पोंट्रीगिन वर्ग: Difference between revisions
(→गुण) |
|||
Line 1: | Line 1: | ||
गणित में, पोंट्रीगिन वर्ग, जिनका नाम [[लेव पोंट्रीगिन]] के नाम पर रखा गया है, वास्तविक सदिश समूह के कुछ विशिष्ट वर्ग हैं। पोंट्रीगिन वर्ग चार के गुणज अंश वाले सह समरूप समूहों में स्थित हैं। | गणित में, '''पोंट्रीगिन वर्ग''', जिनका नाम [[लेव पोंट्रीगिन]] के नाम पर रखा गया है, वास्तविक सदिश समूह के कुछ विशिष्ट वर्ग हैं। पोंट्रीगिन वर्ग चार के गुणज अंश वाले सह समरूप समूहों में स्थित हैं। | ||
== परिभाषा == | == परिभाषा == | ||
Line 11: | Line 11: | ||
== गुण == | == गुण == | ||
कुल पोंट्रीगिन वर्ग | '''कुल पोंट्रीगिन वर्ग''' | ||
:<math>p(E)=1+p_1(E)+p_2(E)+\cdots\in H^*(M,\Z),</math> | :<math>p(E)=1+p_1(E)+p_2(E)+\cdots\in H^*(M,\Z),</math> | ||
(मॉड्यूलो 2-टोरसन) सदिश समूहों के विटनी योग के सम्बन्ध में गुणक हैं, अर्थात | (मॉड्यूलो 2-टोरसन) सदिश समूहों के विटनी योग के सम्बन्ध में गुणक हैं, अर्थात | ||
Line 37: | Line 37: | ||
=== बहुरूप की पोंट्रीगिन वर्ग === | === बहुरूप की पोंट्रीगिन वर्ग === | ||
'''समतल बहुरूप का पोंट्रीगिन वर्ग''' को इसके [[स्पर्शरेखा बंडल|स्पर्शरेखा समूह]] के पोंट्रीगिन वर्गों के रूप में परिभाषित किया गया है। | |||
[[सर्गेई नोविकोव (गणितज्ञ)]] ने 1966 में सिद्ध किया कि यदि दो संकुचि, उन्मुख, समतल बहुरूप [[होमियोमोर्फिज्म|होमियोमॉर्फिक]] हैं तो उनके परिमेय पोंट्रीगिन वर्ग ''p<sub>k</sub>(M, '<nowiki/>'''Q'''<nowiki/>') H<sup>4k</sup>(M, 'Q') में समान हैं।'' | [[सर्गेई नोविकोव (गणितज्ञ)]] ने 1966 में सिद्ध किया कि यदि दो संकुचि, उन्मुख, समतल बहुरूप [[होमियोमोर्फिज्म|होमियोमॉर्फिक]] हैं तो उनके परिमेय पोंट्रीगिन वर्ग ''p<sub>k</sub>(M, '<nowiki/>'''Q'''<nowiki/>') H<sup>4k</sup>(M, 'Q') में समान हैं।'' | ||
Line 44: | Line 44: | ||
=== चेर्न वर्गों से पोंट्रीगिन वर्गों === | === चेर्न वर्गों से पोंट्रीगिन वर्गों === | ||
वास्तविक सदिश समूह की पोंट्रीगिन वर्ग <math>\pi: E \to X</math> इसकी समायोजन के चेर्न वर्गों द्वारा पूरी तरह से निर्धारित किया जा सकता है। यह इस तथ्य से पता चलता है कि <math>E\otimes_{\mathbb{R}}\mathbb{C} \cong E\oplus \bar{E}</math>, व्हिटनी योग सूत्र, और इसके समायोजित संयुग्म समूह के चेर्न वर्गों के गुण होते हैं। वह, <math>c_i(\bar{E}) = (-1)^ic_i(E)</math> और <math>c(E\oplus\bar{E}) = c(E)c(\bar{E})</math> हैं। फिर, इसने संबंध दिया कि<math> | |||
1 - p_1(E) + p_2(E) - \cdots + (-1)^np_n(E) = | 1 - p_1(E) + p_2(E) - \cdots + (-1)^np_n(E) = | ||
(1 + c_1(E) + \cdots + c_n(E)) \cdot | (1 + c_1(E) + \cdots + c_n(E)) \cdot | ||
Line 68: | Line 68: | ||
== पोंट्रीगिन संख्या == | == पोंट्रीगिन संख्या == | ||
पोंट्रीगिन संख्याएं समतल [[ कई गुना |कई गुना]] के कुछ[[ टोपोलॉजिकल अपरिवर्तनीय | टोपोलॉजिकल अपरिवर्तनीय]] हैं। यदि ''M'' का आयाम 4 से विभाज्य नहीं है, तो विविध ''M'' की प्रत्येक पोंट्रीगिन संख्या समाप्त हो जाती है। इसे विविध ''M'' के पोंट्रीगिन वर्गों के संदर्भ में निम्नानुसार परिभाषित किया गया है: | '''पोंट्रीगिन संख्याएं''' समतल [[ कई गुना |कई गुना]] के कुछ[[ टोपोलॉजिकल अपरिवर्तनीय | टोपोलॉजिकल अपरिवर्तनीय]] हैं। यदि ''M'' का आयाम 4 से विभाज्य नहीं है, तो विविध ''M'' की प्रत्येक पोंट्रीगिन संख्या समाप्त हो जाती है। इसे विविध ''M'' के पोंट्रीगिन वर्गों के संदर्भ में निम्नानुसार परिभाषित किया गया है: | ||
एक समतल <math>4 n</math>-आयामी मैविविध ''M'' और प्राकृतिक संख्याओं का संग्रह दिया गया हैं | एक समतल <math>4 n</math>-आयामी मैविविध ''M'' और प्राकृतिक संख्याओं का संग्रह दिया गया हैं | ||
Line 77: | Line 77: | ||
=== गुण === | === गुण === | ||
#पोंट्रीगिन संख्याएं उन्मुख [[सह-बॉर्डिज्म]] अपरिवर्तनीय हैं; और स्टिफ़ेल-व्हिटनी संख्याओं के साथ मिलकर वे | #पोंट्रीगिन संख्याएं उन्मुख [[सह-बॉर्डिज्म]] अपरिवर्तनीय हैं; और स्टिफ़ेल-व्हिटनी संख्याओं के साथ मिलकर वे केंद्रीय बहुरूप के केंद्रीय सह बोर्डिज्ज्म वर्ग का निर्धारण करते हैं। | ||
2. सिमित रीमैनियन बहुरूप (साथ ही पोंट्रीगिन वर्गों) की पोंट्रीगिन संख्याओं की गणना रीमैनियन बहुरूप के वक्रता प्रदीश से कुछ बहुपदों के अभिन्न अंग के रूप में की जा सकती है। | |||
3. अचर जैसे [[ हस्ताक्षर (टोपोलॉजी) |संकेत (टोपोलॉजी)]] और <math>\hat A</math>-जीनस को पोंट्रीगिन संख्याओं के माध्यम से व्यक्त किया जा सकता है। संकेत देने वाले पोंट्रीगिन संख्याओं के रैखिक संयोजन का वर्णन करने वाले प्रमेय के लिए हिरज़ेब्रुक संकेत प्रमेय पर ध्यान देते हैं। | |||
== सामान्यीकरण == | == सामान्यीकरण == | ||
चतुर्धातुक संरचना वाले वेक्टर बंडलों के लिए एक चतुर्धातुक पोंट्रीगिन वर्ग भी है। | चतुर्धातुक संरचना वाले वेक्टर बंडलों के लिए एक चतुर्धातुक पोंट्रीगिन वर्ग भी है। |
Revision as of 12:12, 13 July 2023
गणित में, पोंट्रीगिन वर्ग, जिनका नाम लेव पोंट्रीगिन के नाम पर रखा गया है, वास्तविक सदिश समूह के कुछ विशिष्ट वर्ग हैं। पोंट्रीगिन वर्ग चार के गुणज अंश वाले सह समरूप समूहों में स्थित हैं।
परिभाषा
M के ऊपर एक वास्तविक सदिश समूह E दिया गया है, यह k-th पोंट्रीगिन वर्ग से परिभाषित किया जाता है
जहाँ:
- के रूपरेखा का -वाँ चेर्न वर्ग ,E को दर्शाता है,
- -पूर्णांक गुणांक के साथ M का सह-समरूपता समूह है।
परिमेय पोंट्रीगिन वर्ग , में की चित्र के रूप में परिभाषित किया गया है, -परिमेय संख्या गुणांक के साथ M का सह-समरूप समूह हैं।
गुण
कुल पोंट्रीगिन वर्ग
(मॉड्यूलो 2-टोरसन) सदिश समूहों के विटनी योग के सम्बन्ध में गुणक हैं, अर्थात
M के ऊपर दो सदिश समूह E और F के लिए होता हैं। एकल पोंट्रीगिन वर्गों Pk के सम्बन्ध में,
और इसी प्रकार होता हैं।
सदिश समूहों के पोंट्रीगिन वर्गों और स्टिफ़ेल-व्हिटनी वर्गों का लुप्त होना यह निश्चितता नहीं देता है कि सदिश समूह नगण्य हैं। उदाहरण के लिए, सदिश समूह समरूपता तक, एक अद्वितीय स्तर 10 सदिश समूह है N-गोले, 9-गोले के ऊपर नगण्य नहीं हैं। (क्लचिंग फलन के लिए समस्थेय समूहों ) से उत्पन्न होता है। पोंट्रीगिन वर्ग और स्टिफ़ेल-व्हिटनी वर्ग सभी समाप्त हो जाती हैं: पोंट्रीगिन वर्ग 9 अंश में उपस्थित नहीं हैं, और स्टिफ़ेल-व्हिटनी वर्ग E10 का w9 वू सूत्र w9 = w1w8 + Sq1(w8) द्वारा समाप्त हो जाता है। इसके अतिरिक्त, यह सदिश समूह निश्चित रूप से नगण्य नहीं हैं, अर्थात E10 के साथ कोई भी नगण्य समूह का व्हिटनी योग नगण्य नहीं रहता हैं। (Hatcher 2009, p. 76)
दिया हैं की हमारे पास 2k-आयामी सदिश समूह E है
जहां e(E) E के यूलर वर्ग को दर्शाता है, और समरूप समूहों के कप गुणन को दर्शाता है।
पोंट्रीगिन वर्ग और वक्रता
जैसा कि 1948 के आसपास शिंग-शेन चेर्न और आंद्रे वेइल द्वारा बताया गया था, परिमेय पोंट्रीगिन वर्ग
विभेदक रूपों के रूप में प्रस्तुत किया जा सकता है जो सदिश समूह के वक्रता रूप के बहुपद पर निर्भर करते हैं। इस चेर्न-वेइल सिद्धांत ने बीजगणितीय समरूपता और वैश्विक अंतर ज्यामिति के बीच एक प्रमुख संबंध को दर्शाता हैं।
एक संयोग प्रपत्र से सुसज्जित n-विमीय विविध अवकलनीय M पर सदिश समूह E के लिए, कुल पोंट्रीगिन वर्ग को इस प्रकार व्यक्त किया गया है
जहां Ω वक्रता रूप को दर्शाता है, और H*dR(M) डे राम समरूप समूहों को दर्शाता है।[1]
बहुरूप की पोंट्रीगिन वर्ग
समतल बहुरूप का पोंट्रीगिन वर्ग को इसके स्पर्शरेखा समूह के पोंट्रीगिन वर्गों के रूप में परिभाषित किया गया है।
सर्गेई नोविकोव (गणितज्ञ) ने 1966 में सिद्ध किया कि यदि दो संकुचि, उन्मुख, समतल बहुरूप होमियोमॉर्फिक हैं तो उनके परिमेय पोंट्रीगिन वर्ग pk(M, 'Q') H4k(M, 'Q') में समान हैं।
यदि आयाम कम से कम पांच है, तो दिए गए समस्थेय समतुल्य रिक्त स्थान और पोंट्रीगिन वर्गों के साथ अधिकतम सीमित रूप से कई अलग-अलग समतल बहुरूप हैं।
चेर्न वर्गों से पोंट्रीगिन वर्गों
वास्तविक सदिश समूह की पोंट्रीगिन वर्ग इसकी समायोजन के चेर्न वर्गों द्वारा पूरी तरह से निर्धारित किया जा सकता है। यह इस तथ्य से पता चलता है कि , व्हिटनी योग सूत्र, और इसके समायोजित संयुग्म समूह के चेर्न वर्गों के गुण होते हैं। वह, और हैं। फिर, इसने संबंध दिया कि[2]उदाहरण के लिए, हम एक वक्र और एक सतह पर एक सदिश समूह के पोंट्रीगिन वर्गों को खोजने के लिए इस सूत्र को क्रियान्वित कर सकते हैं। वक्र के लिए, हमारे पास हैं, इसलिए समायोजित सदिश समूह के सभी पोंट्रीगिन वर्ग नगण्य हैं। सतह पर, हमारे पास हैं
जो दिखा रहा है। आयामी कारणों से रेखा समूहों पर यह और भी सरल हो जाता है।
क्वार्टिक K3 सतह पर पोंट्रीगिन वर्ग
उस चतुर्थक बहुपद को याद करें जिसका समाप्ति स्थान है। एक समतल उपविविधता K3 सतह है। यदि हम सामान्य अनुक्रम का उपयोग करते हैं
हम पा सकते हैं
जो और दर्शा रहा हैं। तब बेज़ाउट के लेम्मा के कारण,चार बिंदुओं से मिलता है, हमारे पास दूसरा चेर्न संख्या है। तब इस स्थिति में, हमारे पास
है। इस संख्या का उपयोग गोले के तीसरे स्थिर समरूप समूह की गणना करने के लिए किया जा सकता है।[3]
पोंट्रीगिन संख्या
पोंट्रीगिन संख्याएं समतल कई गुना के कुछ टोपोलॉजिकल अपरिवर्तनीय हैं। यदि M का आयाम 4 से विभाज्य नहीं है, तो विविध M की प्रत्येक पोंट्रीगिन संख्या समाप्त हो जाती है। इसे विविध M के पोंट्रीगिन वर्गों के संदर्भ में निम्नानुसार परिभाषित किया गया है:
एक समतल -आयामी मैविविध M और प्राकृतिक संख्याओं का संग्रह दिया गया हैं
- ऐसा है कि ,
पोंट्रीगिन संख्या द्वारा परिभाषित किया गया है
जहाँ k-वें पोंट्रीगिन वर्ग और [M] M के मौलिक वर्ग को दर्शाता है।
गुण
- पोंट्रीगिन संख्याएं उन्मुख सह-बॉर्डिज्म अपरिवर्तनीय हैं; और स्टिफ़ेल-व्हिटनी संख्याओं के साथ मिलकर वे केंद्रीय बहुरूप के केंद्रीय सह बोर्डिज्ज्म वर्ग का निर्धारण करते हैं।
2. सिमित रीमैनियन बहुरूप (साथ ही पोंट्रीगिन वर्गों) की पोंट्रीगिन संख्याओं की गणना रीमैनियन बहुरूप के वक्रता प्रदीश से कुछ बहुपदों के अभिन्न अंग के रूप में की जा सकती है।
3. अचर जैसे संकेत (टोपोलॉजी) और -जीनस को पोंट्रीगिन संख्याओं के माध्यम से व्यक्त किया जा सकता है। संकेत देने वाले पोंट्रीगिन संख्याओं के रैखिक संयोजन का वर्णन करने वाले प्रमेय के लिए हिरज़ेब्रुक संकेत प्रमेय पर ध्यान देते हैं।
सामान्यीकरण
चतुर्धातुक संरचना वाले वेक्टर बंडलों के लिए एक चतुर्धातुक पोंट्रीगिन वर्ग भी है।
यह भी देखें
- चेर्न-साइमन्स फॉर्म
- हिर्ज़ेब्रुच हस्ताक्षर प्रमेय
संदर्भ
- ↑ "De Rham Cohomology - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 2022-02-02.
- ↑ Mclean, Mark. "पोंट्रीगिन क्लासेस" (PDF). Archived (PDF) from the original on 2016-11-08.
- ↑ "क्षेत्रों और सह-बॉर्डिज्म के समरूप समूहों की संगणना का एक सर्वेक्षण" (PDF). p. 16. Archived (PDF) from the original on 2016-01-22.
- Milnor John W.; Stasheff, James D. (1974). Characteristic classes. ISBN 0-691-08122-0.
{{cite book}}
:|work=
ignored (help)- Hatcher, Allen (2009). "Vector Bundles & K-Theory" (2.1 ed.).
{{cite journal}}
: Cite journal requires|journal=
(help)
बाहरी संबंध
- "Pontryagin class", Encyclopedia of Mathematics, EMS Press, 2001 [1994]