संतृप्त मॉडल: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
==परिभाषा== | ==परिभाषा== | ||
मान लीजिए κ एक परिमित समुच्चय या अनंत कार्डिनल संख्या है और M किसी प्रथम-क्रम भाषा में एक मॉडल है। तब | मान लीजिए κ एक परिमित समुच्चय या अनंत कार्डिनल संख्या है और ''M'' किसी प्रथम-क्रम भाषा में एक मॉडल है। तब ''M'' को ''''κ-संतृप्त'''<nowiki/>' कहा जाता है यदि सभी उपमुच्चयों ''A'' ⊆ ''M'' के लिए कार्डिनैलिटी κ से कम है, तो मॉडल ''M'' ''A'' पर सभी प्रकार (मॉडल सिद्धांत) का एहसास करता है। मॉडल ''M'' को ''''संतृप्त'''<nowiki/>' कहा जाता है यदि यह |''M''|- है संतृप्त जहाँ |''M''| ''M'' की [[प्रमुखता]] को दर्शाता है। यानी, यह |''M''| से कम आकार के मापदंडों के समुच्चय पर सभी पूर्ण प्रकारों का एहसास करता है। कुछ लेखकों के अनुसार, एक मॉडल ''M'' को ''''गणनीय रूप से संतृप्त'''<nowiki/>' कहा जाता है यदि यह <math>\aleph_1</math>-संतृप्त है; अर्थात्, यह मापदंडों के गणनीय मुच्चयों पर सभी पूर्ण प्रकारों का एहसास करता है।<ref>{{Cite journal|last=Morley|first=Michael|authorlink = Michael D. Morley|date=1963|title=अनगिनत शक्तियों में वर्गीकृत सिद्धांतों पर|journal=[[Proceedings of the National Academy of Sciences of the United States of America]]|volume=49|issue=2 |pages=213–216|doi=10.1073/pnas.49.2.213 |pmid=16591050 |pmc=299780 |bibcode=1963PNAS...49..213M |doi-access=free }}</ref> दूसरों के अनुसार, यदि यह गणनीय और संतृप्त है तो यह गणनीय रूप से संतृप्त है।<ref>Chang and Keisler 1990</ref> | ||
==प्रेरणा== | ==प्रेरणा== | ||
Line 13: | Line 13: | ||
कुछ सिद्धांतों और प्रमुखताओं के लिए संतृप्त मॉडल उपस्थित हैं: | कुछ सिद्धांतों और प्रमुखताओं के लिए संतृप्त मॉडल उपस्थित हैं: | ||
* ('''Q''', <) - अपने सामान्य क्रम के साथ [[तर्कसंगत संख्या]]ओं का समुच्चय - संतृप्त है। सहज रूप से, ऐसा इसलिए है क्योंकि | * ('''Q''', <) - अपने सामान्य क्रम के साथ [[तर्कसंगत संख्या]]ओं का समुच्चय - संतृप्त है। सहज रूप से, ऐसा इसलिए है क्योंकि समान रैखिक क्रम के अनुरूप कोई भी प्रकार ऑर्डर प्रकार से निहित होता है; अर्थात्, चरों के आने का क्रम आपको संरचना में उनकी भूमिका के बारे में जानने के लिए सब कुछ बताता है। | ||
* ('''R''', <)-अपने सामान्य क्रम के साथ [[वास्तविक संख्या]]ओं का समुच्चय-संतृप्त नहीं है। उदाहरण के लिए, वह प्रकार लें (एक चर ''x'' में) जिसमें सूत्र सम्मिलित है <math>\textstyle{x> -\frac{1}{n}}</math> प्रत्येक प्राकृत संख्या n के लिए, साथ ही सूत्र भी <math>\textstyle{x<0}</math>. यह प्रकार '''R''' से भिन्न मापदंडों का उपयोग करता है। प्रकार के प्रत्येक परिमित उपसमुच्चय को '''R''' पर कुछ वास्तविक ''x'' द्वारा महसूस किया जाता है, इसलिए कॉम्पैक्टनेस द्वारा प्रकार संरचना के अनुरूप है, लेकिन इसका एहसास नहीं होता है, क्योंकि इसका तात्पर्य यह होगा कि अनुक्रम की ऊपरी सीमा −1/''n'' है जो 0 से कम है (इसकी सबसे निचली ऊपरी सीमा)। इस प्रकार ('''R''',<) ''नहीं'' ω है<sub>1</sub>-संतृप्त, और संतृप्त नहीं. हालाँकि, यह ω-संतृप्त है, अनिवार्य रूप <nowiki/>से '''Q'''' के समान कारण से - प्रत्येक परिमित प्रकार को ऑर्डर प्रकार द्वारा दिया जाता है, जो कि यदि सुसंगत है, तो ऑर्डर के घनत्व के कारण हमेशा महसूस किया जाता है। | * ('''R''', <)-अपने सामान्य क्रम के साथ [[वास्तविक संख्या]]ओं का समुच्चय-संतृप्त नहीं है। उदाहरण के लिए, वह प्रकार लें (एक चर ''x'' में) जिसमें सूत्र सम्मिलित है <math>\textstyle{x> -\frac{1}{n}}</math> प्रत्येक प्राकृत संख्या n के लिए, साथ ही सूत्र भी <math>\textstyle{x<0}</math>. यह प्रकार '''R''' से भिन्न मापदंडों का उपयोग करता है। प्रकार के प्रत्येक परिमित उपसमुच्चय को '''R''' पर कुछ वास्तविक ''x'' द्वारा महसूस किया जाता है, इसलिए कॉम्पैक्टनेस द्वारा प्रकार संरचना के अनुरूप है, लेकिन इसका एहसास नहीं होता है, क्योंकि इसका तात्पर्य यह होगा कि अनुक्रम की ऊपरी सीमा −1/''n'' है जो 0 से कम है (इसकी सबसे निचली ऊपरी सीमा)। इस प्रकार ('''R''',<) ''नहीं'' ω है<sub>1</sub>-संतृप्त, और संतृप्त नहीं. हालाँकि, यह ω-संतृप्त है, अनिवार्य रूप <nowiki/>से '''Q'''' के समान कारण से - प्रत्येक परिमित प्रकार को ऑर्डर प्रकार द्वारा दिया जाता है, जो कि यदि सुसंगत है, तो ऑर्डर के घनत्व के कारण हमेशा महसूस किया जाता है। | ||
*अंतबिंदुओं के बिना एक सघन पूर्णतः व्यवस्थित समुच्चय एक η<sub>α</sub> समुच्चय है यदि और केवल यदि यह ℵ<sub>α</sub> -संतृप्त हैl | *अंतबिंदुओं के बिना एक सघन पूर्णतः व्यवस्थित समुच्चय एक η<sub>α</sub> समुच्चय है यदि और केवल यदि यह ℵ<sub>α</sub> -संतृप्त हैl |
Revision as of 15:42, 26 July 2023
गणितीय तर्क में, और विशेष रूप से इसके उपक्षेत्र मॉडल सिद्धांत में, एक संतृप्त मॉडल M वह है जो अपने आकार को देखते हुए "उचित रूप से अपेक्षित" के रूप में कई पूर्ण प्रकारों का एहसास करता है। उदाहरण के लिए, हाइपररियल्स का एक अल्ट्रापावर मॉडल है -संतृप्त, जिसका अर्थ है कि आंतरिक मुच्चयों के प्रत्येक अवरोही नेस्टेड अनुक्रम में एक गैर-रिक्त प्रतिच्छेदन होता है।[1]
परिभाषा
मान लीजिए κ एक परिमित समुच्चय या अनंत कार्डिनल संख्या है और M किसी प्रथम-क्रम भाषा में एक मॉडल है। तब M को 'κ-संतृप्त' कहा जाता है यदि सभी उपमुच्चयों A ⊆ M के लिए कार्डिनैलिटी κ से कम है, तो मॉडल M A पर सभी प्रकार (मॉडल सिद्धांत) का एहसास करता है। मॉडल M को 'संतृप्त' कहा जाता है यदि यह |M|- है संतृप्त जहाँ |M| M की प्रमुखता को दर्शाता है। यानी, यह |M| से कम आकार के मापदंडों के समुच्चय पर सभी पूर्ण प्रकारों का एहसास करता है। कुछ लेखकों के अनुसार, एक मॉडल M को 'गणनीय रूप से संतृप्त' कहा जाता है यदि यह -संतृप्त है; अर्थात्, यह मापदंडों के गणनीय मुच्चयों पर सभी पूर्ण प्रकारों का एहसास करता है।[2] दूसरों के अनुसार, यदि यह गणनीय और संतृप्त है तो यह गणनीय रूप से संतृप्त है।[3]
प्रेरणा
प्रतीत होने वाली अधिक सहज धारणा - कि भाषा के सभी पूर्ण प्रकारों का एहसास होता है - बहुत अशक्त हो जाती है (और इसे उचित रूप से अशक्त संतृप्ति का नाम दिया गया है, जो 1-संतृप्ति के समान है)। अंतर इस तथ्य में निहित है कि कई संरचनाओं में ऐसे तत्व होते हैं जो निश्चित नहीं हैं (उदाहरण के लिए, R का कोई भी पारलौकिक संख्या तत्व, शब्द की परिभाषा के अनुसार, फ़ील्ड (गणित) की भाषा में परिभाषित नहीं है)। हालाँकि, वे अभी भी संरचना का हिस्सा हैं, इसलिए हमें उनके साथ संबंधों का वर्णन करने के लिए प्रकारों की आवश्यकता है। इस प्रकार हम प्रकारों की अपनी परिभाषा में संरचना से मापदंडों के समुच्चय की अनुमति देते हैं। यह तर्क हमें मॉडल की विशिष्ट विशेषताओं पर चर्चा करने की अनुमति देता है जिन्हें हम अन्यथा चूक सकते हैं - उदाहरण के लिए, विशिष्ट बढ़ते अनुक्रम पर एक cn प्रकार को साकार करने के रूप में व्यक्त किया जा सकता है {x ≥ cn : n ∈ ω}, जो अनगिनत मापदंडों का उपयोग करता है। यदि अनुक्रम निश्चित नहीं है, तो संरचना के बारे में इस तथ्य को आधार भाषा का उपयोग करके वर्णित नहीं किया जा सकता है, इसलिए एक अशक्त संतृप्त संरचना अनुक्रम को बाध्य नहीं कर सकती है, जबकि एक ℵ1-संतृप्त संरचना होगी.
हमें केवल उन पैरामीटर समुच्चयों की आवश्यकता होती है जो मॉडल से बिल्कुल छोटे होते हैं, यह तुच्छ है: इस प्रतिबंध के बिना, कोई भी अनंत मॉडल संतृप्त नहीं होता है। एक मॉडल M और प्रकार पर विचार करें {x ≠ m : m ∈ M}. इस प्रकार के प्रत्येक परिमित उपसमुच्चय को (अनंत) मॉडल एम में महसूस किया जाता है, इसलिए सघनता से यह M के अनुरूप है, लेकिन तुच्छ रूप से इसका एहसास नहीं होता है। कोई भी परिभाषा जो सार्वभौमिक रूप से असंतुष्ट है वह बेकार है; इसलिए प्रतिबंध.
उदाहरण
कुछ सिद्धांतों और प्रमुखताओं के लिए संतृप्त मॉडल उपस्थित हैं:
- (Q, <) - अपने सामान्य क्रम के साथ तर्कसंगत संख्याओं का समुच्चय - संतृप्त है। सहज रूप से, ऐसा इसलिए है क्योंकि समान रैखिक क्रम के अनुरूप कोई भी प्रकार ऑर्डर प्रकार से निहित होता है; अर्थात्, चरों के आने का क्रम आपको संरचना में उनकी भूमिका के बारे में जानने के लिए सब कुछ बताता है।
- (R, <)-अपने सामान्य क्रम के साथ वास्तविक संख्याओं का समुच्चय-संतृप्त नहीं है। उदाहरण के लिए, वह प्रकार लें (एक चर x में) जिसमें सूत्र सम्मिलित है प्रत्येक प्राकृत संख्या n के लिए, साथ ही सूत्र भी . यह प्रकार R से भिन्न मापदंडों का उपयोग करता है। प्रकार के प्रत्येक परिमित उपसमुच्चय को R पर कुछ वास्तविक x द्वारा महसूस किया जाता है, इसलिए कॉम्पैक्टनेस द्वारा प्रकार संरचना के अनुरूप है, लेकिन इसका एहसास नहीं होता है, क्योंकि इसका तात्पर्य यह होगा कि अनुक्रम की ऊपरी सीमा −1/n है जो 0 से कम है (इसकी सबसे निचली ऊपरी सीमा)। इस प्रकार (R,<) नहीं ω है1-संतृप्त, और संतृप्त नहीं. हालाँकि, यह ω-संतृप्त है, अनिवार्य रूप से Q' के समान कारण से - प्रत्येक परिमित प्रकार को ऑर्डर प्रकार द्वारा दिया जाता है, जो कि यदि सुसंगत है, तो ऑर्डर के घनत्व के कारण हमेशा महसूस किया जाता है।
- अंतबिंदुओं के बिना एक सघन पूर्णतः व्यवस्थित समुच्चय एक ηα समुच्चय है यदि और केवल यदि यह ℵα -संतृप्त हैl
- गणनीय यादृच्छिक ग्राफ, जिसमें एकमात्र गैर-तार्किक प्रतीक किनारे अस्तित्व संबंध है, भी संतृप्त है, क्योंकि किसी भी पूर्ण प्रकार को प्रकार को परिभाषित करने के लिए उपयोग किए जाने वाले चर और पैरामीटर से युक्त परिमित सबग्राफ द्वारा पृथक (निहित) किया जाता है।
Q के सिद्धांत और गणनीय यादृच्छिक ग्राफ के सिद्धांत दोनों को आगे और पीछे की विधि (बैक-एंड-फोर्थ मेथड) के माध्यम से श्रेणीबद्ध सिद्धांत ω-श्रेणीबद्ध दिखाया जा सकता है। इसे निम्नानुसार सामान्यीकृत किया जा सकता है: गणनीय κ-श्रेणीबद्ध सिद्धांत की कार्डिनैलिटी κ का अद्वितीय मॉडल संतृप्त है।
हालाँकि, यह कथन कि प्रत्येक मॉडल में एक संतृप्त प्राथमिक विस्तार होता है, ZFC में सिद्ध नहीं होता है। वस्तुतः यह कथन समतुल्य है कार्डिनल्स के एक उचित वर्ग का अस्तित्व κ जैसे कि κ<κ = κ. बाद वाली पहचान के बराबर है κ = λ+ = 2λ कुछ λ के लिए, या κ अत्यधिक पहुंच योग्य नहीं है।
प्रमुख मॉडल से संबंध
संतृप्त मॉडल की धारणा निम्नलिखित तरीके से अभाज्य मॉडल की धारणा से दोहरी है: मान लें कि T एक प्रथम-क्रम भाषा में एक गणनीय सिद्धांत है (अर्थात, उस भाषा में पारस्परिक रूप से सुसंगत वाक्यों का एक समुच्चय) और मान लीजिए कि P एक अभाज्य है T का मॉडल। तब P T के किसी भी अन्य मॉडल में प्राथमिक एम्बेडिंग स्वीकार करता है। संतृप्त मॉडल के लिए समतुल्य धारणा यह है किT का कोई भी छोटा मॉडल प्राथमिक रूप से संतृप्त मॉडल में एम्बेडेड होता है, जहां उचित रूप से छोटे का तात्पर्य कार्डिनैलिटी से बड़ा नहीं होता है वह मॉडल जिसमें इसे एम्बेड किया जाना है। कोई भी संतृप्त मॉडल भी सजातीय मॉडल है। हालाँकि, जबकि गणनीय सिद्धांतों के लिए एक अद्वितीय प्राइम मॉडल होता है, संतृप्त मॉडल आवश्यक रूप से एक विशेष कार्डिनैलिटी के लिए विशिष्ट होते हैं। कुछ समुच्चय-सैद्धांतिक मान्यताओं को देखते हुए, मनमाने सिद्धांतों के लिए संतृप्त मॉडल (यद्यपि बहुत बड़ी कार्डिनलिटी के) उपस्थित हैं। λ-स्थिर सिद्धांत सिद्धांतों के लिए, कार्डिनैलिटी λ के संतृप्त मॉडल उपस्थित हैं।
टिप्पणियाँ
- ↑ Goldblatt 1998
- ↑ Morley, Michael (1963). "अनगिनत शक्तियों में वर्गीकृत सिद्धांतों पर". Proceedings of the National Academy of Sciences of the United States of America. 49 (2): 213–216. Bibcode:1963PNAS...49..213M. doi:10.1073/pnas.49.2.213. PMC 299780. PMID 16591050.
- ↑ Chang and Keisler 1990
संदर्भ
- Chang, C. C.; Keisler, H. J. Model theory. Third edition. Studies in Logic and the Foundations of Mathematics, 73. North-Holland Publishing Co., Amsterdam, 1990. xvi+650 pp. ISBN 0-444-88054-2
- R. Goldblatt (1998). Lectures on the hyperreals. An introduction to nonstandard analysis. Springer.
- Marker, David (2002). Model Theory: An Introduction. New York: Springer-Verlag. ISBN 0-387-98760-6
- Poizat, Bruno; (translation: Klein, Moses) (2000), A Course in Model Theory, New York: Springer-Verlag. ISBN 0-387-98655-3
- Sacks, Gerald E. (1972), Saturated model theory, W. A. Benjamin, Inc., Reading, Mass., MR 0398817