स्प्लिट-बाइक्वाटर्नियन: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
गणित में, '''स्प्लिट-बाइक्वाटर्नियन''' फॉर्म की [[हाइपरकॉम्प्लेक्स संख्या]] है | गणित में, '''स्प्लिट-बाइक्वाटर्नियन''' फॉर्म की [[हाइपरकॉम्प्लेक्स संख्या]] है | ||
:<math>q = w + xi + yj + zk </math> | :<math>q = w + xi + yj + zk </math> | ||
जहां w, x, y, और z [[विभाजित-जटिल संख्या]]एं हैं और i, j, और k | जहां w, x, y, और z [[विभाजित-जटिल संख्या|विभाजित-समष्टि संख्या]]एं हैं और i, j, और k चतुर्भुज समूह की तरह गुणा करते हैं। इस प्रकार चूँकि प्रत्येक गुणांक w, x, y, z दो [[वास्तविक संख्या]] [[आयाम]] तक फैलाव होता है, इस प्रकार स्प्लिट-बाइक्वेटर्नियन आठ-आयामी [[सदिश स्थल|सदिश समिष्ट]] का अवयव है। यह ध्यान में रखते हुए कि इसमें गुणन होता है, यह सदिश समिष्ट वास्तविक क्षेत्र के ऊपर क्षेत्र पर बीजगणित है, या रिंग पर बीजगणित है जहां विभाजित-समष्टि संख्याएं रिंग बनाती हैं। यह बीजगणित [[विलियम किंग्डन क्लिफोर्ड]] द्वारा 1873 में [[लंदन गणितीय सोसायटी]] के लिए लेख में प्रस्तुत किया गया था। तब से इसे गणितीय साहित्य में बार-बार नोट किया गया है, इस प्रकार टर्मिनोलॉजी में विचलन के रूप में, बीजगणित के टेंसर उत्पाद का चित्रण, और मॉड्यूल के प्रत्यक्ष योग या बीजगणित के प्रत्यक्ष योग के चित्रण के रूप में बीजगणित विद्वानों द्वारा विभाजन-द्विभाजक की पहचान विभिन्न विधियों से की गई है; देखना {{section link||Synonyms}} नीचे। | ||
==आधुनिक परिभाषा== | ==आधुनिक परिभाषा== | ||
स्प्लिट-बाइक्वाटर्नियन [[क्लिफोर्ड बीजगणित]] Cℓ | स्प्लिट-बाइक्वाटर्नियन [[क्लिफोर्ड बीजगणित]] Cℓ<sub>0,3</sub>(R) के लिए रिंग आइसोमोर्फिक है। यह संयोजन नियम के अनुसार तीन ऑर्थोगोनल काल्पनिक इकाई [[ज्यामितीय बीजगणित]], {{nowrap|{''e''<sub>1</sub>, ''e''<sub>2</sub>, ''e''<sub>3</sub>} }} द्वारा उत्पन्न ज्यामितीय बीजगणित है | ||
:<math>e_i e_j = \begin{cases} | :<math>e_i e_j = \begin{cases} | ||
-1 & i=j, \\ | -1 & i=j, \\ | ||
- e_j e_i & i \neq j | - e_j e_i & i \neq j | ||
\end{cases} </math> | \end{cases} </math> | ||
(e<sub>1</sub>e<sub>2</sub>)<sup>2</sup> = (e<sub>2</sub>e<sub>3</sub>)<sup>2</sup> = (e<sub>3</sub>e<sub>1</sub>)<sup>2</sup> = −1 और ω<sup>2</sup> = (e<sub>1</sub>e<sub>2</sub>e<sub>3</sub>) के साथ 8 आधार अवयवो {{nowrap|{1, ''e''<sub>1</sub>, ''e''<sub>2</sub>, ''e''<sub>3</sub>, ''e''<sub>1</sub>''e''<sub>2</sub>, ''e''<sub>2</sub>''e''<sub>3</sub>, ''e''<sub>3</sub>''e''<sub>1</sub>, ''e''<sub>1</sub>''e''<sub>2</sub>''e''<sub>3</sub>},}} द्वारा फैलाव हुआ बीजगणित दे रहा हूं। अवयवो {{nowrap|1={1, ''i'' = ''e''<sub>1</sub>, ''j'' = ''e''<sub>2</sub>, ''k'' = ''e''<sub>1</sub>''e''<sub>2</sub><nowiki>}</nowiki> }} द्वारा फैलाव किया गया उप-बीजगणित हैमिल्टन के चतुर्भुज,{{nowrap|1='''H''' = ''C''ℓ<sub>0,2</sub>('''R''')}} का विभाजन वलय है। इसलिए कोई भी इसे देख सकता है | |||
इसलिए कोई भी इसे देख सकता है | |||
:<math>C\ell_{0,3}(\mathbb{R}) \cong \mathbb{H} \otimes \mathbb{D}</math> | :<math>C\ell_{0,3}(\mathbb{R}) \cong \mathbb{H} \otimes \mathbb{D}</math> | ||
जहाँ {{nowrap|1='''D''' = ''C''ℓ<sub>1,0</sub>('''R''')}} द्वारा फैलाव किया गया बीजगणित है {{nowrap|{1, ω},}} विभक्त-सम्मिश्र संख्याओं का बीजगणित होता है। | |||
सामान्यतः, | |||
:<math>C\ell_{0,3}(\mathbb{R}) \cong \mathbb{H} \oplus \mathbb{H}.</math> | :<math>C\ell_{0,3}(\mathbb{R}) \cong \mathbb{H} \oplus \mathbb{H}.</math> | ||
Line 22: | Line 20: | ||
==स्प्लिट-बाइक्वाटर्नियन समूह== | ==स्प्लिट-बाइक्वाटर्नियन समूह== | ||
स्प्लिट-बाइक्वाटर्नियन [[ संबद्धता |संबद्धता]] रिंग सिद्धांत बनाते हैं जैसा कि इसके [[आधार (रैखिक बीजगणित)]] {1, ω, i, j, k, ωi, ωj, ωk} में गुणन पर विचार करने से स्पष्ट है। जब ω चतुर्भुज समूह से जुड़ा होता है तो व्यक्ति को 16 | स्प्लिट-बाइक्वाटर्नियन [[ संबद्धता |संबद्धता]] रिंग सिद्धांत बनाते हैं जैसा कि इसके [[आधार (रैखिक बीजगणित)]] {1, ω, i, j, k, ωi, ωj, ωk} में गुणन पर विचार करने से स्पष्ट है। जब ω चतुर्भुज समूह से जुड़ा होता है तो व्यक्ति को 16 अवयव समूह प्राप्त होता है | ||
:( {1, i, j, k, −1, −i, −j, −k, ω, ωi, ωj, ωk, −ω, −ωi, −ωj, −ωk}, × )। | :( {1, i, j, k, −1, −i, −j, −k, ω, ωi, ωj, ωk, −ω, −ωi, −ωj, −ωk}, × )। | ||
==मॉड्यूल== | ==मॉड्यूल== | ||
चूँकि | चूँकि चतुर्भुज समूह के अवयव {1, i, j, k} को विभाजन-द्विभाजक समिष्ट के आधार (रैखिक बीजगणित) के रूप में लिया जा सकता है, इसकी तुलना सदिश समिष्ट से की जा सकती है। किन्तु विभाजित-सम्मिश्र संख्याएँ वलय बनाती हैं, फ़ील्ड नहीं बनाती हैं, इसलिए सदिश समष्टि उपयुक्त नहीं है। किन्तु स्प्लिट-बाइक्वाटर्नियन्स का समिष्ट मुक्त मॉड्यूल बनाता है। इस प्रकार रिंग सिद्धांत का यह मानक शब्द सदिश स्पेस की समानता को व्यक्त करता है, और 1873 में क्लिफोर्ड द्वारा बनाई गई यह संरचना उदाहरण है। स्प्लिट-बाइक्वाटर्नियन रिंग के ऊपर बीजगणित बनाते हैं, किन्तु समूह रिंग नहीं होते है। | ||
==दो चतुर्भुज वलय का प्रत्यक्ष योग== | ==दो चतुर्भुज वलय का प्रत्यक्ष योग== | ||
चतुर्भुजों के विभाजन वलय का प्रत्यक्ष योग स्वयं <math>\mathbb{H} \oplus \mathbb{H}</math> के साथ दर्शाया गया है। इस प्रत्यक्ष योग बीजगणित में दो तत्वों <math>(a \oplus b)</math> और <math> (c \oplus d)</math> का गुणनफल <math> a c \oplus b d </math> है। | |||
प्रस्ताव: स्प्लिट-बाइक्वाटर्नियन <math>\mathbb{H} \oplus \mathbb{H}.</math> का बीजगणित समरूपी है | |||
प्रमाण: प्रत्येक स्प्लिट-बाइक्वाटर्नियन की अभिव्यक्ति q = w + z ω होती है जहां w और z चतुर्भुज हैं और ω<sup>2</sup> = +1. अब यदि p = u + v ω और विभाजन-द्विभाजक है, तो उनका उत्पाद है | |||
प्रमाण: प्रत्येक स्प्लिट-बाइक्वाटर्नियन की अभिव्यक्ति | |||
:<math> pq = uw + vz + (uz + vw) \omega .</math> | :<math> pq = uw + vz + (uz + vw) \omega .</math> | ||
स्प्लिट-बाइक्वेटर्नियन्स से आइसोमोर्फिज्म मैपिंग <math>\mathbb{H} \oplus \mathbb{H}</math> द्वारा दिया गया है | स्प्लिट-बाइक्वेटर्नियन्स से आइसोमोर्फिज्म मैपिंग <math>\mathbb{H} \oplus \mathbb{H}</math> द्वारा दिया गया है | ||
:<math>p \mapsto (u + v) \oplus (u - v) , \quad q \mapsto (w + z) \oplus (w - z).</math> | :<math>p \mapsto (u + v) \oplus (u - v) , \quad q \mapsto (w + z) \oplus (w - z).</math> | ||
<math>\mathbb{H} \oplus \mathbb{H}</math> में, इन छवियों का उत्पाद, ऊपर बताए गए <math>\mathbb{H} \oplus \mathbb{H}</math> के बीजगणित-उत्पाद के अनुसार है | |||
:<math>(u + v)(w + z) \oplus (u - v)(w - z).</math> | :<math>(u + v)(w + z) \oplus (u - v)(w - z).</math> | ||
यह | यह अवयव मैपिंग के अंतर्गत pq की छवि <math>\mathbb{H} \oplus \mathbb{H}.</math> भी है इस प्रकार उत्पाद सहमत हैं, मानचित्रण समरूपता है; और चूँकि यह विशेषण है, यह समरूपता है। | ||
इस प्रकार उत्पाद सहमत हैं, मानचित्रण समरूपता है; और चूँकि यह विशेषण है, यह समरूपता है। | |||
यद्यपि स्प्लिट-बाइक्वेटर्नियन हैमिल्टन के बाइक्वाटर्नियन की तरह आठ-आयामी | यद्यपि स्प्लिट-बाइक्वेटर्नियन हैमिल्टन के बाइक्वाटर्नियन की तरह आठ-आयामी समिष्ट बनाते हैं, इस प्रकार प्रस्ताव के आधार पर यह स्पष्ट है कि यह बीजगणित वास्तविक चतुर्भुज की दो प्रतियों के प्रत्यक्ष योग में विभाजित होता है। | ||
==हैमिल्टन बाईक्वाटर्नियन == | ==हैमिल्टन बाईक्वाटर्नियन == | ||
स्प्लिट-बाइक्वेटर्नियन्स को [[विलियम रोवन हैमिल्टन]] द्वारा पहले | स्प्लिट-बाइक्वेटर्नियन्स को [[विलियम रोवन हैमिल्टन]] द्वारा पहले प्रस्तुत किए गए (साधारण) बाइक्वाटर्नियंस के साथ भ्रमित नहीं किया जाना चाहिए। हैमिल्टन के [[द्विभाजन]] बीजगणित के अवयव हैं | ||
:<math>C\ell_{2}(\mathbb{C}) = \mathbb{H} \otimes \mathbb{C}.</math> | :<math>C\ell_{2}(\mathbb{C}) = \mathbb{H} \otimes \mathbb{C}.</math> | ||
:<math>C\ell_{3,0}(\mathbb{R}) = \mathbb{H} \otimes \mathbb{C}.</math> | :<math>C\ell_{3,0}(\mathbb{R}) = \mathbb{H} \otimes \mathbb{C}.</math> | ||
==समानार्थी== | ==समानार्थी == | ||
निम्नलिखित शब्द और यौगिक स्प्लिट-बाइक्वाटर्नियन बीजगणित को संदर्भित करते हैं: | निम्नलिखित शब्द और यौगिक स्प्लिट-बाइक्वाटर्नियन बीजगणित को संदर्भित करते हैं: | ||
* | * दीर्घवृत्तीय द्विचतुर्भुज - {{harvnb|क्लिफ़ोर्ड|1873}}, {{harvnb|रूनी|2007}} | ||
* क्लिफोर्ड बाईक्वाटर्नियन - {{harvnb| | * क्लिफोर्ड बाईक्वाटर्नियन - {{harvnb|जोली|1902}}, {{harvnb|वैन डेर वेर्डन|1985}} | ||
* डाइक्वाटरनियंस - {{harvnb| | * डाइक्वाटरनियंस - {{harvnb|रोसेनफेल्ड|1997}} | ||
* <math>\mathbb{D} \otimes \mathbb{H}</math> जहाँ D = विभाजित-सम्मिश्र संख्याएँ - {{harvnb| | * <math>\mathbb{D} \otimes \mathbb{H}</math> जहाँ D = विभाजित-सम्मिश्र संख्याएँ - {{harvnb|बोर्बाकी|1994}}, {{harvnb|रोसेनफेल्ड|1997}} | ||
* <math>\mathbb{H} \oplus \mathbb{H}</math>, मॉड्यूल का प्रत्यक्ष योग | * <math>\mathbb{H} \oplus \mathbb{H}</math>, मॉड्यूल का प्रत्यक्ष योग या दो चतुर्भुज बीजगणित के बीजगणित का प्रत्यक्ष योग - {{harvnb|वैन डेर वेर्डन|1985}} | ||
==यह भी देखें== | ==यह भी देखें == | ||
* [[स्प्लिट-ऑक्टोनियन]] | * [[स्प्लिट-ऑक्टोनियन]] | ||
Revision as of 10:18, 21 July 2023
गणित में, स्प्लिट-बाइक्वाटर्नियन फॉर्म की हाइपरकॉम्प्लेक्स संख्या है
जहां w, x, y, और z विभाजित-समष्टि संख्याएं हैं और i, j, और k चतुर्भुज समूह की तरह गुणा करते हैं। इस प्रकार चूँकि प्रत्येक गुणांक w, x, y, z दो वास्तविक संख्या आयाम तक फैलाव होता है, इस प्रकार स्प्लिट-बाइक्वेटर्नियन आठ-आयामी सदिश समिष्ट का अवयव है। यह ध्यान में रखते हुए कि इसमें गुणन होता है, यह सदिश समिष्ट वास्तविक क्षेत्र के ऊपर क्षेत्र पर बीजगणित है, या रिंग पर बीजगणित है जहां विभाजित-समष्टि संख्याएं रिंग बनाती हैं। यह बीजगणित विलियम किंग्डन क्लिफोर्ड द्वारा 1873 में लंदन गणितीय सोसायटी के लिए लेख में प्रस्तुत किया गया था। तब से इसे गणितीय साहित्य में बार-बार नोट किया गया है, इस प्रकार टर्मिनोलॉजी में विचलन के रूप में, बीजगणित के टेंसर उत्पाद का चित्रण, और मॉड्यूल के प्रत्यक्ष योग या बीजगणित के प्रत्यक्ष योग के चित्रण के रूप में बीजगणित विद्वानों द्वारा विभाजन-द्विभाजक की पहचान विभिन्न विधियों से की गई है; देखना § Synonyms नीचे।
आधुनिक परिभाषा
स्प्लिट-बाइक्वाटर्नियन क्लिफोर्ड बीजगणित Cℓ0,3(R) के लिए रिंग आइसोमोर्फिक है। यह संयोजन नियम के अनुसार तीन ऑर्थोगोनल काल्पनिक इकाई ज्यामितीय बीजगणित, {e1, e2, e3} द्वारा उत्पन्न ज्यामितीय बीजगणित है
(e1e2)2 = (e2e3)2 = (e3e1)2 = −1 और ω2 = (e1e2e3) के साथ 8 आधार अवयवो {1, e1, e2, e3, e1e2, e2e3, e3e1, e1e2e3}, द्वारा फैलाव हुआ बीजगणित दे रहा हूं। अवयवो {1, i = e1, j = e2, k = e1e2} द्वारा फैलाव किया गया उप-बीजगणित हैमिल्टन के चतुर्भुज,H = Cℓ0,2(R) का विभाजन वलय है। इसलिए कोई भी इसे देख सकता है
जहाँ D = Cℓ1,0(R) द्वारा फैलाव किया गया बीजगणित है {1, ω}, विभक्त-सम्मिश्र संख्याओं का बीजगणित होता है।
सामान्यतः,
स्प्लिट-बाइक्वाटर्नियन समूह
स्प्लिट-बाइक्वाटर्नियन संबद्धता रिंग सिद्धांत बनाते हैं जैसा कि इसके आधार (रैखिक बीजगणित) {1, ω, i, j, k, ωi, ωj, ωk} में गुणन पर विचार करने से स्पष्ट है। जब ω चतुर्भुज समूह से जुड़ा होता है तो व्यक्ति को 16 अवयव समूह प्राप्त होता है
- ( {1, i, j, k, −1, −i, −j, −k, ω, ωi, ωj, ωk, −ω, −ωi, −ωj, −ωk}, × )।
मॉड्यूल
चूँकि चतुर्भुज समूह के अवयव {1, i, j, k} को विभाजन-द्विभाजक समिष्ट के आधार (रैखिक बीजगणित) के रूप में लिया जा सकता है, इसकी तुलना सदिश समिष्ट से की जा सकती है। किन्तु विभाजित-सम्मिश्र संख्याएँ वलय बनाती हैं, फ़ील्ड नहीं बनाती हैं, इसलिए सदिश समष्टि उपयुक्त नहीं है। किन्तु स्प्लिट-बाइक्वाटर्नियन्स का समिष्ट मुक्त मॉड्यूल बनाता है। इस प्रकार रिंग सिद्धांत का यह मानक शब्द सदिश स्पेस की समानता को व्यक्त करता है, और 1873 में क्लिफोर्ड द्वारा बनाई गई यह संरचना उदाहरण है। स्प्लिट-बाइक्वाटर्नियन रिंग के ऊपर बीजगणित बनाते हैं, किन्तु समूह रिंग नहीं होते है।
दो चतुर्भुज वलय का प्रत्यक्ष योग
चतुर्भुजों के विभाजन वलय का प्रत्यक्ष योग स्वयं के साथ दर्शाया गया है। इस प्रत्यक्ष योग बीजगणित में दो तत्वों और का गुणनफल है।
प्रस्ताव: स्प्लिट-बाइक्वाटर्नियन का बीजगणित समरूपी है
प्रमाण: प्रत्येक स्प्लिट-बाइक्वाटर्नियन की अभिव्यक्ति q = w + z ω होती है जहां w और z चतुर्भुज हैं और ω2 = +1. अब यदि p = u + v ω और विभाजन-द्विभाजक है, तो उनका उत्पाद है
स्प्लिट-बाइक्वेटर्नियन्स से आइसोमोर्फिज्म मैपिंग द्वारा दिया गया है
में, इन छवियों का उत्पाद, ऊपर बताए गए के बीजगणित-उत्पाद के अनुसार है
यह अवयव मैपिंग के अंतर्गत pq की छवि भी है इस प्रकार उत्पाद सहमत हैं, मानचित्रण समरूपता है; और चूँकि यह विशेषण है, यह समरूपता है।
यद्यपि स्प्लिट-बाइक्वेटर्नियन हैमिल्टन के बाइक्वाटर्नियन की तरह आठ-आयामी समिष्ट बनाते हैं, इस प्रकार प्रस्ताव के आधार पर यह स्पष्ट है कि यह बीजगणित वास्तविक चतुर्भुज की दो प्रतियों के प्रत्यक्ष योग में विभाजित होता है।
हैमिल्टन बाईक्वाटर्नियन
स्प्लिट-बाइक्वेटर्नियन्स को विलियम रोवन हैमिल्टन द्वारा पहले प्रस्तुत किए गए (साधारण) बाइक्वाटर्नियंस के साथ भ्रमित नहीं किया जाना चाहिए। हैमिल्टन के द्विभाजन बीजगणित के अवयव हैं
समानार्थी
निम्नलिखित शब्द और यौगिक स्प्लिट-बाइक्वाटर्नियन बीजगणित को संदर्भित करते हैं:
- दीर्घवृत्तीय द्विचतुर्भुज - क्लिफ़ोर्ड 1873 , रूनी 2007
- क्लिफोर्ड बाईक्वाटर्नियन - जोली 1902 , वैन डेर वेर्डन 1985
- डाइक्वाटरनियंस - रोसेनफेल्ड 1997
- जहाँ D = विभाजित-सम्मिश्र संख्याएँ - बोर्बाकी 1994 , रोसेनफेल्ड 1997
- , मॉड्यूल का प्रत्यक्ष योग या दो चतुर्भुज बीजगणित के बीजगणित का प्रत्यक्ष योग - वैन डेर वेर्डन 1985
यह भी देखें
संदर्भ
- Clifford, W.K. (1873) Preliminary Sketch of Biquaternions, pages 195–7 in Mathematical Papers via Internet Archive
- Clifford, W.K. (1882) The Classification of Geometric Algebras, page 401 in Mathematical Papers, R. Tucker editor
- Girard, P.R. (1984). "The quaternion group and modern physics". Eur. J. Phys. 5 (1): 25–32. Bibcode:1984EJPh....5...25G. doi:10.1088/0143-0807/5/1/007. S2CID 250775753.
- Rooney, Joe (2007). "William Kingdon Clifford". In Ceccarelli, Marco (ed.). Distinguished Figures in Mechanism and Machine Science: Their Contributions and Legacies. Springer. pp. 79–. ISBN 978-1-4020-6366-4.
- Joly, Charles Jasper (1905). A Manual of Quaternions. Macmillan. p. 21.
- Rosenfeld, Boris (1997). Geometry of Lie Groups. Kluwer. p. 48. ISBN 978-0-7923-4390-5.
- Bourbaki, N. (2013) [1994]. Elements of the History of Mathematics. Translated by Meldrum, J. Springer. p. 137. ISBN 978-3-642-61693-8.
- van der Waerden, B. L. (1985). A History of Algebra. Springer. p. 188. ISBN 978-0-387-13610-3.