टेंसर घनत्व: Difference between revisions
Line 97: | Line 97: | ||
=== मैट्रिक्स व्युत्क्रम और टेंसर घनत्व का मैट्रिक्स निर्धारक === | === मैट्रिक्स व्युत्क्रम और टेंसर घनत्व का मैट्रिक्स निर्धारक === | ||
अगर <math>{\mathfrak{T}}_{\alpha\beta}</math> एक | अगर <math>{\mathfrak{T}}_{\alpha\beta}</math> एक व्युत्क्रमणीय मैट्रिक्स और वजन का रैंक-दो टेंसर घनत्व है <math>W</math> सहसंयोजक सूचकांकों के साथ तो इसका मैट्रिक्स व्युत्क्रम वजन का रैंक-दो टेंसर घनत्व होगा -<math>W</math> विरोधाभासी सूचकांकों के साथ। समान कथन तब लागू होते हैं जब दो सूचकांक विरोधाभासी होते हैं या मिश्रित सहसंयोजक और विरोधाभासी होते हैं। | ||
अगर <math>{\mathfrak{T}}_{\alpha\beta}</math> वजन का रैंक-दो टेंसर घनत्व है <math>W</math> सहसंयोजक सूचकांकों के साथ फिर मैट्रिक्स निर्धारक <math>\det {\mathfrak{T}}_{\alpha\beta}</math> वजन होगा <math>N W + 2,</math> कहाँ <math>N</math> अंतरिक्ष-समय आयामों की संख्या है। अगर <math>{\mathfrak{T}}^{\alpha\beta}</math> वजन का रैंक-दो टेंसर घनत्व है <math>W</math> विरोधाभासी सूचकांकों के साथ फिर मैट्रिक्स निर्धारक <math>\det {\mathfrak{T}}^{\alpha\beta}</math> वजन होगा <math>N W - 2.</math> मैट्रिक्स निर्धारक <math>\det {\mathfrak{T}}^{\alpha}_{~\beta}</math> वजन होगा <math>N W.</math> | अगर <math>{\mathfrak{T}}_{\alpha\beta}</math> वजन का रैंक-दो टेंसर घनत्व है <math>W</math> सहसंयोजक सूचकांकों के साथ फिर मैट्रिक्स निर्धारक <math>\det {\mathfrak{T}}_{\alpha\beta}</math> वजन होगा <math>N W + 2,</math> कहाँ <math>N</math> अंतरिक्ष-समय आयामों की संख्या है। अगर <math>{\mathfrak{T}}^{\alpha\beta}</math> वजन का रैंक-दो टेंसर घनत्व है <math>W</math> विरोधाभासी सूचकांकों के साथ फिर मैट्रिक्स निर्धारक <math>\det {\mathfrak{T}}^{\alpha\beta}</math> वजन होगा <math>N W - 2.</math> मैट्रिक्स निर्धारक <math>\det {\mathfrak{T}}^{\alpha}_{~\beta}</math> वजन होगा <math>N W.</math> | ||
== सामान्य सापेक्षता == | == सामान्य सापेक्षता == | ||
{{General relativity sidebar}} | {{General relativity sidebar}} |
Revision as of 12:42, 14 July 2023
विभेदक ज्यामिति में, एक टेंसर घनत्व या सापेक्ष टेंसर, टेंसर क्षेत्र अवधारणा का एक सामान्यीकरण है। एक समन्वय प्रणाली से दूसरे समन्वय प्रणाली में जाने पर एक टेंसर घनत्व एक टेंसर क्षेत्र के रूप में परिवर्तित हो जाता है (टेंसर फ़ील्ड देखें), सिवाय इसके कि इसे समन्वय संक्रमण फलन या इसके निरपेक्ष मान के जैकोबियन निर्धारक की शक्ति डब्ल्यू द्वारा अतिरिक्त रूप से गुणा या भारित किया जाता है। एकल सूचकांक वाले टेंसर घनत्व को वेक्टर घनत्व कहा जाता है। (प्रामाणिक) टेंसर घनत्व, स्यूडोटेंसर घनत्व, सम टेंसर घनत्व और विषम टेंसर घनत्व के बीच अंतर किया जाता है। कभी-कभी नकारात्मक भार W वाले टेंसर घनत्व को टेंसर क्षमता कहा जाता है।[1][2][3] एक टेंसर घनत्व को एक घनत्व बंडल के साथ टेंसर बंडल के टेंसर उत्पाद के एक खंड (फाइबर बंडल) के रूप में भी माना जा सकता है।
प्रेरणा
भौतिकी और संबंधित क्षेत्रों में, वस्तु केअतिरिक्त बीजगणितीय वस्तु के घटकों के साथ काम करना अधिकांशतः उपयोगी होता है। एक उदाहरण कुछ गुणांकों द्वारा भारित आधार सदिश के योग में एक सदिश को विघटित करना होगा जैसे कि
परिभाषा
This article needs additional citations for verification. (September 2012) (Learn how and when to remove this template message) |
कुछ लेखक इस लेख में टेन्सर घनत्व को दो प्रकारों में वर्गीकृत करते हैं जिन्हें (प्रामाणिक) टेन्सर घनत्व और छद्म टेंसर घनत्व कहा जाता है। अन्य लेखक उन्हें अलग-अलग प्रकार से वर्गीकृत करते हैं, जिन्हें सम टेंसर घनत्व और विषम टेंसर घनत्व कहा जाता है। जब टेंसर घनत्व का भार एक पूर्णांक होता है तो इन दृष्टिकोणों के बीच एक समानता होती है जो इस बात पर निर्भर करती है कि पूर्णांक सम है या विषम।
ध्यान दें कि ये वर्गीकरण अलग-अलग तरीकों को स्पष्ट करते हैं कि टेंसर घनत्व अभिविन्यास-उलट समन्वय परिवर्तनों के तहत कुछ हद तक तर्कहीन रूप से बदल सकते हैं। इन प्रकारों में उनके वर्गीकरण के अतिरिक्त, केवल एक ही तरीका है कि टेंसर घनत्व अभिविन्यास-संरक्षण समन्वय परिवर्तनों के तहत परिवर्तित हो जाते हैं।
इस लेख में हमने उस परिपाटी को चुना है जो +2 का भार निर्दिष्ट करती है , सहसंयोजक सूचकांकों के साथ व्यक्त मीट्रिक टेंसर का निर्धारक। इस विकल्प के साथ, शास्त्रीय घनत्व, जैसे चार्ज घनत्व, को वजन +1 के टेंसर घनत्व द्वारा दर्शाया जाएगा। कुछ लेखक वज़न के लिए एक संकेत परिपाटी का उपयोग करते हैं जो कि यहां प्रस्तुत किए गए वज़न का निषेध है।[4] इस लेख में प्रयुक्त अर्थ के विपरीत, सामान्य सापेक्षता में स्यूडोटेन्सर का अर्थ कभी-कभी एक ऐसी वस्तु से होता है जो किसी भार के टेंसर या सापेक्ष टेंसर की तरह परिवर्तित नहीं होती है।
टेंसर और स्यूडोटेंसर घनत्व
उदाहरण के लिए, वजन का मिश्रित रैंक-दो (प्रामाणिक) टेंसर घनत्व के रूप में रूपांतरित होता है:[5][6]
- ((प्रामाणिक) (पूर्णांक) भार W का टेंसर घनत्व)
कहाँ में रैंक-दो टेंसर घनत्व है निर्देशांक तरीका, में रूपांतरित टेंसर घनत्व है निर्देशांक तरीका; और हम जैकोबियन निर्धारक का उपयोग करते हैं। क्योंकि निर्धारक नकारात्मक हो सकता है, जो कि एक अभिविन्यास-उलट समन्वय परिवर्तन के लिए है, यह सूत्र केवल तभी लागू होता है जब एक पूर्णांक है. (हालांकि, नीचे सम और विषम टेंसर घनत्व देखें।)
हम कहते हैं कि एक टेंसर घनत्व एक स्यूडोटेंसर घनत्व है जब एक ओरिएंटेशन-रिवर्सिंग समन्वय परिवर्तन के तहत एक अतिरिक्त साइन फ्लिप होता है। वजन का मिश्रित रैंक-दो स्यूडोटेंसर घनत्व के रूप में परिवर्तित हो जाता है
- ((पूर्णांक) वजन का स्यूडोटेंसर घनत्व डब्ल्यू)
जहां साइन फ़ंक्शन () एक फ़ंक्शन है जो +1 देता है जब उसका तर्क सकारात्मक होता है या -1 जब उसका तर्क नकारात्मक होता है।
सम और विषम टेंसर घनत्व
सम और विषम टेंसर घनत्वों के परिवर्तनों को तब भी अच्छी तरह से परिभाषित होने का लाभ होता है पूर्णांक नहीं है. इस प्रकार कोई कह सकता है, वजन का एक विषम टेंसर घनत्व +2 या वजन का एक सम टेंसर घनत्व -1/2।
कब एक सम पूर्णांक है (प्रामाणिक) टेंसर घनत्व के लिए उपरोक्त सूत्र को इस प्रकार फिर से लिखा जा सकता है
- (वजन का सम टेंसर घनत्व W)
इसी प्रकार, जब एक विषम पूर्णांक है (प्रामाणिक) टेंसर घनत्व के लिए सूत्र को इस प्रकार फिर से लिखा जा सकता है
- (वजन का विषम टेंसर घनत्व W)
शून्य और एक का वजन
किसी भी प्रकार का टेंसर घनत्व जिसका भार शून्य होता है, उसे निरपेक्ष टेंसर भी कहा जाता है। भार शून्य के (सम) प्रामाणिक टेंसर घनत्व को साधारण टेंसर भी कहा जाता है।
यदि वजन निर्दिष्ट नहीं है, लेकिन सापेक्ष या घनत्व शब्द का उपयोग उस संदर्भ में किया जाता है जहां एक विशिष्ट वजन की आवश्यकता होती है, तो आमतौर पर यह माना जाता है कि वजन +1 है।
बीजगणितीय गुण
- एक ही प्रकार और भार के टेंसर घनत्वों का एक रैखिक संयोजन (भारित योग के रूप में भी जाना जाता है)। यह फिर से उस प्रकार और भार का एक टेंसर घनत्व है।
- किसी भी प्रकार के और भार के साथ दो टेंसर घनत्वों का एक उत्पाद और , वजन का एक टेंसर घनत्व है #:प्रामाणिक टेन्सर घनत्व और स्यूडोटेंसर घनत्व का एक उत्पाद एक प्रामाणिक टेन्सर घनत्व होगा जब कारकों की एक सम संख्या स्यूडोटेंसर घनत्व होती है; यह एक स्यूडोटेंसर घनत्व होगा जब विषम संख्या में कारक स्यूडोटेंसर घनत्व होंगे। इसी तरह, सम टेंसर घनत्व और विषम टेंसर घनत्व का उत्पाद एक सम टेंसर घनत्व होगा जब सम संख्या में कारक विषम टेंसर घनत्व होते हैं; यह एक विषम टेंसर घनत्व होगा जब विषम संख्या में कारक विषम टेंसर घनत्व होंगे।
- वजन के साथ टेंसर घनत्व पर सूचकांकों का संकुचन फिर से वजन का एक टेंसर घनत्व प्राप्त होता है [7]
- (2) और (3) का उपयोग करने से पता चलता है कि मीट्रिक टेंसर (वजन 0) का उपयोग करके सूचकांकों को बढ़ाने और घटाने से वजन अपरिवर्तित रहता है।[8]
मैट्रिक्स व्युत्क्रम और टेंसर घनत्व का मैट्रिक्स निर्धारक
अगर एक व्युत्क्रमणीय मैट्रिक्स और वजन का रैंक-दो टेंसर घनत्व है सहसंयोजक सूचकांकों के साथ तो इसका मैट्रिक्स व्युत्क्रम वजन का रैंक-दो टेंसर घनत्व होगा - विरोधाभासी सूचकांकों के साथ। समान कथन तब लागू होते हैं जब दो सूचकांक विरोधाभासी होते हैं या मिश्रित सहसंयोजक और विरोधाभासी होते हैं।
अगर वजन का रैंक-दो टेंसर घनत्व है सहसंयोजक सूचकांकों के साथ फिर मैट्रिक्स निर्धारक वजन होगा कहाँ अंतरिक्ष-समय आयामों की संख्या है। अगर वजन का रैंक-दो टेंसर घनत्व है विरोधाभासी सूचकांकों के साथ फिर मैट्रिक्स निर्धारक वजन होगा मैट्रिक्स निर्धारक वजन होगा
सामान्य सापेक्षता
General relativity |
---|
जैकोबियन निर्धारक और मीट्रिक टेंसर का संबंध
कोई भी गैर-विलक्षण साधारण टेंसर के रूप में रूपांतरित हो जाता है
टेंसर घनत्व में हेरफेर करने के लिए मीट्रिक टेंसर का उपयोग
परिणामस्वरूप, एक सम टेंसर घनत्व, वजन W के रूप में लिखा जा सकता है
मीट्रिक संयोजन (लेवी-सिविटा संयोजन) का उपयोग करते समय, एक सम टेंसर घनत्व के सहसंयोजक व्युत्पन्न को इस प्रकार परिभाषित किया गया है
समान रूप से, उत्पाद नियम का पालन किया जाता है
उदाहरण
व्यंजक एक अदिश घनत्व है इस लेख की परिपाटी के अनुसार इसका भार +1 है।
विद्युत धारा का घनत्व (उदाहरण के लिए, 3-वॉल्यूम तत्व को पार करने वाले विद्युत आवेश की मात्रा है उस तत्व से विभाजित - इस गणना में मीट्रिक का उपयोग न करें) भार +1 का एक विरोधाभासी वेक्टर घनत्व है। इसे अक्सर ऐसे लिखा जाता है या कहाँ और विभेदक रूप हैं निरपेक्ष टेंसर, और जहां लेवी-सिविटा प्रतीक है; नीचे देखें।
लोरेंत्ज़ बल का घनत्व (अर्थात, विद्युत चुम्बकीय क्षेत्र से 4-मात्रा वाले तत्व के भीतर पदार्थ में स्थानांतरित रैखिक गति उस तत्व से विभाजित - इस गणना में मीट्रिक का उपयोग न करें) भार +1 का एक सहसंयोजक वेक्टर घनत्व है।
एन-आयामी स्पेस-टाइम में, लेवी-सिविटा प्रतीक को या तो वजन -1 (εα1⋯αN) के रैंक-एन सहसंयोजक (विषम) प्रामाणिक टेंसर घनत्व या रैंक-एन कॉन्ट्रावेरिएंट (विषम) प्रामाणिक टेंसर घनत्व के रूप +1 (εα1⋯αN). में माना जा सकता है। ध्यान दें कि लेवी-सिविटा प्रतीक (जैसा माना जाता है) मीट्रिक टेंसर के साथ सूचकांकों को बढ़ाने या घटाने की सामान्य परंपरा का पालन नहीं करता है।
मीट्रिक टेंसर का निर्धारक,
यह भी देखें
- क्रिया (भौतिकी) – Physical quantity of dimension energy × time
- संरक्षण नियम
- नोएदर की प्रमेय
- स्यूडोटेंसर – Type of physical quantity
- सापेक्ष अदिश
- परिवर्तनशील सिद्धांत
टिप्पणियाँ
- ↑ Weinreich, Gabriel (July 6, 1998). Geometrical Vectors (in English). pp. 112, 115. ISBN 978-0226890487.
- ↑ Papastavridis, John G. (Dec 18, 1998). Tensor Calculus and Analytical Dynamics (in English). CRC Press. ISBN 978-0849385148.
- ↑ Ruiz-Tolosa, Castillo, Juan R., Enrique (30 Mar 2006). From Vectors to Tensors (in English). Springer Science & Business Media. ISBN 978-3540228875.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - ↑ E.g. Weinberg 1972 pp 98. The chosen convention involves in the formulae below the Jacobian determinant of the inverse transition x → x, while the opposite convention considers the forward transition x → x resulting in a flip of sign of the weight.
- ↑ M.R. Spiegel; S. Lipcshutz; D. Spellman (2009). वेक्टर विश्लेषण (2nd ed.). New York: Schaum's Outline Series. p. 198. ISBN 978-0-07-161545-7.
- ↑ C.B. Parker (1994). मैकग्रा हिल इनसाइक्लोपीडिया ऑफ फिजिक्स (2nd ed.). p. 1417. ISBN 0-07-051400-3.
- ↑ Weinberg 1972 p 100.
- ↑ Weinberg 1972 p 100.
संदर्भ
- स्पिवक, माइकल (1999), ए कॉम्प्रिहेंसिव इंट्रोडक्शन टू डिफरेंशियल ज्योमेट्री, खंड I (तीसरा संस्करण), पी। (3rd ed.), p. 134.
- कुप्त्सोव, एल.पी. (2001) [1994], "टेंसर_घनत्व" ""टेंसर घनत्व"", Encyclopedia of Mathematics, EMS Press.
- चार्ल्स मिस्नर; किप एस थॉर्न & [[जॉन आर्चीबाल्ड व्हीलर] (1973). गुरुत्वाकर्षण. डब्ल्यू एच फ्रीमैन. p. 501ff. ISBN 0-7167-0344-0.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - वेनबर्ग, स्टीवन (1972), ग्रेविटेशन एंड कॉस्मोलॉजी, जॉन विली एंड संस, इंक, ISBN 0-471-92567-5
{{citation}}
: CS1 maint: extra punctuation (link)