c^2}{2 h^{2}}+\frac{3 r_s}{2}u^{2}</math>
कहाँ <math>c</math> [[प्रकाश की गति]] है और <math>r_s</math> [[श्वार्जस्चिल्ड त्रिज्या]] है। और Reissner–Nordström मीट्रिक के लिए हम प्राप्त करेंगे
कहाँ <math>c</math> [[प्रकाश की गति]] है और <math>r_s</math> [[श्वार्जस्चिल्ड त्रिज्या]] है। और रीस्नर-नॉर्डस्ट्रॉम मीट्रिक के लिए हम प्राप्त करेंगे
<math display="block">\frac{\mathrm{d}^{2}u}{\mathrm{d}\theta ^{2}}+u=\frac{r_s c^2}{2 h^2}+\frac{3 r_s}{2} u^2-\frac{G Q^{2}}{4 \pi \varepsilon_0 c^{4}}\left(\frac{c^2}{h^2} u +2u^3\right)</math>
<math display="block">\frac{\mathrm{d}^{2}u}{\mathrm{d}\theta ^{2}}+u=\frac{r_s c^2}{2 h^2}+\frac{3 r_s}{2} u^2-\frac{G Q^{2}}{4 \pi \varepsilon_0 c^{4}}\left(\frac{c^2}{h^2} u +2u^3\right)</math>
कहाँ <math>Q</math> विद्युत आवेश है और <math>\varepsilon_0</math> [[वैक्यूम परमिटिटिविटी]] है।
कहाँ <math>Q</math> विद्युत आवेश है और <math>\varepsilon_0</math> [[Index.php?title=निर्वात विद्युतशीलता|निर्वात विद्युतशीलता]] है।


=== उलटा केपलर समस्या ===
=== व्युत्क्रम केपलर समस्या ===
व्युत्क्रम केपलर समस्या पर विचार करें। किस प्रकार का बल कानून [[फोकस (ज्यामिति)]] के चारों ओर एक गैर-परिपत्र अंडाकार कक्षा (या अधिक सामान्यतःएक गैर-परिपत्र शंकु खंड) उत्पन्न करता है?
व्युत्क्रम केपलर समस्या पर विचार करें। किस प्रकार का बल नियम [[फोकस (ज्यामिति)]] के चारों ओर एक अवृत्ताकार अंडाकार कक्षा (या अधिक सामान्यतःएक अवृत्ताकार शंकु खंड) उत्पन्न करता है?


दीर्घवृत्त के लिए उपरोक्त ध्रुवीय समीकरण को दो बार अवकलित करने पर प्राप्त होता है
दीर्घवृत्त के लिए उपरोक्त ध्रुवीय समीकरण को दो बार अवकलित करने पर प्राप्त होता है
<math display="block">l \, \frac{\mathrm{d}^{2}u}{\mathrm{d}\theta ^2} = - \varepsilon \cos \theta.</math>
<math display="block">l \, \frac{\mathrm{d}^{2}u}{\mathrm{d}\theta ^2} = - \varepsilon \cos \theta.</math>
बल कानून इसलिए है
इसलिए ,बल नियम है
<math display="block">F = -mh^{2}u^{2} \left(\frac{- \varepsilon \cos \theta}{l}+\frac{1 + \varepsilon \cos \theta}{l}\right)=-\frac{m h^2 u^2}{l}=-\frac{m h^2}{l r^2},</math>
<math display="block">F = -mh^{2}u^{2} \left(\frac{- \varepsilon \cos \theta}{l}+\frac{1 + \varepsilon \cos \theta}{l}\right)=-\frac{m h^2 u^2}{l}=-\frac{m h^2}{l r^2},</math>
जो प्रत्याशित उलटा वर्ग कानून है। कक्षीय मिलान <math>h^2/l = \mu</math> जैसे भौतिक मूल्यों के लिए <math>GM</math> या <math>k_e q_1 q_2/m</math> क्रमशः न्यूटन के सार्वत्रिक गुरुत्वाकर्षण के नियम या कूलम्ब के नियम को पुन: उत्पन्न करता है।
जो अपेक्षित व्युत्क्रम वर्ग नियम है। कक्षीय मिलान <math>h^2/l = \mu</math> जैसे भौतिक मूल्यों के लिए <math>GM</math> या <math>k_e q_1 q_2/m</math> क्रमशः न्यूटन के सार्वत्रिक गुरुत्वाकर्षण के नियम या कूलम्ब के नियम को पुन: उत्पन्न करता है।


श्वार्जस्चिल्ड निर्देशांक के लिए प्रभावी बल है<ref>http://chaos.swarthmore.edu/courses/PDG07/AJP/AJP000352.pdf - The first-order orbital equation</ref>
श्वार्जस्चिल्ड निर्देशांक के लिए प्रभावी बल है<ref>http://chaos.swarthmore.edu/courses/PDG07/AJP/AJP000352.pdf - The first-order orbital equation</ref>
Line 54: Line 54:
जहां दूसरा शब्द एक व्युत्क्रम-चतुर्थक बल है जो चतुष्कोणीय प्रभावों के अनुरूप है जैसे कि पेरीपसिस की कोणीय पारी (यह मंद क्षमता के माध्यम से भी प्राप्त की जा सकती है)<ref>{{Cite arXiv |eprint = astro-ph/0306611|last1 = Behera|first1 = Harihar | title = पारा के पेरिहेलियन एडवांस के लिए एक फ्लैट स्पेस-टाइम रिलेटिविस्टिक स्पष्टीकरण|last2 = Naik|first2 = P. C|year = 2003}}</ref>).
जहां दूसरा शब्द एक व्युत्क्रम-चतुर्थक बल है जो चतुष्कोणीय प्रभावों के अनुरूप है जैसे कि पेरीपसिस की कोणीय पारी (यह मंद क्षमता के माध्यम से भी प्राप्त की जा सकती है)<ref>{{Cite arXiv |eprint = astro-ph/0306611|last1 = Behera|first1 = Harihar | title = पारा के पेरिहेलियन एडवांस के लिए एक फ्लैट स्पेस-टाइम रिलेटिविस्टिक स्पष्टीकरण|last2 = Naik|first2 = P. C|year = 2003}}</ref>).


मानकीकृत पोस्ट-न्यूटोनियन औपचारिकता में हम प्राप्त करेंगे
पैरामीट्रिज्ड  पोस्ट-न्यूटोनियन औपचारिकता में हम प्राप्त करेंगे
<math display="block">F = -\frac{GMm}{r^2} \left(1+(2+2\gamma-\beta)\left(\frac{h}{rc}\right)^2\right).</math>
<math display="block">F = -\frac{GMm}{r^2} \left(1+(2+2\gamma-\beta)\left(\frac{h}{rc}\right)^2\right).</math>
कहाँ <math>\gamma = \beta = 1</math> [[सामान्य सापेक्षता]] के लिए और <math>\gamma = \beta = 0</math> शास्त्रीय मामले में।
जहाँ <math>\gamma = \beta = 1</math> [[सामान्य सापेक्षता]] के लिए और <math>\gamma = \beta = 0</math> पारंपरिक मामले में।


=== कोट्स सर्पिल ===
=== कोट्स सर्पिल ===
Line 63: Line 63:
व्युत्क्रम घन नियम की कक्षाओं के आकार को [[कोट्स सर्पिल]] के रूप में जाना जाता है। बिनेट समीकरण दर्शाता है कि कक्षाएँ अवश्य ही समीकरण का हल होनी चाहिए
व्युत्क्रम घन नियम की कक्षाओं के आकार को [[कोट्स सर्पिल]] के रूप में जाना जाता है। बिनेट समीकरण दर्शाता है कि कक्षाएँ अवश्य ही समीकरण का हल होनी चाहिए
<math display="block">\frac{\mathrm{d}^2 u}{\mathrm{d}\theta^2}+u=\frac{k u}{m h^2} = C u.</math>
<math display="block">\frac{\mathrm{d}^2 u}{\mathrm{d}\theta^2}+u=\frac{k u}{m h^2} = C u.</math>
केप्लर समस्या के विभिन्न शांकव वर्गों के अनुरूप अंतर समीकरण के तीन प्रकार के समाधान हैं। कब <math>C < 1</math>, समाधान [[एपिस्पिरल]] है, जिसमें सीधी रेखा के पैथोलॉजिकल मामले शामिल हैं <math>C = 0</math>. कब <math>C = 1</math>, समाधान [[अतिशयोक्तिपूर्ण सर्पिल]] है। कब <math>C > 1</math> समाधान पॉइन्सॉट का सर्पिल है।
केप्लर समस्या के विभिन्न शांकव वर्गों के अनुरूप अवकलन समीकरण के तीन प्रकार के समाधान हैं।जब <math>C < 1</math>, समाधान [[एपिस्पिरल]] है, जिसमें सीधी रेखा के पैथोलॉजिकल मामले सम्मिलित हैं <math>C = 0</math>। जब <math>C = 1</math>, समाधान [[Index.php?title=अतिपरवलीय सर्पिल|अतिपरवलीय सर्पिल]] है। जब <math>C > 1</math> समाधान पॉइन्सॉट का सर्पिल है।


=== ऑफ-एक्सिस सर्कुलर मोशन ===
=== ऑफ-एक्सिस सर्कुलर मोशन ===
यद्यपि बिनेट समीकरण बल के केंद्र के बारे में परिपत्र गति के लिए एक अद्वितीय बल कानून देने में विफल रहता है, लेकिन समीकरण एक बल कानून प्रदान कर सकता है जब वृत्त का केंद्र और बल का केंद्र मेल नहीं खाते। उदाहरण के लिए एक गोलाकार कक्षा पर विचार करें जो सीधे बल के केंद्र से होकर गुजरती है। व्यास की ऐसी गोलाकार कक्षा के लिए (पारस्परिक) ध्रुवीय समीकरण <math>D</math> है
यद्यपि बिनेट समीकरण बल के केंद्र के बारे में वृत्तीय गति के लिए एक अद्वितीय बल नियम देने में विफल रहता है, लेकिन समीकरण एक बल नियम प्रदान कर सकता है जब वृत्त का केंद्र और बल का केंद्र मेल नहीं खाते। उदाहरण के लिए एक गोलाकार कक्षा पर विचार करें जो सीधे बल के केंद्र से होकर गुजरती है। व्यास की ऐसी गोलाकार कक्षा के लिए (व्युत्क्रम) ध्रुवीय समीकरण <math>D</math> है
<math display="block">D \, u(\theta)= \sec \theta.</math>
<math display="block">D \, u(\theta)= \sec \theta.</math>
फर्क <math>u</math> दो बार और [[पायथागॉरियन पहचान]] का उपयोग करने से देता है
<math>u</math> का दो बार अवकलन और [[पायथागॉरियन पहचान]] का उपयोग करने से प्राप्त होता  है
<math display="block">D \, \frac{\mathrm{d}^{2}u}{\mathrm{d}\theta ^2} = \sec \theta \tan^2 \theta + \sec^3 \theta = \sec \theta (\sec^2 \theta - 1) + \sec^3 \theta = 2 D^3 u^3-D \, u.</math>
<math display="block">D \, \frac{\mathrm{d}^{2}u}{\mathrm{d}\theta ^2} = \sec \theta \tan^2 \theta + \sec^3 \theta = \sec \theta (\sec^2 \theta - 1) + \sec^3 \theta = 2 D^3 u^3-D \, u.</math>
बल कानून इस प्रकार है
इस प्रकार बल का नियम  है
<math display="block">F = -mh^2u^2 \left( 2 D^2 u^3- u + u\right) = -2mh^2D^2u^5 = -\frac{2mh^2D^2}{r^5}.</math>
<math display="block">F = -mh^2u^2 \left( 2 D^2 u^3- u + u\right) = -2mh^2D^2u^5 = -\frac{2mh^2D^2}{r^5}.</math>
ध्यान दें कि सामान्य उलटा समस्या को हल करना, यानी एक आकर्षक की कक्षाओं का निर्माण करना <math>1/r^5</math> बल कानून, एक अधिक कठिन समस्या है क्योंकि यह हल करने के बराबर है
ध्यान दें कि सामान्य व्युत्क्रम समस्या को हल करना, अर्थात् एक आकर्षक की कक्षाओं का निर्माण करना <math>1/r^5</math> बल नियम, एक अधिक कठिन समस्या है क्योंकि यह हल करने के बराबर है
<math display="block">\frac{\mathrm{d}^{2}u}{\mathrm{d}\theta ^{2}}+u=Cu^3</math>
<math display="block">\frac{\mathrm{d}^{2}u}{\mathrm{d}\theta ^{2}}+u=Cu^3</math>
जो एक दूसरा क्रम अरैखिक अवकल समीकरण है।
जो एक दूसरे क्रम का अरैखिक अवकल समीकरण है।


== यह भी देखें ==
== यह भी देखें ==
{{Portal|Astronomy|Physics}}
{{Portal|Astronomy|Physics}}
*{{slink|Bohr–Sommerfeld quantization#Relativistic orbit}}
*{{slink|बोह्र-सोमरफेल्ड परिमाणीकरण § सापेक्षतावादी कक्षा}}
* [[शास्त्रीय केंद्रीय बल समस्या]]
* [[शास्त्रीय केंद्रीय बल समस्या]]
*सामान्य सापेक्षता
*सामान्य सापेक्षता

Revision as of 07:37, 8 May 2023

जैक्स फिलिप मैरी बिनेट द्वारा व्युत्पन्न बिनेट समीकरण, तलीय ध्रुवीय निर्देशांक में कक्षीय गति के आकार को देखते हुए एक केंद्रीय बल का रूप प्रदान करता है। किसी दिए गए बल सिद्धांत के लिए कक्षा के आकार को प्राप्त करने के लिए समीकरण का भी उपयोग किया जा सकता है, लेकिन इसमें सामान्यतः दूसरे क्रम के गैर-रैखिक साधारण अवकलन समीकरण का समाधान सम्मिलित होता है। बल के केंद्र के बारे में वृत्तीय गति के कारक में एक अनूठा समाधान असंभव है।

समीकरण

कक्षा के आकार को प्राय: सापेक्ष दूरी के संदर्भ में कोण के कार्य के रूप में आसानी से वर्णित किया जाता है। बिनेट समीकरण के लिए, कक्षीय आकार को पारस्परिक रूप से के एक फलन के रूप में अधिक संक्षिप्त रूप से वर्णित किया गया है।विशिष्ट कोणीय संवेग को इस रूप में परिभाषित कीजिए जहाँ कोणीय गति है और द्रव्यमान है। अगले खंड में व्युत्पन्न बिनेट समीकरण, फलन के संदर्भ में बल देता है:

अवकलन

शुद्ध रूप से केंद्रीय बल के लिए न्यूटन का द्वितीय नियम है

कोणीय संवेग के संरक्षण के लिए इसकी आवश्यकता होती है
समय के सापेक्ष के व्युत्पन्न को कोण के सापेक्ष के व्युत्पन्न रूप में फिर से लिखा जा सकता है :
उपरोक्त सभी को मिलाकर, हम पहुँचते हैं
सामान्य समाधान है [1]
कहाँ कण का प्रारंभिक समन्वय है।

उदाहरण

केप्लर समस्या

पारंपरिक

व्युत्क्रम वर्ग नियम की कक्षा की गणना करने की पारंपरिक केपलर समस्या को बिनेट समीकरण से अवकलन समीकरण के समाधान के रूप में पढ़ा जा सकता है।

यदि कोण पेरीपसिस से मापा जाता है, तो (पारस्परिक) ध्रुवीय निर्देशांक में व्यक्त कक्षा के लिए सामान्य समाधान है
उपरोक्त ध्रुवीय समीकरण शंकु वर्गों का वर्णन करता है, साथ में अर्ध- लेटस रेक्टम (के बराबर ) और कक्षीय विकेन्द्रता

आपेक्षिकीय

श्वार्जस्चिल्ड निर्देशांक के लिए व्युत्पन्न सापेक्ष समीकरण है[2]

कहाँ प्रकाश की गति है और श्वार्जस्चिल्ड त्रिज्या है। और रीस्नर-नॉर्डस्ट्रॉम मीट्रिक के लिए हम प्राप्त करेंगे
कहाँ विद्युत आवेश है और निर्वात विद्युतशीलता है।

व्युत्क्रम केपलर समस्या

व्युत्क्रम केपलर समस्या पर विचार करें। किस प्रकार का बल नियम फोकस (ज्यामिति) के चारों ओर एक अवृत्ताकार अंडाकार कक्षा (या अधिक सामान्यतःएक अवृत्ताकार शंकु खंड) उत्पन्न करता है?

दीर्घवृत्त के लिए उपरोक्त ध्रुवीय समीकरण को दो बार अवकलित करने पर प्राप्त होता है

इसलिए ,बल नियम है
जो अपेक्षित व्युत्क्रम वर्ग नियम है। कक्षीय मिलान जैसे भौतिक मूल्यों के लिए या क्रमशः न्यूटन के सार्वत्रिक गुरुत्वाकर्षण के नियम या कूलम्ब के नियम को पुन: उत्पन्न करता है।

श्वार्जस्चिल्ड निर्देशांक के लिए प्रभावी बल है[3]

जहां दूसरा शब्द एक व्युत्क्रम-चतुर्थक बल है जो चतुष्कोणीय प्रभावों के अनुरूप है जैसे कि पेरीपसिस की कोणीय पारी (यह मंद क्षमता के माध्यम से भी प्राप्त की जा सकती है)[4]).

पैरामीट्रिज्ड पोस्ट-न्यूटोनियन औपचारिकता में हम प्राप्त करेंगे

जहाँ सामान्य सापेक्षता के लिए और पारंपरिक मामले में।

कोट्स सर्पिल

एक व्युत्क्रम घन बल नियम का रूप है

व्युत्क्रम घन नियम की कक्षाओं के आकार को कोट्स सर्पिल के रूप में जाना जाता है। बिनेट समीकरण दर्शाता है कि कक्षाएँ अवश्य ही समीकरण का हल होनी चाहिए
केप्लर समस्या के विभिन्न शांकव वर्गों के अनुरूप अवकलन समीकरण के तीन प्रकार के समाधान हैं।जब , समाधान एपिस्पिरल है, जिसमें सीधी रेखा के पैथोलॉजिकल मामले सम्मिलित हैं । जब , समाधान अतिपरवलीय सर्पिल है। जब समाधान पॉइन्सॉट का सर्पिल है।

ऑफ-एक्सिस सर्कुलर मोशन

यद्यपि बिनेट समीकरण बल के केंद्र के बारे में वृत्तीय गति के लिए एक अद्वितीय बल नियम देने में विफल रहता है, लेकिन समीकरण एक बल नियम प्रदान कर सकता है जब वृत्त का केंद्र और बल का केंद्र मेल नहीं खाते। उदाहरण के लिए एक गोलाकार कक्षा पर विचार करें जो सीधे बल के केंद्र से होकर गुजरती है। व्यास की ऐसी गोलाकार कक्षा के लिए (व्युत्क्रम) ध्रुवीय समीकरण है

का दो बार अवकलन और पायथागॉरियन पहचान का उपयोग करने से प्राप्त होता है
इस प्रकार बल का नियम है
ध्यान दें कि सामान्य व्युत्क्रम समस्या को हल करना, अर्थात् एक आकर्षक की कक्षाओं का निर्माण करना बल नियम, एक अधिक कठिन समस्या है क्योंकि यह हल करने के बराबर है
जो एक दूसरे क्रम का अरैखिक अवकल समीकरण है।

यह भी देखें

संदर्भ

  1. Goldstein, Herbert (1980). शास्त्रीय यांत्रिकी. Reading, Mass.: Addison-Wesley Pub. Co. ISBN 0-201-02918-9. OCLC 5675073.
  2. "संग्रहीत प्रति" (PDF). Archived from the original (PDF) on 2010-06-19. Retrieved 2010-11-15.
  3. http://chaos.swarthmore.edu/courses/PDG07/AJP/AJP000352.pdf - The first-order orbital equation
  4. Behera, Harihar; Naik, P. C (2003). "पारा के पेरिहेलियन एडवांस के लिए एक फ्लैट स्पेस-टाइम रिलेटिविस्टिक स्पष्टीकरण". arXiv:astro-ph/0306611.