सघन सम्मुच्य: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Subset whose closure is the whole space}}{{Refimprove|date=February 2010}} टोपोलॉजी और गणित के संबंधित...")
 
No edit summary
Line 1: Line 1:
{{Short description|Subset whose closure is the whole space}}{{Refimprove|date=February 2010}}
{{Short description|Subset whose closure is the whole space}}{{Refimprove|date=February 2010}}


[[टोपोलॉजी]] और गणित के संबंधित क्षेत्रों में, एक [[टोपोलॉजिकल स्पेस]] एक्स के एक उपसमुच्चय को एक्स में 'घना' कहा जाता है यदि एक्स का प्रत्येक बिंदु या तो ए से संबंधित है या फिर मनमाने ढंग से ए के सदस्य के करीब है - उदाहरण के लिए, [[तर्कसंगत संख्या]]एँ [[वास्तविक संख्या]]ओं का सघन उपसमुच्चय होती हैं क्योंकि प्रत्येक वास्तविक संख्या या तो एक परिमेय संख्या होती है या इसके पास एक परिमेय संख्या होती है ([[डायोफैंटाइन सन्निकटन]] देखें)।
[[टोपोलॉजी]] और गणित के संबंधित क्षेत्रों में, एक [[टोपोलॉजिकल स्पेस]] ''X'' के एक ''A'' उपसमुच्चय के ''X में को''  'घना' कहा जाता है। यदि X का प्रत्येक बिंदु <math>A</math>  से संबंधित है या फिर <math>A</math>  के सदस्य के है। उदाहरण के लिए, [[तर्कसंगत संख्या]]एँ [[वास्तविक संख्या]]ओं का सघन उपसमुच्चय होती ([[डायोफैंटाइन सन्निकटन]] देखें)।
 
औपचारिक रूप से, <math>A</math> में घना है <math>X</math> यदि सबसे छोटा [[बंद सेट]] <math>X</math> युक्त <math>A</math> है <math>X</math> अपने आप।<ref name="CEIT">{{Citation|last=Steen|first=L. A.|last2=Seebach|first2=J. A.|title=Counterexamples in Topology|publisher=Dover|year=1995|isbn=0-486-68735-X|title-link=Counterexamples in Topology}}</ref> {{visible anchor|density}} एक टोपोलॉजिकल स्पेस का <math>X</math> के सघन उपसमुच्चय की कम से कम [[प्रमुखता]] है <math>X.</math>
औपचारिक रूप से, <math>A</math> में घना है <math>X</math> यदि सबसे छोटा [[बंद सेट]] <math>X</math> युक्त <math>A</math> है <math>X</math> अपने आप।<ref name="CEIT">{{Citation|last=Steen|first=L. A.|last2=Seebach|first2=J. A.|title=Counterexamples in Topology|publisher=Dover|year=1995|isbn=0-486-68735-X|title-link=Counterexamples in Topology}}</ref> {{visible anchor|density}} एक टोपोलॉजिकल स्पेस का <math>X</math> के सघन उपसमुच्चय की कम से कम [[प्रमुखता]] है <math>X.</math>




Line 34: Line 36:
== उदाहरण ==
== उदाहरण ==


सामान्य टोपोलॉजी के साथ वास्तविक संख्याओं में एक [[गणनीय सेट]] घने उपसमुच्चय के रूप में परिमेय संख्याएँ होती हैं जो दर्शाती हैं कि एक टोपोलॉजिकल स्पेस के घने उपसमुच्चय की कार्डिनैलिटी स्पेस की कार्डिनैलिटी से सख्ती से छोटी हो सकती है। [[अपरिमेय संख्या]]एं एक और सघन उपसमुच्चय हैं जो दर्शाता है कि एक टोपोलॉजिकल स्पेस में कई [[अलग करना सेट]] घने उपसमुच्चय हो सकते हैं (विशेष रूप से, दो सघन उपसमुच्चय एक दूसरे के पूरक हो सकते हैं), और उन्हें एक ही कार्डिनैलिटी का होना भी आवश्यक नहीं है। शायद इससे भी अधिक आश्चर्यजनक रूप से, परिमेय और अपरिमेय दोनों में खाली आंतरिक भाग होते हैं, यह दर्शाता है कि सघन समुच्चय में कोई गैर-रिक्त खुला समुच्चय नहीं होना चाहिए। एक टोपोलॉजिकल स्पेस के दो घने खुले उपसमुच्चय का प्रतिच्छेदन फिर से घना और खुला होता है।<ref group=proof>Suppose that <math>A</math> and <math>B</math> are dense open subset of a topological space <math>X.</math> If <math>X = \varnothing</math> then the conclusion that the open set <math>A \cap B</math> is dense in <math>X</math> is immediate, so assume otherwise. Let <math>U</math> is a non-empty open subset of <math>X,</math> so it remains to show that <math>U \cap (A \cap B)</math> is also not empty. Because <math>A</math> is dense in <math>X</math> and <math>U</math> is a non-empty open subset of <math>X,</math> their intersection <math>U \cap A</math> is not empty. Similarly, because <math>U \cap A</math> is a non-empty open subset of <math>X</math> and <math>B</math> is dense in <math>X,</math> their intersection <math>U \cap A \cap B</math> is not empty. <math>\blacksquare</math></ref> रिक्त समुच्चय स्वयं का सघन उपसमुच्चय होता है। लेकिन गैर-रिक्त स्थान का प्रत्येक घना उपसमुच्चय भी गैर-खाली होना चाहिए।
सामान्य टोपोलॉजी के साथ वास्तविक संख्याओं में एक [[गणनीय सेट]] घने उपसमुच्चय के रूप में परिमेय संख्याएँ होती हैं जो दर्शाती हैं कि एक टोपोलॉजिकल स्पेस के घने उपसमुच्चय की कार्डिनैलिटी स्पेस की कार्डिनैलिटी से सख्ती से छोटी हो सकती है। [[अपरिमेय संख्या]]एं एक और सघन उपसमुच्चय हैं जो दर्शाता है कि एक टोपोलॉजिकल स्पेस में कई [[अलग करना सेट]] घने उपसमुच्चय हो सकते हैं (विशेष रूप से, दो सघन उपसमुच्चय एक दूसरे के पूरक हो सकते हैं), और उन्हें एक ही कार्डिनैलिटी का होना भी आवश्यक नहीं है। शायद इससे भी अधिक आश्चर्यजनक रूप से, परिमेय और अपरिमेय दोनों में खाली आंतरिक भाग होते हैं, यह दर्शाता है कि सघन समुच्चय में कोई गैर-रिक्त खुला समुच्चय नहीं होना चाहिए। एक टोपोलॉजिकल स्पेस के दो घने खुले उपसमुच्चय का प्रतिच्छेदन फिर से घना और खुला होता है।<ref group="proof">Suppose that <math>A</math> and <math>B</math> are dense open subset of a topological space <math>X.</math> If <math>X = \varnothing</math> then the conclusion that the open set <math>A \cap B</math> is dense in <math>X</math> is immediate, so assume otherwise. Let <math>U</math> is a non-empty open subset of <math>X,</math> so it remains to show that <math>U \cap (A \cap B)</math> is also not empty. Because <math>A</math> is dense in <math>X</math> and <math>U</math> is a non-empty open subset of <math>X,</math> their intersection <math>U \cap A</math> is not empty. Similarly, because <math>U \cap A</math> is a non-empty open subset of <math>X</math> and <math>B</math> is dense in <math>X,</math> their intersection <math>U \cap A \cap B</math> is not empty. <math>\blacksquare</math></ref> रिक्त समुच्चय स्वयं का सघन उपसमुच्चय होता है। लेकिन गैर-रिक्त स्थान का प्रत्येक घना उपसमुच्चय भी गैर-खाली होना चाहिए।


Weierstrass सन्निकटन प्रमेय द्वारा, कोई भी दी गई सम्मिश्र संख्या | एक [[बंद अंतराल]] पर परिभाषित जटिल-मूल्यवान सतत फलन <math>[a, b]</math> एक बहुपद समारोह द्वारा वांछित के रूप में [[एकसमान अभिसरण]] हो सकता है। दूसरे शब्दों में, अंतरिक्ष में बहुपद कार्य सघन हैं <math>C[a, b]</math> अंतराल पर निरंतर जटिल-मूल्यवान कार्यों की <math>[a, b],</math> सर्वोच्च मानदंड से लैस।
Weierstrass सन्निकटन प्रमेय द्वारा, कोई भी दी गई सम्मिश्र संख्या | एक [[बंद अंतराल]] पर परिभाषित जटिल-मूल्यवान सतत फलन <math>[a, b]</math> एक बहुपद समारोह द्वारा वांछित के रूप में [[एकसमान अभिसरण]] हो सकता है। दूसरे शब्दों में, अंतरिक्ष में बहुपद कार्य सघन हैं <math>C[a, b]</math> अंतराल पर निरंतर जटिल-मूल्यवान कार्यों की <math>[a, b],</math> सर्वोच्च मानदंड से लैस।

Revision as of 22:48, 28 May 2023

टोपोलॉजी और गणित के संबंधित क्षेत्रों में, एक टोपोलॉजिकल स्पेस X के एक A उपसमुच्चय के X में को 'घना' कहा जाता है। यदि X का प्रत्येक बिंदु से संबंधित है या फिर के सदस्य के है। उदाहरण के लिए, तर्कसंगत संख्याएँ वास्तविक संख्याओं का सघन उपसमुच्चय होती (डायोफैंटाइन सन्निकटन देखें)।

औपचारिक रूप से, में घना है यदि सबसे छोटा बंद सेट युक्त है अपने आप।[1] density एक टोपोलॉजिकल स्पेस का के सघन उपसमुच्चय की कम से कम प्रमुखता है


परिभाषा

उपसमुच्चय एक टोपोलॉजिकल स्पेस का ए कहा जाता हैdense subset का यदि निम्नलिखित समकक्ष शर्तों में से कोई भी संतुष्ट है: <ओल>

  • का सबसे छोटा बंद सेट युक्त है खुद।
  • का क्लोजर (टोपोलॉजी) में के बराबर है वह है, </ली>
  • के पूरक (सेट सिद्धांत) का आंतरिक (टोपोलॉजी)। खाली है। वह है, </ली>
  • हर बिंदु में या तो का है या का एक सीमा बिंदु है </ली>
  • प्रत्येक के लिए हर पड़ोस (गणित) का चौराहा (सेट सिद्धांत) वह है, </ली> <ली> के प्रत्येक गैर-रिक्त खुले उपसमुच्चय को प्रतिच्छेद करता है </ली> <ली></ली> </ओल> और अगर टोपोलॉजी के लिए खुले सेटों का आधार (टोपोलॉजी) है तो इस सूची को शामिल करने के लिए बढ़ाया जा सकता है: <ओल प्रारंभ = 7>
  • प्रत्येक के लिए प्रत्येक basic पड़ोस (गणित) का चौराहा (सेट सिद्धांत) </ली> <ली> हर गैर-खाली को काटता है </ली> </ अल>

    मीट्रिक रिक्त स्थान में घनत्व

    मीट्रिक रिक्त स्थान के मामले में सघन सेट की एक वैकल्पिक परिभाषा निम्नलिखित है। जब की टोपोलॉजी (संरचना) एक मीट्रिक (गणित), टोपोलॉजिकल क्लोजर द्वारा दिया जाता है का में का संघ (सेट सिद्धांत) है और एक अनुक्रम की सभी सीमा का सेट # तत्वों के सामयिक स्थान (इसकी सीमा अंक),

    तब में घना है अगर

    अगर एक पूर्ण मीट्रिक स्थान में सघन खुला सेट सेट का एक क्रम है, तब में भी घना है यह तथ्य बेयर श्रेणी प्रमेय के समकक्ष रूपों में से एक है।

    उदाहरण

    सामान्य टोपोलॉजी के साथ वास्तविक संख्याओं में एक गणनीय सेट घने उपसमुच्चय के रूप में परिमेय संख्याएँ होती हैं जो दर्शाती हैं कि एक टोपोलॉजिकल स्पेस के घने उपसमुच्चय की कार्डिनैलिटी स्पेस की कार्डिनैलिटी से सख्ती से छोटी हो सकती है। अपरिमेय संख्याएं एक और सघन उपसमुच्चय हैं जो दर्शाता है कि एक टोपोलॉजिकल स्पेस में कई अलग करना सेट घने उपसमुच्चय हो सकते हैं (विशेष रूप से, दो सघन उपसमुच्चय एक दूसरे के पूरक हो सकते हैं), और उन्हें एक ही कार्डिनैलिटी का होना भी आवश्यक नहीं है। शायद इससे भी अधिक आश्चर्यजनक रूप से, परिमेय और अपरिमेय दोनों में खाली आंतरिक भाग होते हैं, यह दर्शाता है कि सघन समुच्चय में कोई गैर-रिक्त खुला समुच्चय नहीं होना चाहिए। एक टोपोलॉजिकल स्पेस के दो घने खुले उपसमुच्चय का प्रतिच्छेदन फिर से घना और खुला होता है।[proof 1] रिक्त समुच्चय स्वयं का सघन उपसमुच्चय होता है। लेकिन गैर-रिक्त स्थान का प्रत्येक घना उपसमुच्चय भी गैर-खाली होना चाहिए।

    Weierstrass सन्निकटन प्रमेय द्वारा, कोई भी दी गई सम्मिश्र संख्या | एक बंद अंतराल पर परिभाषित जटिल-मूल्यवान सतत फलन एक बहुपद समारोह द्वारा वांछित के रूप में एकसमान अभिसरण हो सकता है। दूसरे शब्दों में, अंतरिक्ष में बहुपद कार्य सघन हैं अंतराल पर निरंतर जटिल-मूल्यवान कार्यों की सर्वोच्च मानदंड से लैस।

    प्रत्येक मीट्रिक स्थान अपने समापन (मीट्रिक स्थान) में सघन है।

    गुण

    हर टोपोलॉजिकल स्पेस अपने आप में एक सघन उपसमुच्चय है। एक सेट के लिए असतत टोपोलॉजी से सुसज्जित, संपूर्ण स्थान केवल सघन उपसमुच्चय है। किसी समुच्चय का प्रत्येक अरिक्त उपसमुच्चय तुच्छ टोपोलॉजी से सुसज्जित सघन है, और प्रत्येक टोपोलॉजी जिसके लिए प्रत्येक गैर-खाली सबसेट सघन है, तुच्छ होना चाहिए।

    सघनता सकर्मक संबंध है: तीन उपसमुच्चय दिए गए हैं और एक टोपोलॉजिकल स्पेस का साथ ऐसा है कि में घना है और में घना है (संबंधित सबस्पेस टोपोलॉजी में) तब में भी घना है विशेषण समारोह निरंतर कार्य (टोपोलॉजी) फंक्शन के तहत एक सघन उपसमुच्चय की छवि (गणित) फिर से सघन होती है। एक टोपोलॉजिकल स्पेस का घनत्व (इसके घने उपसमुच्चय की कम से कम कार्डिनैलिटी) एक टोपोलॉजिकल इनवेरिएंट है।

    जुड़ा हुआ स्थान डेंस सबसेट के साथ एक टोपोलॉजिकल स्पेस जरूरी है कि वह खुद जुड़ा हो।

    हौसडॉर्फ रिक्त स्थान में निरंतर कार्य घने उपसमुच्चय पर उनके मूल्यों द्वारा निर्धारित किए जाते हैं: यदि दो निरंतर कार्य हॉसडॉर्फ अंतरिक्ष में के सघन उपसमुच्चय पर सहमत हैं तब वे सभी पर सहमत होते हैं मीट्रिक रिक्त स्थान के लिए सार्वभौमिक रिक्त स्थान हैं, जिसमें दिए गए घनत्व के सभी रिक्त स्थान एम्बेडिंग हो सकते हैं: घनत्व का एक मीट्रिक स्थान की एक उपसमष्टि के लिए सममितीय है कार्टेशियन उत्पाद # के अनंत उत्पादों पर वास्तविक निरंतर कार्यों का स्थान इकाई अंतराल की प्रतियां। [2]


    संबंधित धारणाएँ

    एक बिंदु एक उपसमुच्चय का एक टोपोलॉजिकल स्पेस का का सीमा बिन्दु कहा जाता है (में ) अगर हर पड़ोस का एक बिंदु भी शामिल है के अलावा अन्य स्वयं, और का एक पृथक बिंदु अन्यथा। पृथक बिंदुओं के बिना एक उपसमुच्चय को सघन-स्वयं कहा जाता है।

    उपसमुच्चय एक टोपोलॉजिकल स्पेस का कहा जाता है कहीं नहीं घना सेट (में ) यदि कोई पड़ोस नहीं है जिस पर घना है। समान रूप से, एक टोपोलॉजिकल स्पेस का एक उपसमुच्चय कहीं भी सघन नहीं है अगर और केवल अगर इसके बंद होने का आंतरिक भाग खाली है। कहीं नहीं सघन सेट के पूरक का आंतरिक भाग हमेशा सघन होता है। एक बंद कहीं नहीं घने सेट का पूरक एक घना खुला सेट है। एक टोपोलॉजिकल स्पेस दिया गया उपसमुच्चय का जिसे कई कहीं नहीं के घने उपसमुच्चय के संघ के रूप में व्यक्त किया जा सकता है अल्प समुच्चय कहा जाता है। परिमेय संख्याएँ, जबकि वास्तविक संख्या में सघन हैं, वास्तविक के उपसमुच्चय के रूप में अल्प हैं।

    एक गणनीय सघन उपसमुच्चय के साथ एक सामयिक स्थान को वियोज्य स्थान कहा जाता है। एक टोपोलॉजिकल स्पेस एक बाहर की जगह है अगर और केवल अगर कई घने खुले सेटों का चौराहा हमेशा घना होता है। एक टोपोलॉजिकल स्पेस को हल करने योग्य स्थान कहा जाता है यदि यह दो अलग-अलग घने उपसमुच्चय का मिलन हो। अधिक आम तौर पर, एक टोपोलॉजिकल स्पेस को बुनियादी संख्या κ के लिए κ-रिज़ॉल्वेबल कहा जाता है यदि इसमें κ जोड़ीदार अलग-अलग घने सेट होते हैं।

    एक टोपोलॉजिकल स्पेस का एक एम्बेडिंग एक सघन स्थान के एक सघन उपसमुच्चय के रूप में एक सघनता (गणित) कहा जाता है टोपोलॉजिकल वेक्टर स्पेस स्थान के बीच एक रैखिक ऑपरेटर और सघन रूप से परिभाषित ऑपरेटर कहा जाता है यदि किसी फ़ंक्शन का डोमेन एक सघन उपसमुच्चय है और यदि किसी फ़ंक्शन की छवि इसके भीतर समाहित है सतत रैखिक विस्तार भी देखें।

    एक टोपोलॉजिकल स्पेस हाइपरकनेक्टेड स्पेस है अगर और केवल अगर हर गैर-खाली खुला सेट सघन है एक टोपोलॉजिकल स्पेस सबमैक्सिमल स्पेस है अगर और केवल अगर हर घना सबसेट खुला है।

    अगर एक मीट्रिक स्थान है, फिर एक गैर-खाली सबसेट है बताया गया -घना अगर

    तभी कोई दिखा सकता है में घना है अगर और केवल अगर यह प्रत्येक के लिए ε-घन है


    यह भी देखें

    संदर्भ

    1. Steen, L. A.; Seebach, J. A. (1995), Counterexamples in Topology, Dover, ISBN 0-486-68735-X
    2. Kleiber, Martin; Pervin, William J. (1969). "एक सामान्यीकृत बनच-मजूर प्रमेय". Bull. Austral. Math. Soc. 1 (2): 169–173. doi:10.1017/S0004972700041411.

    proofs

    1. Suppose that and are dense open subset of a topological space If then the conclusion that the open set is dense in is immediate, so assume otherwise. Let is a non-empty open subset of so it remains to show that is also not empty. Because is dense in and is a non-empty open subset of their intersection is not empty. Similarly, because is a non-empty open subset of and is dense in their intersection is not empty.


    सामान्य संदर्भ


    श्रेणी:सामान्य टोपोलॉजी