प्रक्षेपात्मक विविधता: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[File:Addition on cubic (clean version).svg|thumb|[[अण्डाकार वक्र]] जीनस वन का सहज प्रक्षेप्य वक्र है।]][[बीजगणितीय ज्यामिति]] में, बीजगणितीय रूप से बंद क्षेत्र ''k'' पर प्रक्षेप्य | [[File:Addition on cubic (clean version).svg|thumb|[[अण्डाकार वक्र]] जीनस वन का सहज प्रक्षेप्य वक्र है।]][[बीजगणितीय ज्यामिति]] में, बीजगणितीय रूप से बंद क्षेत्र ''k'' पर '''प्रक्षेप्य किस्म''' कुछ प्रक्षेप्य स्थानों का उपसमुच्चय होता है। इस प्रकार प्रक्षेप्य ''n''-स्थान <math>\mathbb{P}^n</math> k के ऊपर यह k में गुणांक वाले n + 1 चर के [[सजातीय बहुपद|सजातीय बहुपदों]] के कुछ परिमित समूह का शून्य-स्थान होता है, जो अभाज्य आदर्श, विविधता का परिभाषित आदर्श उत्पन्न करता है। इस प्रकार समान रूप से, बीजगणितीय प्रकार प्रक्षेप्य होती है यदि इसे [[ज़ारिस्की टोपोलॉजी]] के रूप में एम्बेड किया जा सकता है, जिससे कि बीजगणितीय वर्ग की उपविविधता <math>\mathbb{P}^n</math> होती है। | ||
प्रक्षेप्य विविधता '''प्रक्षेप्य वक्र''' होता है यदि इसका आयाम यह है। इस प्रकार यदि इसका आयाम दो होता है तब यह '''प्रक्षेप्य सतह''' होती है। यह '''प्रक्षेप्य उच्च''' '''सतह''' होती है, यदि इसका आयाम समाहित प्रक्षेप्य स्थान के आयाम से कम होता है। इस स्थितियों में यह एकल सजातीय बहुपद के शून्यों का समुच्चय होता है। | प्रक्षेप्य विविधता '''प्रक्षेप्य वक्र''' होता है यदि इसका आयाम यह है। इस प्रकार यदि इसका आयाम दो होता है तब यह '''प्रक्षेप्य सतह''' होती है। यह '''प्रक्षेप्य उच्च''' '''सतह''' होती है, यदि इसका आयाम समाहित प्रक्षेप्य स्थान के आयाम से कम होता है। इस स्थितियों में यह एकल सजातीय बहुपद के शून्यों का समुच्चय होता है। | ||
Line 56: | Line 56: | ||
इस प्रकार चर अपेक्षा के अनुरूप मेल खाते हैं। इसके [[बंद बिंदु|बंद बिंदुओं]] का समूह <math>\mathbb{P}^n_k</math>, बीजगणितीय रूप से बंद क्षेत्र k के लिए, फिर प्रक्षेप्य स्थान <math>\mathbb{P}^n(k)</math> होता है। सामान्य अर्थ में. | इस प्रकार चर अपेक्षा के अनुरूप मेल खाते हैं। इसके [[बंद बिंदु|बंद बिंदुओं]] का समूह <math>\mathbb{P}^n_k</math>, बीजगणितीय रूप से बंद क्षेत्र k के लिए, फिर प्रक्षेप्य स्थान <math>\mathbb{P}^n(k)</math> होता है। सामान्य अर्थ में. | ||
प्रोज निर्माण द्वारा समतुल्य किन्तु सुव्यवस्थित निर्माण दिया जाता है, जो रिंग के वर्णक्रम का एनालॉग होता है, जिसे स्पेक कहा जाता है, जो [[एफ़िन योजना]] को परिभाषित करता है।<ref>{{harvnb|Hartshorne|1977|loc=Section II.5}}</ref> उदाहरण के लिए, यदि A वलय है, तब | सामान्यतः प्रोज निर्माण द्वारा समतुल्य किन्तु सुव्यवस्थित निर्माण दिया जाता है, जो रिंग के वर्णक्रम का एनालॉग होता है, जिसे स्पेक कहा जाता है, जो [[एफ़िन योजना]] को परिभाषित करता है।<ref>{{harvnb|Hartshorne|1977|loc=Section II.5}}</ref> उदाहरण के लिए, यदि A वलय होता है, तब | ||
:<math>\mathbb{P}^n_A = \operatorname{Proj}A[x_0, \ldots, x_n].</math> | :<math>\mathbb{P}^n_A = \operatorname{Proj}A[x_0, \ldots, x_n].</math> | ||
यदि R भागफल वलय | यदि R भागफल वलय <math>k[x_0, \ldots, x_n]</math> होता है, अतः सजातीय आदर्श ''I'' द्वारा, फिर विहित प्रक्षेपण [[बंद विसर्जन]] को प्रेरित करता है। | ||
:<math>\operatorname{Proj} R \hookrightarrow \mathbb{P}^n_k.</math> | :<math>\operatorname{Proj} R \hookrightarrow \mathbb{P}^n_k.</math> | ||
प्रक्षेपी वर्गों की तुलना में, इस शर्त को हटा दिया गया कि आदर्श ''I'' प्रमुख आदर्श होता है। इससे बहुत अधिक लचीली धारणा बनती है ओर [[टोपोलॉजिकल स्पेस|टोपोलॉजिकल स्थान]] <math>X = \operatorname{Proj} R</math> इसमें अनेक अपरिवर्तनीय घटक हो सकते हैं। इसके अतिरिक्त, X पर शून्यप्रभावी कार्य हो सकते हैं। | प्रक्षेपी वर्गों की तुलना में, इस शर्त को हटा दिया गया है कि आदर्श ''I'' प्रमुख आदर्श होता है। इससे बहुत अधिक लचीली धारणा बनती है ओर [[टोपोलॉजिकल स्पेस|टोपोलॉजिकल स्थान]] <math>X = \operatorname{Proj} R</math> इसमें अनेक अपरिवर्तनीय घटक हो सकते हैं। इसके अतिरिक्त, X पर शून्यप्रभावी कार्य हो सकते हैं। | ||
इसकी उपयोजनाएँ | इसकी उपयोजनाएँ <math>\mathbb{P}^n_k</math> बंद कर दी गईं ''I'' के सजातीय आदर्शों <math>k[x_0, \ldots, x_n]</math> से विशेष रूप से मेल खाता है, जो [[संतृप्त आदर्श]] होते हैं। अर्थात्, <math>I : (x_0, \dots, x_n) = I.</math><ref>{{harvnb|Mumford|1999|loc=pg. 111}}</ref> इस तथ्य को प्रक्षेप्य नुल्ल्सतेल्लेंसेट्स का परिष्कृत संस्करण माना जा सकता है। | ||
हम उपरोक्त का समन्वय-मुक्त एनालॉग दे सकते हैं। अर्थात्, k के ऊपर परिमित-आयामी अनेक स्थान V दिया गया है, हम देते हैं। | हम उपरोक्त का समन्वय-मुक्त एनालॉग दे सकते हैं। अर्थात्, k के ऊपर परिमित-आयामी अनेक स्थान V दिया गया है, जिसे हम देते हैं। | ||
:<math>\mathbb{P}(V) = \operatorname{Proj} k[V]</math> | :<math>\mathbb{P}(V) = \operatorname{Proj} k[V]</math> | ||
जहाँ <math>k[V] = \operatorname{Sym}(V^*)</math> का [[सममित बीजगणित]] <math>V^*</math> होता है।<ref>This definition differs from {{harvnb|Eisenbud|Harris|2000|loc=III.2.3}} but is consistent with the other parts of Wikipedia.</ref> यह V का [[प्रक्षेपीकरण]] होता है। अर्थात्, यह वी में रेखाओं को पैरामीट्रिज करता है। इस प्रकार विहित विशेषण मानचित्र <math>\pi: V \setminus \{0\} \to \mathbb{P}(V)</math> होता है, जिसे ऊपर वर्णित चार्ट का उपयोग करके परिभाषित किया गया है।<ref>cf. the proof of {{harvnb|Hartshorne|1977|loc=Ch II, Theorem 7.1}}</ref> सामान्यतः निर्माण का महत्वपूर्ण उपयोग यह होता है (cf., {{slink||द्वैत और रैखिक प्रणाली}}). प्रक्षेप्य प्रकार X पर विभाजक D रेखा बंडल L से मेल खाता है, अतः फिर समूह होता है। | |||
:<math>|D| = \mathbb{P}(\Gamma(X, L))</math> | :<math>|D| = \mathbb{P}(\Gamma(X, L))</math> | ||
इसे D का पूर्ण रैखिक तंत्र कहा जाता है। | इसे D का पूर्ण रैखिक तंत्र कहा जाता है। | ||
किसी भी योजना पर प्रक्षेप्य स्थान (गणित) एस को योजनाओं के फाइबर उत्पाद के रूप में परिभाषित किया जा सकता | किसी भी योजना पर प्रक्षेप्य स्थान (गणित) एस को योजनाओं के फाइबर उत्पाद के रूप में परिभाषित किया जा सकता है। | ||
:<math>\mathbb{P}^n_S = \mathbb{P}_\Z^n \times_{\operatorname{Spec}\Z} S.</math> | :<math>\mathbb{P}^n_S = \mathbb{P}_\Z^n \times_{\operatorname{Spec}\Z} S.</math> | ||
अगर <math>\mathcal{O}(1)</math> सेरे ऑन का घुमाव वाला शीफ | अगर <math>\mathcal{O}(1)</math> सेरे ऑन का घुमाव वाला शीफ <math>\mathbb{P}_\Z^n</math> होता है, हम जाने <math>\mathcal{O}(1) </math> पुलबैक फाइबर-उत्पाद को <math>\mathcal{O}(1)</math> निरूपित करता है, इसको <math>\mathbb{P}^n_S</math>; वह है, <math>\mathcal{O}(1) = g^*(\mathcal{O}(1))</math> विहित मानचित्र के लिए <math>g: \mathbb{P}^n_{S} \to \mathbb{P}^n_{\Z}.</math>योजना X → S को S पर 'प्रक्षेप्य' कहा जाता है यदि यह बंद विसर्जन के रूप में कार्य करता है। | ||
योजना X → S को S पर 'प्रक्षेप्य' कहा जाता है यदि यह बंद विसर्जन के रूप में कार्य करता | |||
:<math>X \to \mathbb{P}^n_S</math> | :<math>X \to \mathbb{P}^n_S</math> | ||
एस के प्रक्षेपण के | एस के प्रक्षेपण के पश्चात् | ||
रेखा बंडल (या उलटा शीफ) <math>\mathcal{L}</math> योजना पर | |||
:<math>i: X \to \mathbb{P}^n_S</math> | :<math>i: X \to \mathbb{P}^n_S</math> | ||
कुछ n के लिए जिससे कि <math>\mathcal{O}(1)</math> के लिए पुलबैक <math>\mathcal{L}</math>. फिर एस-स्कीम X प्रक्षेप्य है यदि और केवल यदि यह [[उचित रूपवाद]] है और एस के सापेक्ष X पर बहुत बड़ा शीफ उपस्तिथ है। वास्तव में, यदि X उचित है, तब बहुत पर्याप्त | कुछ n के लिए जिससे कि <math>\mathcal{O}(1)</math> के लिए पुलबैक <math>\mathcal{L}</math>. फिर एस-स्कीम X प्रक्षेप्य है यदि और केवल यदि यह [[उचित रूपवाद]] है और एस के सापेक्ष X पर बहुत बड़ा शीफ उपस्तिथ है। वास्तव में, यदि X उचित है, तब बहुत पर्याप्त रेखा बंडल के अनुरूप विसर्जन आवश्यक रूप से बंद होता है। इसके विपरीत, यदि X प्रक्षेप्य है, तब पुलबैक <math>\mathcal{O}(1)</math> प्रक्षेप्य स्थान में X के बंद विसर्जन के अनुसार बहुत पर्याप्त है। वह प्रक्षेप्य तात्पर्य अधिक गहरा होता है: [[उन्मूलन सिद्धांत का मुख्य प्रमेय]]। | ||
== संपूर्ण वर्गों से संबंध == | == संपूर्ण वर्गों से संबंध == | ||
परिभाषा के अनुसार, प्रकार पूर्ण प्रकार है, यदि यह k के ऊपर [[उचित मानचित्र]] है। [[उचितता का मूल्यांकन मानदंड]] इस अंतर्ज्ञान को व्यक्त करता है कि उचित विविधता में, कोई बिंदु विलुप्त नहीं है। | परिभाषा के अनुसार, विशेष प्रकार से पूर्ण प्रकार होता है, यदि यह k के ऊपर [[उचित मानचित्र]] होता है। इस प्रकार [[उचितता का मूल्यांकन मानदंड]] इस अंतर्ज्ञान को व्यक्त करता है कि उचित विविधता में, कोई बिंदु विलुप्त नहीं होता है। | ||
पूर्ण और प्रक्षेप्य वर्गों के मध्य घनिष्ठ संबंध है | पूर्ण और प्रक्षेप्य वर्गों के मध्य घनिष्ठ संबंध होता है, इस ओर, प्रक्षेप्य स्थान और इसलिए कोई भी प्रक्षेप्य विविधता पूर्ण होती है। इसका विपरीत सामान्यतः सत्य नहीं होता है। चूँकि: | ||
*विलक्षणता सिद्धांत बीजगणितीय वक्र विलक्षणताएं सी प्रक्षेप्य है यदि और केवल यदि यह पूर्ण विविधता है। यह बीजगणितीय प्रकार k(C) के फलन क्षेत्र के [[असतत मूल्यांकन रिंग]]ों के समूह के साथ C की पहचान करके सिद्ध किया जाता है। इस समूह में प्राकृतिक ज़ारिस्की टोपोलॉजी है जिसे ज़ारिस्की-रीमैन स्थान कहा जाता है। | *विलक्षणता '''सिद्धांत बीजगणितीय वक्र''' विलक्षणताएं सी प्रक्षेप्य है यदि और केवल यदि यह पूर्ण विविधता है। यह बीजगणितीय प्रकार k(C) के फलन क्षेत्र के [[असतत मूल्यांकन रिंग]]ों के समूह के साथ C की पहचान करके सिद्ध किया जाता है। इस समूह में प्राकृतिक ज़ारिस्की टोपोलॉजी है जिसे ज़ारिस्की-रीमैन स्थान कहा जाता है। | ||
* चाउ की लेम्मा बताती है कि किसी भी पूर्ण वर्ग<ref>{{harvnb|Grothendieck|Dieudonné|1961|loc=5.6}}</ref> (इसके अतिरिक्त, [[सामान्य किस्म|सामान्य]] प्रकार के माध्यम से, कोई यह मान सकता है कि यह प्रक्षेपी प्रकार सामान्य है।) | * चाउ की लेम्मा बताती है कि किसी भी पूर्ण वर्ग<ref>{{harvnb|Grothendieck|Dieudonné|1961|loc=5.6}}</ref> (इसके अतिरिक्त, [[सामान्य किस्म|सामान्य]] प्रकार के माध्यम से, कोई यह मान सकता है कि यह प्रक्षेपी प्रकार सामान्य है।) | ||
Line 156: | Line 155: | ||
एल के अनुभागों की अंगूठी कहा जाता है। यदि एल पर्याप्त रेखा बंडल है, तब इस अंगूठी का प्रोज X है। इसके अतिरिक्त, यदि X सामान्य है और एल बहुत पर्याप्त है, तब <math>R(X,L)</math> एल द्वारा निर्धारित X के सजातीय समन्वय रिंग का अभिन्न समापन है; अर्थात।, <math>X \hookrightarrow \mathbb{P}^N</math> जिससे कि <math>\mathcal{O}_{\mathbb{P}^N}(1)</math> एल की ओर वापस खींचता है।<ref>{{harvnb|Hartshorne|1977|loc=Ch. II, Exercise 5.14. (a)}}</ref> | एल के अनुभागों की अंगूठी कहा जाता है। यदि एल पर्याप्त रेखा बंडल है, तब इस अंगूठी का प्रोज X है। इसके अतिरिक्त, यदि X सामान्य है और एल बहुत पर्याप्त है, तब <math>R(X,L)</math> एल द्वारा निर्धारित X के सजातीय समन्वय रिंग का अभिन्न समापन है; अर्थात।, <math>X \hookrightarrow \mathbb{P}^N</math> जिससे कि <math>\mathcal{O}_{\mathbb{P}^N}(1)</math> एल की ओर वापस खींचता है।<ref>{{harvnb|Hartshorne|1977|loc=Ch. II, Exercise 5.14. (a)}}</ref> | ||
अनुप्रयोगों के लिए, विभाजक (बीजगणितीय ज्यामिति) (या) के लिए अनुमति देना उपयोगी है <math>\Q</math>-विभाजक) सिर्फ | अनुप्रयोगों के लिए, विभाजक (बीजगणितीय ज्यामिति) (या) के लिए अनुमति देना उपयोगी है <math>\Q</math>-विभाजक) सिर्फ रेखा बंडल नहीं; यह मानते हुए कि X सामान्य है, परिणामी वलय को वर्गों का सामान्यीकृत वलय कहा जाता है। अगर <math>K_X</math> X पर विहित विभाजक है, फिर अनुभागों का सामान्यीकृत वलय | ||
:<math>R(X, K_X)</math> | :<math>R(X, K_X)</math> | ||
Line 174: | Line 173: | ||
प्रत्येक अपरिवर्तनीय बंद उपसमुच्चय <math>\mathbb{P}^n</math> कोडिमेंशन में से [[ऊनविम पृष्ठ]] है; अर्थात, कुछ सजातीय अघुलनशील बहुपद का शून्य समूह।<ref>{{harvnb|Hartshorne|1977|loc=Ch I, Exercise 2.8}}; this is because the homogeneous coordinate ring of <math>\mathbb{P}^n</math> is a [[unique factorization domain]] and in a UFD every prime ideal of height 1 is principal.</ref> | प्रत्येक अपरिवर्तनीय बंद उपसमुच्चय <math>\mathbb{P}^n</math> कोडिमेंशन में से [[ऊनविम पृष्ठ]] है; अर्थात, कुछ सजातीय अघुलनशील बहुपद का शून्य समूह।<ref>{{harvnb|Hartshorne|1977|loc=Ch I, Exercise 2.8}}; this is because the homogeneous coordinate ring of <math>\mathbb{P}^n</math> is a [[unique factorization domain]] and in a UFD every prime ideal of height 1 is principal.</ref> | ||
=== एबेलियन वर्गें === | === एबेलियन वर्गें === | ||
प्रक्षेप्य प्रकार X का अन्य महत्वपूर्ण अपरिवर्तनीय [[पिकार्ड समूह]] है <math>\operatorname{Pic}(X)</math> X का, X पर | प्रक्षेप्य प्रकार X का अन्य महत्वपूर्ण अपरिवर्तनीय [[पिकार्ड समूह]] है <math>\operatorname{Pic}(X)</math> X का, X पर रेखा बंडलों के समरूपता वर्गों का समूह। यह समरूपी है <math>H^1(X, \mathcal O_X^*)</math> और इसलिए आंतरिक धारणा (एम्बेडिंग से स्वतंत्र)। उदाहरण के लिए, पिकार्ड समूह <math>\mathbb{P}^n</math> के लिए समरूपी है <math>\Z</math> डिग्री मानचित्र के माध्यम से. की गिरी <math>\deg: \operatorname{Pic}(X) \to \Z</math> न केवल अमूर्त एबेलियन समूह है, किंतु X, जैक (X) की [[जैकोबियन किस्म|जैकोबियन]] प्रकार नामक प्रकार भी है, जिसके अंक इस समूह के सामान्तर हैं। (चिकने) वक्र का जैकोबियन वक्र के अध्ययन में महत्वपूर्ण भूमिका निभाता है। उदाहरण के लिए, अण्डाकार वक्र E का जैकोबियन E ही है। जीनस g के वक्र X के लिए, Jac(X) का आयाम g है। | ||
जैकोबियन प्रकार जैसी वर्गें, जो पूर्ण हैं और समूह संरचना रखती हैं, [[नील्स एबेल]] के सम्मान में [[एबेलियन किस्म|एबेलियन]] प्रकार के रूप में जानी जाती हैं। जैसे एफ़िन बीजीय समूहों के बिल्कुल विपरीत <math>GL_n(k)</math>, ऐसे समूह सदैव क्रमविनिमेय होते हैं, जहाँ से यह नाम पड़ा है। इसके अतिरिक्त, वह पर्याप्त | जैकोबियन प्रकार जैसी वर्गें, जो पूर्ण हैं और समूह संरचना रखती हैं, [[नील्स एबेल]] के सम्मान में [[एबेलियन किस्म|एबेलियन]] प्रकार के रूप में जानी जाती हैं। जैसे एफ़िन बीजीय समूहों के बिल्कुल विपरीत <math>GL_n(k)</math>, ऐसे समूह सदैव क्रमविनिमेय होते हैं, जहाँ से यह नाम पड़ा है। इसके अतिरिक्त, वह पर्याप्त रेखा बंडल स्वीकार करते हैं और इस प्रकार प्रक्षेप्य होते हैं। दूसरी ओर, [[एबेलियन योजना]] प्रक्षेप्य नहीं हो सकती है। एबेलियन वर्गों के उदाहरण अण्डाकार वक्र, जैकोबियन वर्गें और [[K3 सतह]]ें हैं। | ||
== अनुमान == | == अनुमान == | ||
Line 197: | Line 196: | ||
== द्वैत और रैखिक प्रणाली == | == द्वैत और रैखिक प्रणाली == | ||
जबकि प्रक्षेप्य एन-स्थान <math>\mathbb{P}^n</math> एफ़िन एन-स्थान में | जबकि प्रक्षेप्य एन-स्थान <math>\mathbb{P}^n</math> एफ़िन एन-स्थान में रेखाों को पैरामीटराइज़ करता है, इसका दोहरा प्रक्षेप्य स्थान [[दोहरी प्रक्षेप्य स्थान]] हाइपरतल को निम्नानुसार पैरामीटराइज़ करता है। क्षेत्र ठीक करें k. द्वारा <math>\breve{\mathbb{P}}_k^n</math>, हमारा तात्पर्य प्रक्षेप्य एन-स्थान से है | ||
:<math>\breve{\mathbb{P}}_k^n = \operatorname{Proj}(k[u_0, \dots, u_n])</math> | :<math>\breve{\mathbb{P}}_k^n = \operatorname{Proj}(k[u_0, \dots, u_n])</math> | ||
निर्माण से सुसज्जित: | निर्माण से सुसज्जित: | ||
Line 207: | Line 206: | ||
में पंक्ति <math>\breve{\mathbb{P}}_k^n</math> इसे [[पेंसिल (बीजगणितीय ज्यामिति)]] कहा जाता है: यह हाइपरतल का समूह है <math>\mathbb{P}^n_k</math> द्वारा पैरामीट्रिज्ड <math>\mathbb{P}^1_k</math>. | में पंक्ति <math>\breve{\mathbb{P}}_k^n</math> इसे [[पेंसिल (बीजगणितीय ज्यामिति)]] कहा जाता है: यह हाइपरतल का समूह है <math>\mathbb{P}^n_k</math> द्वारा पैरामीट्रिज्ड <math>\mathbb{P}^1_k</math>. | ||
यदि V, k के ऊपर परिमित-आयामी सदिश समष्टि है, तब, ऊपर बताए गए कारण से, <math>\mathbb{P}(V^*) = \operatorname{Proj}(\operatorname{Sym}(V))</math> हाइपरतल का स्थान है <math>\mathbb{P}(V)</math>. महत्वपूर्ण मामला तब होता है जब वी में | यदि V, k के ऊपर परिमित-आयामी सदिश समष्टि है, तब, ऊपर बताए गए कारण से, <math>\mathbb{P}(V^*) = \operatorname{Proj}(\operatorname{Sym}(V))</math> हाइपरतल का स्थान है <math>\mathbb{P}(V)</math>. महत्वपूर्ण मामला तब होता है जब वी में रेखा बंडल के अनुभाग होते हैं। अर्थात्, मान लीजिए कि X बीजगणितीय प्रकार है, L, X पर रेखा बंडल है और <math>V \subset \Gamma(X, L)</math> परिमित धनात्मक आयाम का अनेक उपस्थान। फिर नक्शा है:<ref>{{harvnb|Fulton|1998|loc=§ 4.4.}}</ref> | ||
:<math>\begin{cases} | :<math>\begin{cases} | ||
\varphi_V: X \setminus B \to \mathbb{P}(V^*) \\ | \varphi_V: X \setminus B \to \mathbb{P}(V^*) \\ | ||
Line 219: | Line 218: | ||
#<math>H^p(X, \mathcal{F})</math> किसी भी पी के लिए परिमित-आयामी के-अनेक स्थान है। | #<math>H^p(X, \mathcal{F})</math> किसी भी पी के लिए परिमित-आयामी के-अनेक स्थान है। | ||
#वहाँ पूर्णांक उपस्तिथ है <math>n_0</math> (इस पर निर्भर करते हुए <math>\mathcal{F}</math>; कैस्टेलनुवो-ममफोर्ड नियमितता भी देखें) जैसे कि <math display="block">H^p(X, \mathcal{F}(n)) = 0</math> सभी के लिए <math>n \ge n_0</math> और पी > 0, कहाँ <math>\mathcal F(n) = \mathcal F \otimes \mathcal O(n)</math> बहुत ही प्रचुर | #वहाँ पूर्णांक उपस्तिथ है <math>n_0</math> (इस पर निर्भर करते हुए <math>\mathcal{F}</math>; कैस्टेलनुवो-ममफोर्ड नियमितता भी देखें) जैसे कि <math display="block">H^p(X, \mathcal{F}(n)) = 0</math> सभी के लिए <math>n \ge n_0</math> और पी > 0, कहाँ <math>\mathcal F(n) = \mathcal F \otimes \mathcal O(n)</math> बहुत ही प्रचुर रेखा बंडल की शक्ति के साथ घुमाव है <math>\mathcal{O}(1).</math> | ||
यह परिणाम स्थितियोंको कम करने वाले सिद्ध करना हुए हैं <math>X= \mathbb{P}^n</math> समरूपता का उपयोग करना | यह परिणाम स्थितियोंको कम करने वाले सिद्ध करना हुए हैं <math>X= \mathbb{P}^n</math> समरूपता का उपयोग करना | ||
Line 238: | Line 237: | ||
== चिकनी प्रक्षेप्य वर्गें == | == चिकनी प्रक्षेप्य वर्गें == | ||
मान लीजिए कि X सुचारु प्रक्षेप्य प्रकार है जहां इसके सभी अप्रासंगिक घटकों का आयाम n है। इस स्थिति में, [[विहित शीफ]] ω<sub>''X''</sub>, शीर्ष डिग्री (अर्थात, बीजगणितीय एन-फॉर्म) के काहलर अंतर के शीफ के रूप में परिभाषित, | मान लीजिए कि X सुचारु प्रक्षेप्य प्रकार है जहां इसके सभी अप्रासंगिक घटकों का आयाम n है। इस स्थिति में, [[विहित शीफ]] ω<sub>''X''</sub>, शीर्ष डिग्री (अर्थात, बीजगणितीय एन-फॉर्म) के काहलर अंतर के शीफ के रूप में परिभाषित, रेखा बंडल है। | ||
===सर्रे द्वैत=== | ===सर्रे द्वैत=== | ||
Line 256: | Line 255: | ||
D \mapsto \mathcal{O}(D) | D \mapsto \mathcal{O}(D) | ||
\end{cases}</math> | \end{cases}</math> | ||
वेइल विभाजक के समूह से|(वेइल) विभाजक सापेक्ष प्रमुख विभाजक | वेइल विभाजक के समूह से|(वेइल) विभाजक सापेक्ष प्रमुख विभाजक रेखा बंडलों के समरूपता वर्गों के समूह के लिए। ω के अनुरूप भाजक<sub>''X''</sub> इसे विहित विभाजक कहा जाता है और इसे K से दर्शाया जाता है। मान लीजिए l(D) का आयाम है <math>H^0(X, \mathcal{O}(D))</math>. फिर रीमैन-रोच प्रमेय कहता है: यदि g, X का जीनस है, | ||
:<math>l(D) -l(K - D) = \deg D + 1 - g,</math> | :<math>l(D) -l(K - D) = \deg D + 1 - g,</math> | ||
Line 290: | Line 289: | ||
* यदि बीजगणितीय वर्गों के मध्य बीजीय मानचित्र विश्लेषणात्मक समरूपता है, तब यह (बीजगणितीय) समरूपता है। (यह भाग जटिल विश्लेषण में मूलभूततथ्य है।) विशेष रूप से, चाउ के प्रमेय का तात्पर्य है कि प्रक्षेप्य वर्गों के मध्य होलोमोर्फिक मानचित्र बीजगणितीय है। (ऐसे मानचित्र के ग्राफ़ पर विचार करें।) | * यदि बीजगणितीय वर्गों के मध्य बीजीय मानचित्र विश्लेषणात्मक समरूपता है, तब यह (बीजगणितीय) समरूपता है। (यह भाग जटिल विश्लेषण में मूलभूततथ्य है।) विशेष रूप से, चाउ के प्रमेय का तात्पर्य है कि प्रक्षेप्य वर्गों के मध्य होलोमोर्फिक मानचित्र बीजगणितीय है। (ऐसे मानचित्र के ग्राफ़ पर विचार करें।) | ||
* प्रक्षेप्य प्रकार पर प्रत्येक होलोमोर्फिक अनेक बंडल अद्वितीय बीजगणितीय अनेक बंडल से प्रेरित होता है।<ref>{{harvnb|Griffiths|Adams|2015|loc=IV. 1. 10. Corollary H}}</ref> | * प्रक्षेप्य प्रकार पर प्रत्येक होलोमोर्फिक अनेक बंडल अद्वितीय बीजगणितीय अनेक बंडल से प्रेरित होता है।<ref>{{harvnb|Griffiths|Adams|2015|loc=IV. 1. 10. Corollary H}}</ref> | ||
* प्रक्षेप्य प्रकार पर प्रत्येक होलोमोर्फिक | * प्रक्षेप्य प्रकार पर प्रत्येक होलोमोर्फिक रेखा बंडल विभाजक का रेखा बंडल है।<ref>{{harvnb|Griffiths|Adams|2015|loc=IV. 1. 10. Corollary I}}</ref> | ||
चाउ के प्रमेय को सेरे की बीजगणितीय ज्यामिति और विश्लेषणात्मक ज्यामिति के माध्यम से दिखाया जा सकता है। इसका मुख्य प्रमेय कहता है: | चाउ के प्रमेय को सेरे की बीजगणितीय ज्यामिति और विश्लेषणात्मक ज्यामिति के माध्यम से दिखाया जा सकता है। इसका मुख्य प्रमेय कहता है: | ||
Line 313: | Line 312: | ||
===कोडैरा विलुप्त हो रहा है=== | ===कोडैरा विलुप्त हो रहा है=== | ||
मौलिक [[कोडैरा लुप्त प्रमेय]] बताता है कि पर्याप्त | मौलिक [[कोडैरा लुप्त प्रमेय]] बताता है कि पर्याप्त रेखा बंडल के लिए <math>\mathcal{L}</math> विशेषता शून्य के क्षेत्र पर चिकनी प्रक्षेप्य विविधता X पर, | ||
:<math>H^i(X, \mathcal{L}\otimes \omega_X) = 0</math> | :<math>H^i(X, \mathcal{L}\otimes \omega_X) = 0</math> |
Revision as of 13:39, 14 July 2023
बीजगणितीय ज्यामिति में, बीजगणितीय रूप से बंद क्षेत्र k पर प्रक्षेप्य किस्म कुछ प्रक्षेप्य स्थानों का उपसमुच्चय होता है। इस प्रकार प्रक्षेप्य n-स्थान k के ऊपर यह k में गुणांक वाले n + 1 चर के सजातीय बहुपदों के कुछ परिमित समूह का शून्य-स्थान होता है, जो अभाज्य आदर्श, विविधता का परिभाषित आदर्श उत्पन्न करता है। इस प्रकार समान रूप से, बीजगणितीय प्रकार प्रक्षेप्य होती है यदि इसे ज़ारिस्की टोपोलॉजी के रूप में एम्बेड किया जा सकता है, जिससे कि बीजगणितीय वर्ग की उपविविधता होती है।
प्रक्षेप्य विविधता प्रक्षेप्य वक्र होता है यदि इसका आयाम यह है। इस प्रकार यदि इसका आयाम दो होता है तब यह प्रक्षेप्य सतह होती है। यह प्रक्षेप्य उच्च सतह होती है, यदि इसका आयाम समाहित प्रक्षेप्य स्थान के आयाम से कम होता है। इस स्थितियों में यह एकल सजातीय बहुपद के शून्यों का समुच्चय होता है।
यदि X सजातीय अभाज्य आदर्श I द्वारा परिभाषित प्रक्षेप्य विविधता होती है, तब भागफल वलय
इसे X का सजातीय समन्वय वलय कहा जाता है।
प्रक्षेपी वर्गें अनेक प्रकार से उत्पन्न होती हैं। वह उनमें पूर्ण विविधता होती है, जिसे मोटे रूप से यह कहकर व्यक्त किया जा सकता है कि कोई भी बिंदु विलुप्त नहीं है। यह विपरीत सामान्यतः सत्य नहीं होती है, किन्तु चाउ की लेम्मा इन दोनों धारणाओं के घनिष्ठ संबंध का वर्णन करती है। यह दर्शाता है कि विशेष प्रकार प्रक्षेप्य होता है, X पर रेखा बंडलों या विभाजक (बीजगणितीय ज्यामिति) का अध्ययन करके किया जाता है।
प्रक्षेपी वर्गों की प्रमुख विशेषता शीफ कोहोलॉजी पर सीमितता की बाधाएं होती हैं। इस प्रकार सहज प्रक्षेप्य वर्गों के लिए, सेरे द्वैत को पोंकारे द्वैत के एनालॉग के रूप में देखा जा सकता है। यह प्रक्षेप्य वक्रों के लिए रीमैन-रोच प्रमेय की ओर भी ले जाता है, अर्थात्, बीजगणितीय विविधता के आयाम की प्रक्षेप्य वर्गें 1. प्रक्षेप्य वक्रों का सिद्धांत विशेष रूप से समृद्ध होता है, जिसमें वक्र के अंकगणितीय जीनस द्वारा वर्गीकरण भी सम्मिलित होता है। सामान्यतः उच्च-आयामी प्रक्षेप्य वर्गों के लिए वर्गीकरण कार्यक्रम स्वाभाविक रूप से प्रक्षेप्य वर्गों के सापेक्ष के निर्माण की ओर ले जाता है।[1] हिल्बर्ट योजनाएं बंद उपयोजनाओं को निर्धारित हिल्बर्ट बहुपद के साथ पैरामीट्रिज करती हैं। हिल्बर्ट योजनाएँ, जिनमें से ग्रासमैनियन विशेष स्थितियों में होती हैं, अतः यह भी स्वयं में प्रक्षेपी योजनाएँ होती हैं। इस प्रकार ज्यामितीय अपरिवर्तनीय सिद्धांत और दृष्टिकोण प्रदान करता है। अतः मौलिक दृष्टिकोण में टीचमुलर स्थान और चाउ प्रकार सम्मिलित होते हैं।
विशेष रूप से समृद्ध सिद्धांत, जो क्लासिक्स तक पहुंचता है, अतः जटिल प्रक्षेप्य वर्गों के लिए उपलब्ध होता है, अर्थात्, जब X को परिभाषित करने वाले बहुपद में जटिल संख्या गुणांक होते हैं। इस प्रकार सामान्य रूप से, बीजगणितीय ज्यामिति और विश्लेषणात्मक ज्यामिति का कहना यह है कि प्रक्षेप्य जटिल विश्लेषणात्मक स्थानों (या मैनिफोल्ड्स) की ज्यामिति प्रक्षेप्य जटिल वर्गों की ज्यामिति के सामान्तर होती है। उदाहरण के लिए, X पर होलोमोर्फिक अनेक बंडलों (अधिक सामान्यतः सुसंगत शीफ) का सिद्धांत बीजगणितीय अनेक बंडलों के साथ मेल खाता है। बीजगणितीय ज्यामिति और विश्लेषणात्मक ज्यामिति चाउ का प्रमेय कहता है कि प्रक्षेप्य स्थान का उपसमुच्चय होलोमोर्फिक कार्यों के समूह का शून्य-स्थान होता है और यदि यह सजातीय बहुपदों का शून्य-स्थान होता है। अतः जटिल प्रक्षेप्य वर्गों के लिए विश्लेषणात्मक और बीजगणितीय विधियों का संयोजन हॉज सिद्धांत जैसे क्षेत्रों को उत्पन्न करता है।
विविधता और योजना संरचना
विविधता संरचना
मान लीजिए कि k बीजगणितीय रूप से बंद क्षेत्र होता है। इस प्रकार प्रक्षेप्य वर्गों की परिभाषा का आधार प्रक्षेप्य स्थान होता है, जिसे भिन्न-भिन्न, किन्तु समकक्ष विधियों से परिभाषित किया जा सकता है।
- मूल बिंदु से होकर जाने वाली सभी रेखाओं के समुच्चय के रूप में (अर्थात्, सभी एकल-आयामी अनेक उप-स्थान होता है)
- टुपल्स के समूह के रूप में , साथ सभी शून्य नहीं, तुल्यता संबंध सापेक्ष किसी के लिए . ऐसे टुपल के तुल्यता वर्ग को निम्न द्वारा निरूपित किया जाता है।यह तुल्यता वर्ग प्रक्षेप्य स्थान का सामान्य बिंदु होता है। इस प्रकार संख्या बिंदु के सजातीय निर्देशांक के रूप में संदर्भित किए जाते हैं।
प्रक्षेपी वर्ग, परिभाषा के अनुसार, बंद उप-विविधता होती है, जहां बंद ज़ारिस्की टोपोलॉजी को संदर्भित करता है।[2] सामान्यतः, ज़ारिस्की टोपोलॉजी के बंद उपसमुच्चय को सजातीय बहुपद कार्यों के सीमित संग्रह के सामान्य शून्य-स्थान के रूप में परिभाषित किया जाता है। इस प्रकार बहुपद , स्थिति द्वारा दिया गया है।
अनैतिक बहुपदों के लिए इसका कोई कारण नहीं होता है, किन्तु केवल तभी यदि f सजातीय बहुपद होता है, अर्थात्, सभी एकपदी (जिनका योग f होता है) की घातें समान होती हैं। इस स्थितियों में, इसका विलुप्त होना पाया जाता है।
इसकी पसंद से स्वतंत्र होती है।
इसलिए, प्रक्षेपी वर्गें I के सजातीय प्रधान , और समूहिंग आदर्शों से उत्पन्न होती हैं।
इसके अतिरिक्त, प्रक्षेप्य इस प्रकार, X का स्थानीय अध्ययन (जैसे, विलक्षणता) एफ़िन प्रकार तक कम हो जाता है। सामान्यतः स्पष्ट संरचना इस प्रकार होती है, अतः प्रक्षेप्य स्थान मानक खुले एफ़िन चार्ट द्वारा कवर किया गया है।
जो स्वयं निर्देशांक वलय के साथ n-स्थान को जोड़ते हैं।
सांकेतिक सरलता के लिए I = 0 कहें और सुपरस्क्रिप्ट (0) हटा देते है। तब की बंद उप-विविधता होती है, अतः इसके आदर्श द्वारा परिभाषित होता है और द्वारा उत्पन्न
I में सभी f के लिए इस प्रकार, X बीजगणितीय प्रकार का है जो (n+1) खुले एफ़िन चार्ट द्वारा कवर किया गया है।
ध्यान दीजिए कि X एफ़िन प्रकार का समापन होता है, अतः में इसके विपरीत, कुछ बंद (एफ़िन) प्रकार से प्रारंभ करना , वी का बंद होना प्रक्षेप्य को कहा जाता है प्रक्षेप्य पूर्णता वी का अगर V को परिभाषित करता है, तब इस समापन का परिभाषित आदर्श सजातीय आदर्श होता है।[3] इसका द्वारा उत्पन्न
I में सभी f के लिए।
उदाहरण के लिए, यदि V द्वारा दिया गया एफ़िन वक्र है, तब कह सकते है कि एफ़िन तल में, फिर प्रक्षेप्य तल में इसकी प्रक्षेप्य पूर्णता द्वारा दी गई है।
प्रक्षेप्य योजनाएँ
अधिकांशतः विभिन्न अनुप्रयोगों के लिए, प्रक्षेप्य वर्गों, अर्थात् प्रक्षेप्य योजनाओं की तुलना में अधिक सामान्य बीजगणित-ज्यामितीय वस्तुओं पर विचार करना आवश्यक होता है। इस प्रकार प्रक्षेप्य योजनाओं की दिशा में पहला कदम योजना संरचना के साथ प्रक्षेप्य स्थान को प्रदान करना होता है, अतः इस प्रकार से बीजगणितीय विविधता के रूप में प्रक्षेप्य स्थान के उपरोक्त विवरण को परिष्कृत किया जाता है, अर्थात्, योजना होती है जो एफ़िन n-स्थान के की (n + 1)n प्रतियों का संघ है। सामान्यतः अधिक,[4] रिंग ए के ऊपर प्रक्षेप्य स्थान एफ़िन योजनाओं का संघ होता है।
इस प्रकार चर अपेक्षा के अनुरूप मेल खाते हैं। इसके बंद बिंदुओं का समूह , बीजगणितीय रूप से बंद क्षेत्र k के लिए, फिर प्रक्षेप्य स्थान होता है। सामान्य अर्थ में.
सामान्यतः प्रोज निर्माण द्वारा समतुल्य किन्तु सुव्यवस्थित निर्माण दिया जाता है, जो रिंग के वर्णक्रम का एनालॉग होता है, जिसे स्पेक कहा जाता है, जो एफ़िन योजना को परिभाषित करता है।[5] उदाहरण के लिए, यदि A वलय होता है, तब
यदि R भागफल वलय होता है, अतः सजातीय आदर्श I द्वारा, फिर विहित प्रक्षेपण बंद विसर्जन को प्रेरित करता है।
प्रक्षेपी वर्गों की तुलना में, इस शर्त को हटा दिया गया है कि आदर्श I प्रमुख आदर्श होता है। इससे बहुत अधिक लचीली धारणा बनती है ओर टोपोलॉजिकल स्थान इसमें अनेक अपरिवर्तनीय घटक हो सकते हैं। इसके अतिरिक्त, X पर शून्यप्रभावी कार्य हो सकते हैं।
इसकी उपयोजनाएँ बंद कर दी गईं I के सजातीय आदर्शों से विशेष रूप से मेल खाता है, जो संतृप्त आदर्श होते हैं। अर्थात्, [6] इस तथ्य को प्रक्षेप्य नुल्ल्सतेल्लेंसेट्स का परिष्कृत संस्करण माना जा सकता है।
हम उपरोक्त का समन्वय-मुक्त एनालॉग दे सकते हैं। अर्थात्, k के ऊपर परिमित-आयामी अनेक स्थान V दिया गया है, जिसे हम देते हैं।
जहाँ का सममित बीजगणित होता है।[7] यह V का प्रक्षेपीकरण होता है। अर्थात्, यह वी में रेखाओं को पैरामीट्रिज करता है। इस प्रकार विहित विशेषण मानचित्र होता है, जिसे ऊपर वर्णित चार्ट का उपयोग करके परिभाषित किया गया है।[8] सामान्यतः निर्माण का महत्वपूर्ण उपयोग यह होता है (cf., § द्वैत और रैखिक प्रणाली). प्रक्षेप्य प्रकार X पर विभाजक D रेखा बंडल L से मेल खाता है, अतः फिर समूह होता है।
इसे D का पूर्ण रैखिक तंत्र कहा जाता है।
किसी भी योजना पर प्रक्षेप्य स्थान (गणित) एस को योजनाओं के फाइबर उत्पाद के रूप में परिभाषित किया जा सकता है।
अगर सेरे ऑन का घुमाव वाला शीफ होता है, हम जाने पुलबैक फाइबर-उत्पाद को निरूपित करता है, इसको ; वह है, विहित मानचित्र के लिए योजना X → S को S पर 'प्रक्षेप्य' कहा जाता है यदि यह बंद विसर्जन के रूप में कार्य करता है।
एस के प्रक्षेपण के पश्चात्
रेखा बंडल (या उलटा शीफ) योजना पर
कुछ n के लिए जिससे कि के लिए पुलबैक . फिर एस-स्कीम X प्रक्षेप्य है यदि और केवल यदि यह उचित रूपवाद है और एस के सापेक्ष X पर बहुत बड़ा शीफ उपस्तिथ है। वास्तव में, यदि X उचित है, तब बहुत पर्याप्त रेखा बंडल के अनुरूप विसर्जन आवश्यक रूप से बंद होता है। इसके विपरीत, यदि X प्रक्षेप्य है, तब पुलबैक प्रक्षेप्य स्थान में X के बंद विसर्जन के अनुसार बहुत पर्याप्त है। वह प्रक्षेप्य तात्पर्य अधिक गहरा होता है: उन्मूलन सिद्धांत का मुख्य प्रमेय।
संपूर्ण वर्गों से संबंध
परिभाषा के अनुसार, विशेष प्रकार से पूर्ण प्रकार होता है, यदि यह k के ऊपर उचित मानचित्र होता है। इस प्रकार उचितता का मूल्यांकन मानदंड इस अंतर्ज्ञान को व्यक्त करता है कि उचित विविधता में, कोई बिंदु विलुप्त नहीं होता है।
पूर्ण और प्रक्षेप्य वर्गों के मध्य घनिष्ठ संबंध होता है, इस ओर, प्रक्षेप्य स्थान और इसलिए कोई भी प्रक्षेप्य विविधता पूर्ण होती है। इसका विपरीत सामान्यतः सत्य नहीं होता है। चूँकि:
- विलक्षणता सिद्धांत बीजगणितीय वक्र विलक्षणताएं सी प्रक्षेप्य है यदि और केवल यदि यह पूर्ण विविधता है। यह बीजगणितीय प्रकार k(C) के फलन क्षेत्र के असतत मूल्यांकन रिंगों के समूह के साथ C की पहचान करके सिद्ध किया जाता है। इस समूह में प्राकृतिक ज़ारिस्की टोपोलॉजी है जिसे ज़ारिस्की-रीमैन स्थान कहा जाता है।
- चाउ की लेम्मा बताती है कि किसी भी पूर्ण वर्ग[9] (इसके अतिरिक्त, सामान्य प्रकार के माध्यम से, कोई यह मान सकता है कि यह प्रक्षेपी प्रकार सामान्य है।)
प्रक्षेप्य प्रकार के कुछ गुण पूर्णता से अनुसरण करते हैं। उदाहरण के लिए,
किसी भी प्रक्षेप्य प्रकार के लिए X ओवर k।[10] यह तथ्य लिउविले के प्रमेय (जटिल विश्लेषण) का बीजगणितीय एनालॉग है | लिउविले का प्रमेय (कनेक्टेड कॉम्पैक्ट कॉम्प्लेक्स मैनिफोल्ड पर कोई भी होलोमोर्फिक फलन स्थिर है)। वास्तव में, जटिल प्रक्षेप्य वर्गों पर जटिल विश्लेषणात्मक ज्यामिति और बीजगणितीय ज्यामिति के मध्य समानता इससे कहीं आगे तक जाती है, जैसा कि नीचे बताया गया है।
अर्ध-प्रक्षेप्य वर्ग|अर्ध-प्रक्षेप्य वर्गें, परिभाषा के अनुसार, वह हैं जो प्रक्षेप्य वर्गों की खुली उप-वर्गें हैं। वर्गों के इस वर्ग में एफ़िन प्रकार भी सम्मिलित है। एफ़िन वर्गें लगभग कभी भी पूर्ण (या प्रक्षेपी) नहीं होती हैं। वास्तव में, एफ़िन प्रकार की प्रक्षेप्य उप-विविधता का आयाम शून्य होना चाहिए। ऐसा इसलिए है क्योंकि केवल स्थिरांक ही प्रक्षेप्य विविधता पर विश्व स्तर पर नियमित कार्य हैं।
उदाहरण और मूलभूतअपरिवर्तनीय
परिभाषा के अनुसार, बहुपद वलय में कोई भी सजातीय आदर्श प्रक्षेप्य योजना उत्पन्न करता है (विविधता देने के लिए प्रमुख आदर्श होना आवश्यक है)। इस अर्थ में, प्रक्षेपी वर्गों के उदाहरण प्रचुर मात्रा में हैं। निम्नलिखित सूची में प्रक्षेपी वर्गों के विभिन्न वर्गों का उल्लेख है जो उल्लेखनीय हैं क्योंकि उनका विशेष रूप से गहनता से अध्ययन किया गया है। जटिल प्रक्षेप्य वर्गों का महत्वपूर्ण वर्ग, अर्थात, मामला , नीचे और अधिक चर्चा की गई है।
दो प्रक्षेप्य स्थानों का गुणनफल प्रक्षेप्य होता है। वास्तव में, वहाँ स्पष्ट विसर्जन है (जिसे सेग्रे एम्बेडिंग कहा जाता है)
परिणामस्वरूप, k से अधिक प्रक्षेप्य वर्गों की योजनाओं का फाइबर उत्पाद फिर से प्रक्षेपी है। प्लुकर एम्बेडिंग ग्रासमैनियन को प्रक्षेप्य प्रकार के रूप में प्रदर्शित करता है। सामान्यीकृत ध्वज विविधता जैसे सामान्य रैखिक समूह का भागफल सापेक्ष ऊपरी त्रिकोणीय मैट्रिक्स के उपसमूह भी प्रक्षेप्य हैं, जो बीजगणितीय समूहों के सिद्धांत में महत्वपूर्ण तथ्य है।[11]
सजातीय निर्देशांक वलय और हिल्बर्ट बहुपद
प्रक्षेप्य प्रकार X को परिभाषित करने वाला मुख्य आदर्श P सजातीय है, सजातीय समन्वय वलय है
श्रेणीबद्ध वलय है, अर्थात, इसे इसके श्रेणीबद्ध घटकों के प्रत्यक्ष योग के रूप में व्यक्त किया जा सकता है:
वहाँ बहुपद P इस प्रकार उपस्तिथ है सभी पर्याप्त रूप से बड़े n के लिए; इसे X का हिल्बर्ट बहुपद कहा जाता है। यह X की कुछ बाहरी ज्यामिति को एन्कोड करने वाला संख्यात्मक अपरिवर्तनीय है। पी की डिग्री X के बीजगणितीय विविधता आर का आयाम है और इसके प्रमुख गुणांक समय 'आर!' प्रकार X की बीजगणितीय प्रकार की डिग्री है। X का अंकगणितीय जीनस (−1) हैr (P(0) − 1) जब X चिकना हो।
उदाहरण के लिए, सजातीय समन्वय वलय है और इसका हिल्बर्ट बहुपद है ; इसका अंकगणितीय जीनस शून्य है।
यदि सजातीय समन्वय वलय R अभिन्न रूप से बंद डोमेन है, तब प्रक्षेप्य प्रकार X को प्रक्षेप्य रूप से सामान्य कहा जाता है। ध्यान दें, सामान्य प्रकार के विपरीत, प्रक्षेप्य सामान्यता आर पर निर्भर करती है, X का प्रक्षेप्य स्थान में एम्बेडिंग। प्रक्षेप्य प्रकार का सामान्यीकरण प्रक्षेप्य है; वास्तव में, यह X के कुछ सजातीय समन्वय रिंग के अभिन्न समापन की परियोजना है।
डिग्री
होने देना प्रक्षेपी प्रकार बनें। इसके एम्बेडिंग के सापेक्ष X की डिग्री को परिभाषित करने के कम से कम दो समकक्ष तरीके हैं। पहला विधि इसे परिमित समूह की कार्डिनैलिटी के रूप में परिभाषित करना है
जहाँ d, X और H का आयाम हैiसामान्य स्थिति में हाइपरतल हैं। यह परिभाषा डिग्री के सहज ज्ञान युक्त विचार से मेल खाती है। वास्तव में, यदि किसी के लिए आवश्यक है कि प्रतिच्छेदन उचित प्रतिच्छेदन हो और अपरिवर्तनीय घटकों की बहुलताएँ सभी हों।
दूसरी परिभाषा, जिसका उल्लेख पिछले अनुभाग में किया गया है, वह यह है कि X की डिग्री X गुना (मंद X) के हिल्बर्ट बहुपद का अग्रणी गुणांक है! ज्यामितीय रूप से, इस परिभाषा का अर्थ है कि X की डिग्री X पर एफ़िन शंकु के शीर्ष की बहुलता है।[12]
होने देना शुद्ध आयामों की बंद उप-योजनाएँ हों जो ठीक से प्रतिच्छेद करती हों (वे सामान्य स्थिति में हों)। यदि एमiअघुलनशील घटक Z की बहुलता को दर्शाता हैiप्रतिच्छेदन में (अर्थात, प्रतिच्छेदन बहुलता), तब बेज़ाउट के प्रमेय का सामान्यीकरण कहता है:[13]
प्रतिच्छेदन बहुलता एमiZ के गुणांक के रूप में परिभाषित किया जा सकता हैiप्रतिच्छेदन उत्पाद में के चाउ रिंग में .
विशेषकर, यदि तब यह हाइपरसर्फेस है जिसमें X नहीं है
जहाँ Ziबहुलता (स्थानीय रिंग की लंबाई) मी के साथ X और एच के योजना-सैद्धांतिक प्रतिच्छेदन के अप्रासंगिक घटक हैंi.
जटिल प्रक्षेप्य विविधता को कॉम्पैक्ट कॉम्प्लेक्स मैनिफोल्ड के रूप में देखा जा सकता है; विविधता की डिग्री (एम्बेडिंग के सापेक्ष) परिवेश जटिल प्रक्षेप्य स्थान से विरासत में मिली मीट्रिक के संबंध में अनेक गुना के रूप में विविधता की मात्रा है। जटिल प्रक्षेप्य विविधता को आयतन के न्यूनतम (अर्थ में) के रूप में चित्रित किया जा सकता है।
अनुभागों का वलय
मान लीजिए कि X प्रक्षेपी प्रकार है और L उस पर रेखा बंडल है। फिर श्रेणीबद्ध अंगूठी
एल के अनुभागों की अंगूठी कहा जाता है। यदि एल पर्याप्त रेखा बंडल है, तब इस अंगूठी का प्रोज X है। इसके अतिरिक्त, यदि X सामान्य है और एल बहुत पर्याप्त है, तब एल द्वारा निर्धारित X के सजातीय समन्वय रिंग का अभिन्न समापन है; अर्थात।, जिससे कि एल की ओर वापस खींचता है।[14]
अनुप्रयोगों के लिए, विभाजक (बीजगणितीय ज्यामिति) (या) के लिए अनुमति देना उपयोगी है -विभाजक) सिर्फ रेखा बंडल नहीं; यह मानते हुए कि X सामान्य है, परिणामी वलय को वर्गों का सामान्यीकृत वलय कहा जाता है। अगर X पर विहित विभाजक है, फिर अनुभागों का सामान्यीकृत वलय
X का विहित वलय कहा जाता है। यदि विहित वलय परिमित रूप से उत्पन्न होता है, तब वलय के प्रोज को X का विहित मॉडल कहा जाता है। विहित वलय या मॉडल का उपयोग X के कोडैरा आयाम को परिभाषित करने के लिए किया जा सकता है।
प्रक्षेप्य वक्र
आयाम की प्रक्षेप्य योजनाओं को प्रक्षेप्य वक्र कहा जाता है। प्रक्षेप्य वक्रों का अधिकांश सिद्धांत चिकने प्रक्षेप्य वक्रों के बारे में है, क्योंकि बीजगणितीय प्रकार के वक्रों के एकवचन बिंदु को बीजगणितीय प्रकार के सामान्यीकरण द्वारा हल किया जा सकता है, जिसमें स्थानीय रूप से नियमित कार्यों की अंगूठी के अभिन्न समापन को सम्मिलित किया जाता है। चिकने प्रक्षेप्य वक्र समरूपी होते हैं यदि और केवल यदि बीजगणितीय प्रकार का उनका कार्य क्षेत्र समरूपी हो। के परिमित विस्तार का अध्ययन
या समकक्ष चिकनी प्रक्षेप्य वक्र बीजगणितीय संख्या सिद्धांत की महत्वपूर्ण शाखा है।[15] जीनस वन के चिकने प्रक्षेप्य वक्र को अण्डाकार वक्र कहा जाता है। रीमैन-रोच प्रमेय के परिणामस्वरूप, इस तरह के वक्र को बंद उपविविधता के रूप में एम्बेड किया जा सकता है . सामान्यतः, किसी भी (सुचारू) प्रक्षेप्य वक्र को अंतर्निहित किया जा सकता है (प्रमाण के लिए, सेकेंट वर्ग#उदाहरण देखें)। इसके विपरीत, कोई भी चिकना बंद वक्र डिग्री तीन में जीनस सूत्र के अनुसार जीनस होता है और इस प्रकार यह अण्डाकार वक्र होता है।
दो से अधिक या उसके सामान्तर जीनस के चिकने पूर्ण वक्र को हाइपरलिप्टिक वक्र कहा जाता है यदि कोई परिमित रूपवाद हो डिग्री दो का.[16]
प्रक्षेप्य हाइपरसर्फेस
प्रत्येक अपरिवर्तनीय बंद उपसमुच्चय कोडिमेंशन में से ऊनविम पृष्ठ है; अर्थात, कुछ सजातीय अघुलनशील बहुपद का शून्य समूह।[17]
एबेलियन वर्गें
प्रक्षेप्य प्रकार X का अन्य महत्वपूर्ण अपरिवर्तनीय पिकार्ड समूह है X का, X पर रेखा बंडलों के समरूपता वर्गों का समूह। यह समरूपी है और इसलिए आंतरिक धारणा (एम्बेडिंग से स्वतंत्र)। उदाहरण के लिए, पिकार्ड समूह के लिए समरूपी है डिग्री मानचित्र के माध्यम से. की गिरी न केवल अमूर्त एबेलियन समूह है, किंतु X, जैक (X) की जैकोबियन प्रकार नामक प्रकार भी है, जिसके अंक इस समूह के सामान्तर हैं। (चिकने) वक्र का जैकोबियन वक्र के अध्ययन में महत्वपूर्ण भूमिका निभाता है। उदाहरण के लिए, अण्डाकार वक्र E का जैकोबियन E ही है। जीनस g के वक्र X के लिए, Jac(X) का आयाम g है।
जैकोबियन प्रकार जैसी वर्गें, जो पूर्ण हैं और समूह संरचना रखती हैं, नील्स एबेल के सम्मान में एबेलियन प्रकार के रूप में जानी जाती हैं। जैसे एफ़िन बीजीय समूहों के बिल्कुल विपरीत , ऐसे समूह सदैव क्रमविनिमेय होते हैं, जहाँ से यह नाम पड़ा है। इसके अतिरिक्त, वह पर्याप्त रेखा बंडल स्वीकार करते हैं और इस प्रकार प्रक्षेप्य होते हैं। दूसरी ओर, एबेलियन योजना प्रक्षेप्य नहीं हो सकती है। एबेलियन वर्गों के उदाहरण अण्डाकार वक्र, जैकोबियन वर्गें और K3 सतहें हैं।
अनुमान
होने देना रैखिक उपस्थान बनें; अर्थात।, कुछ रैखिक रूप से स्वतंत्र रैखिक कार्यात्मकताओं के लिएi. फिर 'ई से प्रक्षेपण' (अच्छी तरह से परिभाषित) रूपवाद है
इस मानचित्र का ज्यामितीय विवरण इस प्रकार है:[18]
- हम देखते हैं जिससे कि यह ई से असंयुक्त हो। फिर, किसी के लिए , कहाँ E और x युक्त सबसे छोटे रैखिक स्थान को दर्शाता है (जिसे E और x का जोड़ (बीजगणितीय ज्यामिति) कहा जाता है।)
- कहाँ पर सजातीय निर्देशांक हैं
- किसी भी बंद उपयोजना के लिए ई से असंयुक्त, प्रतिबंध परिमित रूपवाद है.[19]
प्रक्षेपणों का उपयोग उस आयाम को कम करने के लिए किया जा सकता है जिसमें प्रक्षेप्य विविधता अंतर्निहित है, परिमित आकारिकी तक। कुछ प्रक्षेपी विविधता से शुरुआत करें अगर X पर नहीं बिंदु से प्रक्षेपण देता है इसके अतिरिक्त, इसकी छवि के लिए सीमित मानचित्र है। इस प्रकार, प्रक्रिया को दोहराते हुए, कोई देखता है कि सीमित नक्शा है
यह परिणाम नोएदर के सामान्यीकरण लेम्मा का प्रक्षेप्य एनालॉग है। (वास्तव में, यह सामान्यीकरण प्रमेयिका का ज्यामितीय प्रमाण देता है।)
उसी प्रक्रिया का उपयोग निम्नलिखित थोड़ा अधिक त्रुटिहीन परिणाम दिखाने के लिए किया जा सकता है: पूर्ण क्षेत्र पर प्रक्षेप्य विविधता X को देखते हुए, X से हाइपरसर्फेस एच तक सीमित द्विवार्षिक रूपवाद होता है। [20] विशेष रूप से, यदि X सामान्य है, तब यह H का सामान्यीकरण है।
द्वैत और रैखिक प्रणाली
जबकि प्रक्षेप्य एन-स्थान एफ़िन एन-स्थान में रेखाों को पैरामीटराइज़ करता है, इसका दोहरा प्रक्षेप्य स्थान दोहरी प्रक्षेप्य स्थान हाइपरतल को निम्नानुसार पैरामीटराइज़ करता है। क्षेत्र ठीक करें k. द्वारा , हमारा तात्पर्य प्रक्षेप्य एन-स्थान से है
निर्माण से सुसज्जित:
- , हाइपरतल चालू
कहाँ का तर्कसंगत बिंदु|एल-बिंदु है k और के क्षेत्र Xटेंशन L के लिए
प्रत्येक एल के लिए, निर्माण एल-बिंदुओं के समूह के मध्य आक्षेप है और हाइपरतल का समूह चालू है . इसके कारण, दोहरा प्रक्षेप्य स्थान इसे हाइपरतल का मॉड्यूलि स्थान कहा जाता है .
में पंक्ति इसे पेंसिल (बीजगणितीय ज्यामिति) कहा जाता है: यह हाइपरतल का समूह है द्वारा पैरामीट्रिज्ड .
यदि V, k के ऊपर परिमित-आयामी सदिश समष्टि है, तब, ऊपर बताए गए कारण से, हाइपरतल का स्थान है . महत्वपूर्ण मामला तब होता है जब वी में रेखा बंडल के अनुभाग होते हैं। अर्थात्, मान लीजिए कि X बीजगणितीय प्रकार है, L, X पर रेखा बंडल है और परिमित धनात्मक आयाम का अनेक उपस्थान। फिर नक्शा है:[21]
रैखिक प्रणाली वी द्वारा निर्धारित, जहां बी, जिसे आधार स्थान कहा जाता है, वी में गैर-शून्य खंडों के शून्य के विभाजकों का योजना-सैद्धांतिक प्रतिच्छेदन है (विभाजकों की रैखिक प्रणाली देखें # के निर्माण के लिए रैखिक प्रणाली द्वारा निर्धारित नक्शा नक्शा)।
सुसंगत ढेरों की सहसंबद्धता
मान लीजिए कि X क्षेत्र पर (या, अधिक सामान्यतः नोथेरियन रिंग A पर) प्रक्षेप्य योजना है। सुसंगत सहसंरचना X पर सेरे के कारण निम्नलिखित महत्वपूर्ण प्रमेय संतुष्ट होते हैं:
- किसी भी पी के लिए परिमित-आयामी के-अनेक स्थान है।
- वहाँ पूर्णांक उपस्तिथ है (इस पर निर्भर करते हुए ; कैस्टेलनुवो-ममफोर्ड नियमितता भी देखें) जैसे कि सभी के लिए और पी > 0, कहाँ बहुत ही प्रचुर रेखा बंडल की शक्ति के साथ घुमाव है
यह परिणाम स्थितियोंको कम करने वाले सिद्ध करना हुए हैं समरूपता का उपयोग करना
जहां दाहिनी ओर शून्य द्वारा विस्तार द्वारा प्रक्षेप्य स्थान पर पूले के रूप में देखा जाता है।[22] इसके पश्चात् परिणाम की सीधी गणना होती है n कोई भी पूर्णांक, और इच्छानुसार के लिए बिना किसी कठिनाई के इस स्थितियोंमें कम हो जाता है।[23]
उपरोक्त 1 के परिणाम के रूप में, यदि एफ नोथेरियन योजना से नोथेरियन रिंग तक प्रक्षेप्य आकारिकी है, तब उच्चतर प्रत्यक्ष छवि सुसंगत है. वही परिणाम उचित आकारिकी एफ के लिए प्रयुक्त होता है, जैसा कि चाउ के लेम्मा की सहायता से दिखाया जा सकता है।
शीफ कोहोमोलोजी समूह एच नोथेरियन टोपोलॉजिकल स्थान पर मैं विलुप्त हो जाता हूं क्योंकि मैं स्थान के आयाम से सख्ती से बड़ा हूं। इस प्रकार वह मात्रा, जिसे यूलर विशेषता कहा जाता है ,
अच्छी तरह से परिभाषित पूर्णांक है (X प्रक्षेप्य के लिए)। फिर कोई दिखा सकता है परिमेय संख्याओं पर कुछ बहुपद P के लिए।[24] इस प्रक्रिया को संरचना शीफ पर प्रयुक्त करना , कोई X के हिल्बर्ट बहुपद को पुनः प्राप्त करता है। विशेष रूप से, यदि X अपरिवर्तनीय है और इसका आयाम आर है, तब X का अंकगणित जीनस इस प्रकार दिया गया है
जो स्पष्ट रूप से आंतरिक है; अर्थात, एम्बेडिंग से स्वतंत्र।
डिग्री डी की हाइपरसरफेस का अंकगणितीय जीनस है में . विशेष रूप से, डिग्री डी इन का चिकना वक्र अंकगणित जीनस है . यह वंश सूत्र है.
चिकनी प्रक्षेप्य वर्गें
मान लीजिए कि X सुचारु प्रक्षेप्य प्रकार है जहां इसके सभी अप्रासंगिक घटकों का आयाम n है। इस स्थिति में, विहित शीफ ωX, शीर्ष डिग्री (अर्थात, बीजगणितीय एन-फॉर्म) के काहलर अंतर के शीफ के रूप में परिभाषित, रेखा बंडल है।
सर्रे द्वैत
सेरे द्वंद्व बताता है कि किसी भी स्थानीय रूप से मुक्त शीफ के लिए X पर,
जहां सुपरस्क्रिप्ट प्राइम दोहरे स्थान को संदर्भित करता है और का दोहरा पूल है . प्रक्षेप्य, किन्तु आवश्यक नहीं कि सुचारू योजनाओं का सामान्यीकरण वर्डियर द्वैत के रूप में जाना जाता है।
रीमैन-रोच प्रमेय
(चिकनी प्रक्षेप्य) वक्र X, H के लिए2और उच्चतर आयामी कारण से विलुप्त हो जाते हैं और संरचना शीफ के वैश्विक खंडों का स्थान एक-आयामी है। इस प्रकार X का अंकगणितीय जीनस का आयाम है . परिभाषा के अनुसार, X का ज्यामितीय जीनस H का आयाम है0(X, ωX). इस प्रकार सेरे द्वैत का अर्थ है कि अंकगणितीय जीनस और ज्यामितीय जीनस मेल खाते हैं। उन्हें बस X का जीनस कहा जाएगा।
रीमैन-रोच प्रमेय के प्रमाण में सेरे द्वैत भी प्रमुख घटक है। चूँकि X चिकना है, इसलिए समूहों की समरूपता है
वेइल विभाजक के समूह से|(वेइल) विभाजक सापेक्ष प्रमुख विभाजक रेखा बंडलों के समरूपता वर्गों के समूह के लिए। ω के अनुरूप भाजकX इसे विहित विभाजक कहा जाता है और इसे K से दर्शाया जाता है। मान लीजिए l(D) का आयाम है . फिर रीमैन-रोच प्रमेय कहता है: यदि g, X का जीनस है,
X पर किसी भी भाजक D के लिए। सेरे द्वैत द्वारा, यह वैसा ही है:
जिसे आसानी से सिद्ध करना किया जा सकता है.[25] उच्च आयाम के लिए रीमैन-रोच प्रमेय का सामान्यीकरण हिरज़ेब्रुक-रीमैन-रोच प्रमेय है, साथ ही दूरगामी ग्रोथेंडिक-रीमैन-रोच प्रमेय भी है।
हिल्बर्ट योजनाएँ
हिल्बर्ट योजनाएँ प्रक्षेप्य योजना ज्यामितीय वस्तु जिसके बिंदु अन्य ज्यामितीय वस्तुओं को पैरामीट्रिज करते हैं। अधिक त्रुटिहीन रूप से, हिल्बर्ट योजना बंद उप-वर्गों को पैरामीट्रिज करती है जिनका हिल्बर्ट बहुपद निर्धारित बहुपद पी के सामान्तर होता है।[26] यह ग्रोथेंडिक का गहरा प्रमेय है कि योजना है[27] k के ऊपर ऐसा है कि, किसी भी k-स्कीम T के लिए, आपत्ति है
की बंद उपयोजना जो पहचान मानचित्र से मेल खाता है विश्व समूह कहलाता है।
के लिए , हिल्बर्ट योजना में आर-तल का ग्रासमैनियन कहा जाता है और, यदि X प्रक्षेप्य योजना है, X पर आर-तल की फ़ानो योजना कहलाती है।[28]
जटिल प्रक्षेप्य वर्गें
इस खंड में, सभी बीजगणितीय वर्गें सम्मिश्र संख्या वाली बीजगणितीय वर्गें हैं। जटिल प्रक्षेप्य वर्गों के सिद्धांत की प्रमुख विशेषता बीजगणितीय और विश्लेषणात्मक विधियों का संयोजन है। इन सिद्धांतबं के मध्य संक्रमण निम्नलिखित लिंक द्वारा प्रदान किया गया है: चूंकि कोई भी जटिल बहुपद भी होलोमोर्फिक फलन है, कोई भी जटिल विविधता X जटिल विश्लेषणात्मक स्थान उत्पन्न करती है, जिसे दर्शाया गया है . इसके अतिरिक्त, X के ज्यामितीय गुण इनके द्वारा परिलक्षित होते हैं . उदाहरण के लिए, पश्चात् वाला जटिल मैनिफोल्ड है यदि और केवल यदि X चिकना है; यह सघन है यदि और केवल यदि X उचित है .
जटिल काहलर मैनिफोल्ड्स से संबंध
जटिल प्रक्षेप्य स्थान काहलर मैनिफोल्ड है। इसका तात्पर्य यह है कि, किसी भी प्रक्षेपी बीजगणितीय प्रकार X के लिए, कॉम्पैक्ट काहलर मैनिफोल्ड है। इसका विपरीत सामान्यतः सच नहीं है, किन्तु कोडैरा एम्बेडिंग प्रमेय काहलर मैनिफोल्ड को प्रक्षेप्य होने का मानदंड देता है।
निम्न आयामों में, निम्नलिखित परिणाम होते हैं:
- (रीमैन) कॉम्पैक्ट रीमैन सतह (अर्थात, आयाम का कॉम्पैक्ट कॉम्प्लेक्स मैनिफोल्ड) प्रक्षेप्य प्रकार है। टोरेली प्रमेय के अनुसार, यह विशिष्ट रूप से इसके जैकोबियन द्वारा निर्धारित होता है।
- (चाउ-कोडैरा) दो बीजगणितीय रूप से स्वतंत्र मेरोमोर्फिक फलन के साथ आयाम दो का कॉम्पैक्ट कॉम्प्लेक्स मैनिफोल्ड प्रक्षेप्य प्रकार है।[29]
GAGA और चाउ का प्रमेय
बीजगणितीय ज्यामिति और विश्लेषणात्मक ज्यामिति Chow.27s प्रमेय|चाउ का प्रमेय विश्लेषणात्मक से बीजगणितीय ज्यामिति तक, दूसरे रास्ते पर जाने का शानदार विधि प्रदान करता है। इसमें कहा गया है कि जटिल प्रक्षेप्य स्थान की प्रत्येक विश्लेषणात्मक उप-विविधता बीजगणितीय है। प्रमेय की व्याख्या यह कहकर की जा सकती है कि निश्चित विकास स्थिति को संतुष्ट करने वाला होलोमोर्फिक फलन आवश्यक रूप से बीजगणितीय है: प्रक्षेप्य इस विकास की स्थिति प्रदान करता है। प्रमेय से निम्नलिखित निष्कर्ष निकाला जा सकता है:
- जटिल प्रक्षेप्य स्थान पर मेरोमोर्फिक कार्य तर्कसंगत हैं।
- यदि बीजगणितीय वर्गों के मध्य बीजीय मानचित्र विश्लेषणात्मक समरूपता है, तब यह (बीजगणितीय) समरूपता है। (यह भाग जटिल विश्लेषण में मूलभूततथ्य है।) विशेष रूप से, चाउ के प्रमेय का तात्पर्य है कि प्रक्षेप्य वर्गों के मध्य होलोमोर्फिक मानचित्र बीजगणितीय है। (ऐसे मानचित्र के ग्राफ़ पर विचार करें।)
- प्रक्षेप्य प्रकार पर प्रत्येक होलोमोर्फिक अनेक बंडल अद्वितीय बीजगणितीय अनेक बंडल से प्रेरित होता है।[30]
- प्रक्षेप्य प्रकार पर प्रत्येक होलोमोर्फिक रेखा बंडल विभाजक का रेखा बंडल है।[31]
चाउ के प्रमेय को सेरे की बीजगणितीय ज्यामिति और विश्लेषणात्मक ज्यामिति के माध्यम से दिखाया जा सकता है। इसका मुख्य प्रमेय कहता है:
- मान लीजिए कि X प्रक्षेपी योजना है . फिर फ़ैक्टर X पर सुसंगत शीव्स को संबंधित जटिल विश्लेषणात्मक स्थान X पर सुसंगत शीव्स से जोड़ता हैanश्रेणियों की तुल्यता है। इसके अतिरिक्त, प्राकृतिक मानचित्र
- सभी i और सभी सुसंगत ढेरों के लिए समरूपताएं हैं X पर.[32]
जटिल तबरी बनाम जटिल एबेलियन वर्गें
एबेलियन प्रकार ए से संबंधित जटिल विविधता सघन जटिल लाई समूह है। इनका स्वरूप दिखाया जा सकता है
और इन्हें जटिल टोरस भी कहा जाता है। यहां, जी टोरस का आयाम है और एल जाली है (जिसे पीरियड जाली भी कहा जाता है)।
पहले से ही ऊपर वर्णित एकरूपता प्रमेय के अनुसार, आयाम 1 का कोई भी टोरस आयाम 1 की एबेलियन विविधता से उत्पन्न होता है, अर्थात, अण्डाकार वक्र से। वास्तव में, वीयरस्ट्रैस का अण्डाकार कार्य एल से जुड़ा हुआ निश्चित अंतर समीकरण को संतुष्ट करता है और परिणामस्वरूप यह बंद विसर्जन को परिभाषित करता है:[33]
पी-एडिक एनालॉग है, पी-एडिक एकरूपीकरण प्रमेय।
उच्च आयामों के लिए, जटिल एबेलियन वर्गों और जटिल तबरी की धारणाएँ भिन्न होती हैं: केवल बीजगणितीय रूप जटिल तबरी का ध्रुवीकरण एबेलियन वर्गों से आता है।
कोडैरा विलुप्त हो रहा है
मौलिक कोडैरा लुप्त प्रमेय बताता है कि पर्याप्त रेखा बंडल के लिए विशेषता शून्य के क्षेत्र पर चिकनी प्रक्षेप्य विविधता X पर,
i > 0 के लिए, या, समकक्ष सेरे द्वैत द्वारा i के लिए < n.[34] इस प्रमेय के पहले प्रमाण में काहलर ज्यामिति के विश्लेषणात्मक विधियों का उपयोग किया गया था, किन्तु पश्चात् में विशुद्ध बीजगणितीय प्रमाण मिला। सामान्य रूप से विलुप्त होने वाला कोडैरा धनात्मक विशेषता में सहज प्रक्षेप्य विविधता के लिए विफल रहता है। कोडैरा का प्रमेय विभिन्न लुप्त हो रहे प्रमेयों में से है, जो उच्च शीफ कोहोमोलोजी के लुप्त होने का मानदंड देता है। चूँकि शीफ की यूलर विशेषता (ऊपर देखें) अधिकांशतः भिन्न-भिन्न कोहोलॉजी समूहों की तुलना में अधिक प्रबंधनीय होती है, इसका अधिकांशतः प्रक्षेपी वर्गों की ज्यामिति के बारे में महत्वपूर्ण परिणाम होता है।[35]
संबंधित धारणाएँ
- बहु-प्रक्षेपी विविधता
- भारित प्रक्षेप्य विविधता, भारित प्रक्षेप्य स्थान की बंद उपविविधता[36]
यह भी देखें
- प्रक्षेप्य स्थानों की बीजगणितीय ज्यामिति
- पर्याप्त तुल्यता संबंध
- हिल्बर्ट योजना
- लेफ्शेट्ज़ हाइपरतल प्रमेय
- न्यूनतम मॉडल कार्यक्रम
टिप्पणियाँ
- ↑ Kollár & Moduli, Ch I.
- ↑ Shafarevich, Igor R. (1994), Basic Algebraic Geometry 1: Varieties in Projective Space, Springer
- ↑ This homogeneous ideal is sometimes called the homogenization of I.
- ↑ Mumford 1999, pg. 82
- ↑ Hartshorne 1977, Section II.5
- ↑ Mumford 1999, pg. 111
- ↑ This definition differs from Eisenbud & Harris 2000, III.2.3 but is consistent with the other parts of Wikipedia.
- ↑ cf. the proof of Hartshorne 1977, Ch II, Theorem 7.1
- ↑ Grothendieck & Dieudonné 1961, 5.6
- ↑ Hartshorne 1977, Ch II. Exercise 4.5
- ↑ Humphreys, James (1981), Linear algebraic groups, Springer, Theorem 21.3
- ↑ Hartshorne 1977, Ch. V, Exercise 3.4. (e).
- ↑ Fulton 1998, Proposition 8.4.
- ↑ Hartshorne 1977, Ch. II, Exercise 5.14. (a)
- ↑ Rosen, Michael (2002), Number theory in Function Fields, Springer
- ↑ Hartshorne 1977, Ch IV, Exercise 1.7.
- ↑ Hartshorne 1977, Ch I, Exercise 2.8; this is because the homogeneous coordinate ring of is a unique factorization domain and in a UFD every prime ideal of height 1 is principal.
- ↑ Shafarevich 1994, Ch. I. § 4.4. Example 1.
- ↑ Mumford & Oda 2015, Ch. II, § 7. Proposition 6.
- ↑ Hartshorne 1977, Ch. I, Exercise 4.9.
- ↑ Fulton 1998, § 4.4.
- ↑ This is not difficult:(Hartshorne 1977, Ch III. Lemma 2.10) consider a flasque resolution of and its zero-extension to the whole projective space.
- ↑ Hartshorne 1977, Ch III. Theorem 5.2
- ↑ Hartshorne 1977, Ch III. Exercise 5.2
- ↑ Hartshorne 1977, Ch IV. Theorem 1.3
- ↑ Kollár 1996, Ch I 1.4
- ↑ To make the construction work, one needs to allow for a non-variety.
- ↑ Eisenbud & Harris 2000, VI 2.2
- ↑ Hartshorne 1977, Appendix B. Theorem 3.4.
- ↑ Griffiths & Adams 2015, IV. 1. 10. Corollary H
- ↑ Griffiths & Adams 2015, IV. 1. 10. Corollary I
- ↑ Hartshorne 1977, Appendix B. Theorem 2.1
- ↑ Mumford 1970, pg. 36
- ↑ Hartshorne 1977, Ch III. Remark 7.15.
- ↑ Esnault, Hélène; Viehweg, Eckart (1992), Lectures on vanishing theorems, Birkhäuser
- ↑ Dolgachev, Igor (1982), "Weighted projective varieties", Group actions and vector fields (Vancouver, B.C., 1981), Lecture Notes in Math., vol. 956, Berlin: Springer, pp. 34–71, CiteSeerX 10.1.1.169.5185, doi:10.1007/BFb0101508, ISBN 978-3-540-11946-3, MR 0704986
संदर्भ
- Eisenbud, David; Harris, Joe (2000), The geometry of schemes
- Fulton, William (1998), Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 2 (2nd ed.), Berlin, New York: Springer-Verlag, ISBN 978-3-540-62046-4, MR 1644323
- Griffiths, Phillip A.; Adams, John Frank (8 March 2015). Topics in Algebraic and Analytic Geometry. (MN-13), Volume 13: Notes From a Course of Phillip Griffiths (in English). Princeton University Press. ISBN 978-1-4008-6926-8.
- Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157
- Huybrechts, Daniel (2005). Complex Geometry: An Introduction. Springer. ISBN 978-3-540-21290-4.
- Grothendieck, Alexandre; Dieudonné, Jean (1961). "Éléments de géométrie algébrique: II. Étude globale élémentaire de quelques classes de morphismes". Publications Mathématiques de l'IHÉS. 8. doi:10.1007/bf02699291. MR 0217084.
- Kollár, János, Book on Moduli of Surfaces
- Kollár, János (1996), Rational curves on algebraic varieties
- Mumford, David (1970), Abelian Varieties
- Mumford, David (1995), Algebraic Geometry I: Complex Projective Varieties
- Mumford, David (1999), The Red Book of Varieties and Schemes: Includes the Michigan Lectures (1974) on Curves and Their Jacobians, Lecture Notes in Mathematics, vol. 1358 (2nd ed.), Springer-Verlag, doi:10.1007/b62130, ISBN 978-3540632931
- Mumford, David; Oda, Tadao (2015). Algebraic Geometry II (in English).
- Igor Shafarevich (1995). Basic Algebraic Geometry I: Varieties in Projective Space (2nd ed.). Springer-Verlag. ISBN 978-0-387-54812-8.
- R. Vakil, Foundations Of Algebraic Geometry
बाहरी संबंध
- The Hilbert Scheme by Charles Siegel - a blog post
- Projective varieties Ch. 1