विनाशक (रिंग सिद्धांत): Difference between revisions
No edit summary |
No edit summary |
||
Line 62: | Line 62: | ||
=== क्रमविनिमेय वलय के ऊपर R === | === क्रमविनिमेय वलय के ऊपर R === | ||
वास्तव में, ऐसी ही गणना होती है जो क्रमविनिमेय | वास्तव में, ऐसी ही गणना होती है जो क्रमविनिमेय वलय पर किसी भी परिमित <math>R</math> मापांक के लिए की जा सकती है। अतः यह स्मरण रखें कि परिमितता की परिभाषा <math>M</math> से तात्पर्य यह होता है कि सही-त्रुटिहीन अनुक्रम उपस्तिथ है, जिसे प्रेजेंटेशन (प्रस्तुति) कहा जाता है। | ||
:<math>R^{\oplus l} \xrightarrow{\phi} R^{\oplus k} \to M \to 0</math> | :<math>R^{\oplus l} \xrightarrow{\phi} R^{\oplus k} \to M \to 0</math> | ||
जहाँ <math>\phi</math> अंदर होता है <math>\text{Mat}_{k,l}(R)</math>. लिखना <math>\phi</math> स्पष्ट रूप से [[मैट्रिक्स (गणित)|आव्युह (गणित)]] के रूप में इसे देता है | |||
:<math>\phi = \begin{bmatrix} | :<math>\phi = \begin{bmatrix} | ||
\phi_{1,1} & \cdots & \phi_{1,n} \\ | \phi_{1,1} & \cdots & \phi_{1,n} \\ | ||
Line 72: | Line 72: | ||
इस प्रकार <math>M</math> प्रत्यक्ष योग अपघटन है | इस प्रकार <math>M</math> प्रत्यक्ष योग अपघटन है | ||
:<math>M = \bigoplus_{i=1}^k \frac{R}{(\phi_{i,1}(1), \ldots, \phi_{i,n}(1))}</math> | :<math>M = \bigoplus_{i=1}^k \frac{R}{(\phi_{i,1}(1), \ldots, \phi_{i,n}(1))}</math> | ||
यदि हम इनमें से प्रत्येक आदर्श को इस प्रकार | यदि हम इनमें से प्रत्येक आदर्श को इस प्रकार लिखते है | ||
:<math>I_i = (\phi_{i,1}(1), \ldots, \phi_{i,n}(1))</math> | :<math>I_i = (\phi_{i,1}(1), \ldots, \phi_{i,n}(1))</math> | ||
फिर आदर्श <math>I</math> द्वारा दिए गए | फिर आदर्श <math>I</math> द्वारा दिए गए | ||
:<math>V(I) = \bigcup^{n}_{i=1}V(I_i)</math> | :<math>V(I) = \bigcup^{n}_{i=1}V(I_i)</math> | ||
विनाशक प्रस्तुत करता | विनाशक प्रस्तुत करता है। | ||
=== k[x,y] से अधिक === | === k[x,y] से अधिक === | ||
Line 84: | Line 84: | ||
:<math>\text{Ann}_{k[x,y]}(M) = ((x^2 - y)(y - 3)).</math> | :<math>\text{Ann}_{k[x,y]}(M) = ((x^2 - y)(y - 3)).</math> | ||
==विनाशक आदर्शों पर श्रृंखला की स्थितियाँ== | ==विनाशक आदर्शों पर श्रृंखला की स्थितियाँ== | ||
स्वरूप के आदर्शों की जाली (क्रम) | इस स्वरूप के आदर्शों की जाली (क्रम) <math>\ell.\!\mathrm{Ann}_R(S)</math> कहा जाता है। जहां एस, आर का उपसमुच्चय होता है, जब आंशिक रूप से उपसमुच्चय द्वारा क्रमबद्ध किया जाता है, तब इसमें [[पूर्ण जाली]] सम्मिलित होती है। उन छल्लों का अध्ययन करना रोचक होता है जिनके लिए यह जाली (या इसका दायां समकक्ष) आरोही श्रृंखला स्थिति या [[अवरोही श्रृंखला स्थिति]] को संतुष्ट करता है। | ||
आर के बाएं विनाशक आदर्शों की जाली को | आर के बाएं विनाशक आदर्शों की जाली को <math>\mathcal{LA}\,</math>द्वारा निरूपित करते है और आर के सही विनाशक आदर्शों की जाली <math>\mathcal{RA}\,</math>होती है, अतः ज्ञात रहता है कि <math>\mathcal{LA}\,</math> ए.सी.सी. को संतुष्ट करता है [[अगर और केवल अगर|और यदि]] <math>\mathcal{RA}\,</math> डी.सी.सी. को संतुष्ट करता है, और सममित रूप से <math>\mathcal{RA}\,</math> ए.सी.सी. को संतुष्ट करता है और यदि <math>\mathcal{LA}\,</math> डी.सी.सी. को संतुष्ट करता है यदि किसी भी जाली में इनमें से कोई भी श्रृंखला स्थिति है, तब आर के पास इडेम्पोटेंट (रिंग सिद्धांत) का कोई अनंत ऑर्थोगोनल समुच्चय नहीं होता है। {{sfn|Anderson|Fuller|1992|p=322}}{{sfn|Lam|1999}} | ||
यदि | यदि आर वलय होता है जिसके लिए <math>\mathcal{LA}\,</math> ए.सी.सी. को संतुष्ट करता है और <sub>आर</sub>आर में मापांक का परिमित यूनिफ़ॉर्म मापांक यूनिफ़ॉर्म आयाम होता है, तब आर को बांया [[ गोल्डी अंगूठी |गोल्डी रिंग]] कहा जाता है।{{sfn|Lam|1999}} | ||
==क्रमविनिमेय वलय के लिए श्रेणी-सैद्धांतिक विवरण== | ==क्रमविनिमेय वलय के लिए श्रेणी-सैद्धांतिक विवरण== | ||
जब | जब आर क्रमविनिमेय है और एम आर-मापांक है, तब हम ऐन<sub>आर</sub>(एम) का वर्णन कर सकते हैं। इस प्रकार एक्शन मानचित्र के [[कर्नेल (बीजगणित)]] के रूप में {{nowrap|''R'' → End<sub>''R''</sub>(''M'')}} [[पहचान मानचित्र]] के एडजंक्शन (श्रेणी सिद्धांत) द्वारा {{nowrap|''M'' → ''M''}} [[होम-टेंसर एडजंक्शन]] के साथ निर्धारित किया जाता है। | ||
अधिक सामान्यतः, | अधिक सामान्यतः, <math>F\colon M \times N \to P</math> मापांक का [[द्विरेखीय मानचित्र]] दिया गया है, अतः <math>S \subseteq M</math> उपसमुच्चय का विनाशक <math>N</math> में सभी तत्वों का <math>S</math> समुच्चय है, जो का सर्वनाश कर देते है। | ||
:<math>\operatorname{Ann}(S) := \{ n \in N \mid \forall s \in S: F(s,n) = 0 \} .</math> | :<math>\operatorname{Ann}(S) := \{ n \in N \mid \forall s \in S: F(s,n) = 0 \} .</math> | ||
इसके विपरीत, दिया गया <math>T \subseteq N</math>, कोई विनाशक को इसके उपसमुच्चय के रूप में परिभाषित कर सकता | इसके विपरीत, दिया गया <math>T \subseteq N</math>, कोई विनाशक को इसके उपसमुच्चय <math>M</math> के रूप में परिभाषित कर सकता है। | ||
विनाशक उपसमुच्चय <math>M</math> और <math>N</math> के मध्य [[गैलोइस कनेक्शन]] देता है, और संबंधित [[ बंद करने वाला ऑपरेटर |बंद करने वाला ऑपरेटर]] स्पैन से अधिक शक्तिशाली है। | |||
विशेष रूप से: | विशेष रूप से: | ||
* विनाशक | * विनाशक उप मापांक होता हैं | ||
* <math>\operatorname{Span}S \leq \operatorname{Ann}(\operatorname{Ann}(S))</math> | * <math>\operatorname{Span}S \leq \operatorname{Ann}(\operatorname{Ann}(S))</math> | ||
* <math>\operatorname{Ann}(\operatorname{Ann}(\operatorname{Ann}(S))) = \operatorname{Ann}(S)</math> | * <math>\operatorname{Ann}(\operatorname{Ann}(\operatorname{Ann}(S))) = \operatorname{Ann}(S)</math> | ||
महत्वपूर्ण विशेष | महत्वपूर्ण विशेष स्थिति सदिश स्थान पर गैर-अपक्षयी रूप की उपस्थिति होती है, विशेष रूप से आंतरिक उत्पाद: फिर मानचित्र से जुड़ा विनाशक <math>V \times V \to K</math> [[ऑर्थोगोनल पूरक]] कहा जाता है। | ||
==छल्लों के अन्य गुणों से संबंध== | ==छल्लों के अन्य गुणों से संबंध== | ||
[[नोथेरियन अंगूठी]] कम्यूटेटिव रिंग आर पर मापांक एम को देखते हुए, आर का प्रमुख आदर्श जो एम के गैर-शून्य तत्व का विनाशक है, उसे एम का संबद्ध प्राइम कहा जाता है। | [[नोथेरियन अंगूठी|नोथेरियन रिंग]] कम्यूटेटिव रिंग आर पर मापांक एम को देखते हुए, आर का प्रमुख आदर्श जो एम के गैर-शून्य तत्व का विनाशक होता है, उसे एम का संबद्ध प्राइम कहा जाता है। | ||
*एनिहिलेटर्स का उपयोग लेफ्ट [[रिकार्ट रिंग]] | *एनिहिलेटर्स का उपयोग लेफ्ट [[रिकार्ट रिंग]] और [[बेयर रिंग]] को परिभाषित करने के लिए किया जाता है। | ||
*(बाएं) [[शून्य भाजक]] का समुच्चय | *(बाएं) [[शून्य भाजक]] का समुच्चय डी<sub>एस</sub> एस को इस प्रकार लिखा जा सकता है। | ||
::<math>D_S = \bigcup_{x \in S \setminus \{0\}}{\mathrm{Ann}_R(x)}.</math> | ::<math>D_S = \bigcup_{x \in S \setminus \{0\}}{\mathrm{Ann}_R(x)}.</math> | ||
:(यहां हम शून्य को शून्य भाजक मानते हैं।) | :(यहां हम शून्य को शून्य भाजक मानते हैं।) | ||
:विशेष रूप से डी<sub> | :विशेष रूप से डी<sub>आर</sub>आर के (बाएं) शून्य विभाजक का समुच्चय है जो एस = आर लेता है और आर स्वयं पर बाएं आर-मापांक के रूप में कार्य करता है। | ||
*जब | *जब आर क्रमविनिमेय और नोथेरियन वलय है, तब समुच्चय <math>D_R</math> आर-मापांक आर के संबंधित अभाज्यों के [[संघ (सेट सिद्धांत)|संघ (समुच्चय सिद्धांत)]] के बिल्कुल सामान्तर होता है। | ||
==यह भी देखें== | ==यह भी देखें== |
Revision as of 08:36, 21 July 2023
गणित में, रिंग के ऊपर मापांक (गणित) के उपसमुच्चय एस का विनाशक रिंग के तत्वों द्वारा गठित आदर्श (रिंग सिद्धांत) होता है जो एस के प्रत्येक तत्व से गुणा करने पर सदैव शून्य देता है।
अभिन्न कार्यक्षेत्र पर, मापांक जिसमें गैर-शून्य विनाशक होता है वह मरोड़ मापांक होता है, और अंतिम रूप से उत्पन्न मापांक मरोड़ मापांक में गैर-शून्य विनाशक होता है।
उपरोक्त परिभाषा गैर-अनुवांशिक रिंग की स्थिति में भी क्रियान्वित होती है, जहां बाएं मापांक का बायां-विनाशक बायां आदर्श है, और दाएं मापांक का दायां-विनाशक सही आदर्श होता है।
परिभाषाएँ
मान लीजिए कि आर रिंग (गणित) है, और मान लीजिए कि एम बायाँ आर-मापांक (गणित) है। इस प्रकार एम का गैर-रिक्त उपसमुच्चय एस चुनते है। एस का 'विनाशकारी', एन को आर(एस) के द्वारा दर्शाया गया है, अतः आर में सभी तत्वों आर का समुच्चय इस प्रकार होता है कि, एस में सभी एस के लिए, आरएस = 0 होता है।[1] इस प्रकार समुच्चय अंकन में, rs = 0 होता है।
- तात्पर्य
यह आर के सभी तत्वों का समुच्चय होता है जो एस को नष्ट कर देता है (वह तत्व जिनके लिए एस मरोड़ समुच्चय होता है)। इस प्रकार परिभाषा में एसआर = 0 संशोधन के पश्चात्, सही मापांक के उपसमुच्चय का भी उपयोग किया जा सकता है।
किसी तत्व एक्स का विनाशक सामान्यतः एएनएनआर(एक्स) के अतिरिक्त एएनएनआर(एक्स) लिखा जाता है। यदि रिंग आर को संदर्भ से समझा जा सकता है, तब सबस्क्रिप्ट आर को छोड़ा जा सकता है।
चूँकि आर अपने आप में मापांक होता है, अतः एस को स्वयं आर का उपसमुच्चय माना जा सकता है, और चूँकि आर दाएँ और बाएँ दोनों आर मापांक है, इसलिए बाएँ या दाएँ पक्ष को इंगित करने के लिए अंकन को थोड़ा संशोधित किया जाता है। सामान्यतः और या यदि आवश्यक होता है, तब बाएँ और दाएँ विनाशकों को भिन्न करने के लिए कुछ समान सबस्क्रिप्ट योजना का उपयोग किया जाता है।
यदि एम, आर-मापांक होता है और एएनएनआर(एम) = 0, तब एम को 'वफादार मापांक' कहा जाता है।
गुण
यदि एस बाएँ आर मापांक एम का उपसमुच्चय होता है, तब एएनएन(एस) बाएँ आदर्श (रिंग सिद्धांत) आर की परिभाषाएँ होती है।[2]
यदि एस, एम का मापांक (गणित) उप मापांक और समरूपता है, तब एएनएनआर(एस) दोतरफा आदर्श भी होता है: (एसी)एस = ए(सीएस) = 0, जिससे कि सीएस, एस का अन्य तत्व होता है।[3]
यदि एस, एम का उपसमुच्चय है और एन, एस द्वारा उत्पन्न एम का उपमापांक होता है, तब सामान्यतः एएनएनआर(एन), एएनएनआर(एस) का उपसमुच्चय है, किन्तु वह आवश्यक रूप से समान नहीं होता हैं। यदि आर क्रमविनिमेय वलय है, तब समानता कायम रहती है।
एम को क्रिया का उपयोग करके आर/एएनएनआर(एम) के रूप में भी देखा जा सकता है संयोग से, इस प्रकार से आर मापांक को आर/आई मापांक में बनाना सदैव संभव नहीं होता है, किन्तु यदि आदर्श आई, एम के विनाशक का उपसमुच्चय है, तब यह क्रिया अच्छी प्रकार से परिभाषित होती है। इस प्रकार आर/एनआर(एम) के रूप में माना जाता है एम मापांक, स्वचालित रूप से वफादार मापांक होता है।
क्रमविनिमेय वलय के लिए
इस पूर्ण अनुभाग में, आइए क्रमविनिमेय वलय बनें और परिमित रूप से उत्पन्न मापांक (संक्षेप में, परिमित) -मापांक।
समर्थन से संबंध
याद रखें कि मापांक के समर्थन को इस प्रकार परिभाषित किया गया है
फिर, जब मापांक अंतिम रूप से उत्पन्न होता है, तब संबंध होता है
- ,
जहाँ उपसमुच्चय युक्त अभाज्य आदर्शों का समुच्चय होता है।[4]
संक्षिप्त त्रुटिहीन क्रम
मापांक के संक्षिप्त त्रुटिहीन अनुक्रम को देखते हुए,
समर्थन संपत्ति
साथ ही विनाशकर्ता से संबंध का तात्पर्य होता है
अधिक विशेष रूप से, हमारे मध्य संबंध होते हैं
यदि अनुक्रम विभाजित हो जाता है तब बाईं ओर की असमानता सदैव समानता होती है। वास्तव में यह मापांक के मापांक के अनैतिक प्रत्यक्ष योग के लिए क्रियान्वित होता है
भागफल मापांक और विनाशक
आदर्श दिया और जाने परिमित मापांक हो, तब संबंध है
समर्थन पर. सहारे के संबंध का प्रयोग करने से यह विनाशक के साथ संबंध बताता है[6]
उदाहरण
पूर्णांकों पर
ऊपर किसी भी अंतिम रूप से उत्पन्न मापांक को एबेलियन समुच्चयों के मौलिक प्रमेय से उसके मरोड़ वाले भाग के साथ उसके मुक्त भाग के प्रत्यक्ष योग के रूप में पूर्ण प्रकार से वर्गीकृत किया गया है। फिर, परिमित मापांक का विनाशक केवल गैर-तुच्छ होता है यदि यह पूर्ण प्रकार से मरोड़ है। जिससे कि
चूंकि एकमात्र तत्व प्रत्येक को मार रहा है। उदाहरण के लिए, का विनाशक होता है।
द्वारा उत्पन्न आदर्श होता है, वास्तव में मरोड़ मापांक का विनाशक
उनके लघुत्तम समापवर्त्य से उत्पन्न आदर्श के समरूपी है, . इससे पता चलता है कि विनाशकों को सरलता से पूर्णांकों में वर्गीकृत किया जा सकता है।
क्रमविनिमेय वलय के ऊपर R
वास्तव में, ऐसी ही गणना होती है जो क्रमविनिमेय वलय पर किसी भी परिमित मापांक के लिए की जा सकती है। अतः यह स्मरण रखें कि परिमितता की परिभाषा से तात्पर्य यह होता है कि सही-त्रुटिहीन अनुक्रम उपस्तिथ है, जिसे प्रेजेंटेशन (प्रस्तुति) कहा जाता है।
जहाँ अंदर होता है . लिखना स्पष्ट रूप से आव्युह (गणित) के रूप में इसे देता है
इस प्रकार प्रत्यक्ष योग अपघटन है
यदि हम इनमें से प्रत्येक आदर्श को इस प्रकार लिखते है
फिर आदर्श द्वारा दिए गए
विनाशक प्रस्तुत करता है।
k[x,y] से अधिक
क्रमविनिमेय वलय के ऊपर क्षेत्र के लिए (गणित) , मापांक का विनाशक
आदर्श द्वारा दिया जाता है
विनाशक आदर्शों पर श्रृंखला की स्थितियाँ
इस स्वरूप के आदर्शों की जाली (क्रम) कहा जाता है। जहां एस, आर का उपसमुच्चय होता है, जब आंशिक रूप से उपसमुच्चय द्वारा क्रमबद्ध किया जाता है, तब इसमें पूर्ण जाली सम्मिलित होती है। उन छल्लों का अध्ययन करना रोचक होता है जिनके लिए यह जाली (या इसका दायां समकक्ष) आरोही श्रृंखला स्थिति या अवरोही श्रृंखला स्थिति को संतुष्ट करता है।
आर के बाएं विनाशक आदर्शों की जाली को द्वारा निरूपित करते है और आर के सही विनाशक आदर्शों की जाली होती है, अतः ज्ञात रहता है कि ए.सी.सी. को संतुष्ट करता है और यदि डी.सी.सी. को संतुष्ट करता है, और सममित रूप से ए.सी.सी. को संतुष्ट करता है और यदि डी.सी.सी. को संतुष्ट करता है यदि किसी भी जाली में इनमें से कोई भी श्रृंखला स्थिति है, तब आर के पास इडेम्पोटेंट (रिंग सिद्धांत) का कोई अनंत ऑर्थोगोनल समुच्चय नहीं होता है। [7][8]
यदि आर वलय होता है जिसके लिए ए.सी.सी. को संतुष्ट करता है और आरआर में मापांक का परिमित यूनिफ़ॉर्म मापांक यूनिफ़ॉर्म आयाम होता है, तब आर को बांया गोल्डी रिंग कहा जाता है।[8]
क्रमविनिमेय वलय के लिए श्रेणी-सैद्धांतिक विवरण
जब आर क्रमविनिमेय है और एम आर-मापांक है, तब हम ऐनआर(एम) का वर्णन कर सकते हैं। इस प्रकार एक्शन मानचित्र के कर्नेल (बीजगणित) के रूप में R → EndR(M) पहचान मानचित्र के एडजंक्शन (श्रेणी सिद्धांत) द्वारा M → M होम-टेंसर एडजंक्शन के साथ निर्धारित किया जाता है।
अधिक सामान्यतः, मापांक का द्विरेखीय मानचित्र दिया गया है, अतः उपसमुच्चय का विनाशक में सभी तत्वों का समुच्चय है, जो का सर्वनाश कर देते है।
इसके विपरीत, दिया गया , कोई विनाशक को इसके उपसमुच्चय के रूप में परिभाषित कर सकता है।
विनाशक उपसमुच्चय और के मध्य गैलोइस कनेक्शन देता है, और संबंधित बंद करने वाला ऑपरेटर स्पैन से अधिक शक्तिशाली है।
विशेष रूप से:
- विनाशक उप मापांक होता हैं
महत्वपूर्ण विशेष स्थिति सदिश स्थान पर गैर-अपक्षयी रूप की उपस्थिति होती है, विशेष रूप से आंतरिक उत्पाद: फिर मानचित्र से जुड़ा विनाशक ऑर्थोगोनल पूरक कहा जाता है।
छल्लों के अन्य गुणों से संबंध
नोथेरियन रिंग कम्यूटेटिव रिंग आर पर मापांक एम को देखते हुए, आर का प्रमुख आदर्श जो एम के गैर-शून्य तत्व का विनाशक होता है, उसे एम का संबद्ध प्राइम कहा जाता है।
- एनिहिलेटर्स का उपयोग लेफ्ट रिकार्ट रिंग और बेयर रिंग को परिभाषित करने के लिए किया जाता है।
- (बाएं) शून्य भाजक का समुच्चय डीएस एस को इस प्रकार लिखा जा सकता है।
- (यहां हम शून्य को शून्य भाजक मानते हैं।)
- विशेष रूप से डीआरआर के (बाएं) शून्य विभाजक का समुच्चय है जो एस = आर लेता है और आर स्वयं पर बाएं आर-मापांक के रूप में कार्य करता है।
- जब आर क्रमविनिमेय और नोथेरियन वलय है, तब समुच्चय आर-मापांक आर के संबंधित अभाज्यों के संघ (समुच्चय सिद्धांत) के बिल्कुल सामान्तर होता है।
यह भी देखें
- सामाजिक (गणित)
- मापांक का समर्थन
- फाल्टिंग्स का विनाशक प्रमेय
टिप्पणियाँ
- ↑ Pierce (1982), p. 23.
- ↑ Proof: If a and b both annihilate S, then for each s in S, (a + b)s = as + bs = 0, and for any r in R, (ra)s = r(as) = r0 = 0.
- ↑ Pierce (1982), p. 23, Lemma b, item (i).
- ↑ "Lemma 10.39.5 (00L2)—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-05-13.
- ↑ "Lemma 10.39.9 (00L3)—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-05-13.
- ↑ "Lemma 10.39.9 (00L3)—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-05-13.
- ↑ Anderson & Fuller 1992, p. 322.
- ↑ 8.0 8.1 Lam 1999.
संदर्भ
- Anderson, Frank W.; Fuller, Kent R. (1992), Rings and categories of modules, Graduate Texts in Mathematics, vol. 13 (2 ed.), New York: Springer-Verlag, pp. x+376, doi:10.1007/978-1-4612-4418-9, ISBN 0-387-97845-3, MR 1245487
- Israel Nathan Herstein (1968) Noncommutative Rings, Carus Mathematical Monographs #15, Mathematical Association of America, page 3.
- Lam, Tsit Yuen (1999), Lectures on modules and rings, Graduate Texts in Mathematics No. 189, vol. 189, Berlin, New York: Springer-Verlag, pp. 228–232, doi:10.1007/978-1-4612-0525-8, ISBN 978-0-387-98428-5, MR 1653294
- Richard S. Pierce. Associative algebras. Graduate texts in mathematics, Vol. 88, Springer-Verlag, 1982, ISBN 978-0-387-90693-5