योजनाओं का फाइबर उत्पाद: Difference between revisions

From Vigyanwiki
No edit summary
Line 45: Line 45:
==बाहरी संबंध==
==बाहरी संबंध==
*{{Citation | author1=The Stacks Project Authors | title=The Stacks Project  | url=http://stacks.math.columbia.edu/}}
*{{Citation | author1=The Stacks Project Authors | title=The Stacks Project  | url=http://stacks.math.columbia.edu/}}
[[Category: योजना सिद्धांत|*]]


[[Category: Machine Translated Page]]
[[Category:Created On 10/07/2023]]
[[Category:Created On 10/07/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:योजना सिद्धांत|*]]

Revision as of 06:58, 1 August 2023

गणित में, विशेष रूप से बीजगणितीय ज्यामिति में, अधियोजना का फाइबर उत्पाद एक मौलिक निर्माण है। इसकी कई व्याख्याएँ और विशेष स्तिथियाँ हैं। उदाहरण के लिए, फाइबर उत्पाद बताता है कि कैसे एक क्षेत्र में बीजीय विविधता (गणित) बड़े क्षेत्र में विविधता, या किस्मों के एक श्रेणी की वापसी, या किस्मों की श्रेणी का एक फाइबर निर्धारित करती है। आधार परिवर्तन एक अतिसंबद्‍ध धारणा है।

परिभाषा

अधियोजना (गणित) की श्रेणी (गणित) बीजगणितीय ज्यामिति के लिए एक व्यापक समुच्चयन है। एक उपयोगी दर्शन (ग्रोथेंडिक के सापेक्ष दृष्टिकोण के रूप में जाना जाता है) यह है कि बीजगणितीय ज्यामिति का अधिकांश भाग एकल अधियोजना X के स्थान पर अधियोजना X → Y (जिसे अधियोजना, केवल बीजगणितीय वक्रों का अध्ययन करने के स्थान पर, किसी आधार अधियोजना Y पर वक्रों के श्रेणी का अध्ययन कर सकता है। वास्तव में, दोनों दृष्टिकोण एक दूसरे को समृद्ध करते हैं।

विशेष रूप से, एक क्रमविनिमेय वलय R पर एक अधियोजना का अर्थ है एक अधियोजना क्षेत्र k पर बीजगणितीय विविधता की पुरानी धारणा कुछ गुणों के साथ k पर एक अधियोजना के बराबर है। (वास्तव में किन अधियोजना को किस्में कहा जाना चाहिए, इसके लिए अलग-अलग अधिवेशन हैं। एक मानक विकल्प यह है कि किसी क्षेत्र k पर विविधता का अर्थ k पर परिमित प्रकार की एक अभिन्न पृथक योजना है। [1])

सामान्यतः, अधियोजना के एक रूपवाद फाइबर उत्पाद X ×Y ZZ है।

औपचारिक रूप से: यह अधियोजना की श्रेणी की एक उपयोगी विशेषता है जिसमें फाइबर उत्पाद (श्रेणी सिद्धांत) हमेशा उपस्थित रहता है। [2] अर्थात्, योजनाओं X → Y और Z → Y के किसी भी रूपवाद के लिए, X और Z के आकारिकी के साथ एक योजना, निम्न आरेख बनाते हुए

Fiber product.png

क्रमविनिमेय आरेख, और जो उस विशेषता के साथ सार्वभौमिक विशेषता है। अर्थात्, किसी भी अधियोजना W के लिए रूपवाद के साथ X और Z जिसकी संरचना Y के बराबर है, W से X ×Y Z तक एक अद्वितीय रूपवाद है जो आरेख को लघु बनाता है। हमेशा की तरह सार्वभौमिक गुणों के साथ, यह स्थिति अधियोजना X ×Y Z निर्धारित करती है यदि एक अद्वितीय समरूपता तक यह उपस्थित है। इस बात का प्रमाण कि अधियोजना के फाइबर उत्पाद हमेशा उपस्थित रहते हैं, समस्या को बीजगणित के टेंसर उत्पाद (cf. ग्लूइंग योजनाएं) तक कम कर देता है। विशेष रूप से, जब एफ़िन अधियोजना है

रूपवाद X ×Y Z → Z को रूपवाद Z → Y के माध्यम से रूपवाद X → Y का 'आधार परिवर्तन' या 'पुलबैक' कहा जाता है।

कुछ स्तिथियों में, अधियोजना के फाइबर उत्पाद में एक सही जोड़, वेइल प्रतिबंध होता है।

व्याख्याएँ और विशेष स्तिथियाँ

  • क्षेत्र k पर अधियोजना की श्रेणी में, 'उत्पाद' X × Y का अर्थ फाइबर उत्पाद X ×k Y है (जो Spec(k) के ऊपर फाइबर उत्पाद के लिए आशुलिपि है)। उदाहरण के लिए, क्षेत्र k पर एफ़िन स्पेस Am और An का गुणनफल, k पर एफ़िन स्पेस Am+n है।
  • क्षेत्र k पर अधियोजना X और k के किसी क्षेत्र विस्तार E के लिए, 'आधार परिवर्तन' XE इसका अर्थ फाइबर उत्पाद X ×Spec(k) Spec(E) Spec(k) है। यहाँ XE E पर एक अधियोजना है। उदाहरण के लिए, यदि X समीकरण xy2 = 7z3 द्वारा परिभाषित वास्तविक संख्या R पर प्रक्षेप्य तल P2
    R
    में वक्र है, तो XC उसी समीकरण द्वारा परिभाषित P2
    C
    में जटिल वक्र है। किसी क्षेत्र k पर बीजगणितीय विविधता के कई गुणों को इसके आधार परिवर्तन के आधार पर k के बीजगणितीय समापन के संदर्भ में परिभाषित किया जा सकता है, जो स्थिति को सरल बनाता है।
  • मान लीजिए कि f: X → Y योजनाओं का एक रूपवाद है, और y को Y में एक बिंदु होने दें। फिर छवि y के साथ एक रूपवाद Spec(k(y)) → Y है, जहां k(y) y का अवशेष क्षेत्र है। y के ऊपर f के फ़ाइबर को फ़ाइबर उत्पाद X ×Y Spec(k(y)) के रूप में परिभाषित किया गया है; यह छेत्र k(y) पर एक योजना है। [3] यह अवधारणा Y द्वारा पैरामीट्रिज्ड योजनाओं के एक श्रेणी के रूप में योजना X → Y के रूपवाद के स्थूल विचार को उचित ठहराने में सहायता करती है।
  • मान लें कि X, Y और Z एक क्षेत्र k पर अधियोजना हैं, जिसमें k के ऊपर रूपवाद X → Y और Z → Y हैं। फिर फाइबर उत्पाद X x के k-Y Z तर्कसंगत बिंदुओं का सम्मुच्चय का वर्णन करना आसान है:
अर्थात, X x का एक k-Y Z बिंदु को X और Z के k-बिंदुओं की एक जोड़ी से पहचाना जा सकता है जिनकी Y में समान छवि है। यह अधियोजना के फाइबर उत्पाद की सार्वभौमिक विशेषता से तत्काल है।
  • यदि X और Z किसी अधियोजना Y की सवृत उपयोजनाएं हैं, तो फाइबर उत्पाद X xY Z अपनी प्राकृतिक अधियोजना संरचना के साथ बिल्कुल 'अधियोजना-सैद्धांतिक प्रतिच्छेदन' X ∩ Z है। [4] यही बात विवृत उपअधियोजना के लिए भी लागू होती है।

आधार परिवर्तन और अवतरण

अधियोजना के आकारिकी के कुछ महत्वपूर्ण गुण P को स्वेच्छाचारी आधार परिवर्तन के अंतर्गत संरक्षित किया जाता है। अर्थात्, यदि XY में गुण P है और ZY अधियोजना का कोई रूप है, तो आधार परिवर्तन X xY Z → Z में विशेषता P है। उदाहरण के लिए, फ्लैट आकारिकी, निर्बाध आकारिकी, उचित आकारिकी और आकारिकी के कई अन्य वर्ग स्वेच्छाचारी आधार परिवर्तन के अंतर्गत संरक्षित हैं। [5] वंश शब्द विपरीत प्रश्न को संदर्भित करता है: यदि पुल-बैक रूपवाद X xY ZZ के पास कुछ गुण P है, क्या मूल रूपवाद X → Y के पास गुण P होना चाहिए? स्पष्ट रूप से यह सामान्य रूप से असंभव है: उदाहरण के लिए, Z खाली अधियोजना हो सकती है, जिस स्थिति में पुल-बैक रूपवाद मूल रूपवाद के बारे में सभी जानकारी खो देता है। लेकिन यदि रूपवाद Z → Y समतल और विशेषण है (जिसे 'विश्वसनीय सपाट' भी कहा जाता है) और अर्ध-सघन रूपवाद है, तो कई गुण Z से Y तक उतरते हैं। जो गुण उतरते हैं उनमें समतलता, निर्बाध, उचितता और रूपवाद के कई अन्य वर्ग सम्मिलित हैं। [6] ये परिणाम अलेक्जेंडर ग्रोथेंडिक के वंश सिद्धांत (गणित) का हिस्सा हैं।

उदाहरण: किसी भी क्षेत्र विस्तारण kE के लिए, रूपवाद Spec(E) → Spec(k) विश्वसनीय सपाट और अर्ध-सघन है। तो उल्लेखित वंश परिणाम का अर्थ है कि एक अधियोजना X बटा k k पर निर्बाध है यदि और केवल यदि आधार XE ई पर निर्बाध है। यही बात उचितता और कई अन्य गुणों के लिए भी लागू होती है।

टिप्पणियाँ

  1. Stacks Project, Tag 020D.
  2. Grothendieck, EGA I, Théorème 3.2.6; Hartshorne (1977), Theorem II.3.3.
  3. Hartshorne (1977), section II.3.
  4. Stacks Project, Tag 0C4I.
  5. Stacks Project, Tag 02WE.
  6. Stacks Project, Tag 02YJ.


संदर्भ


बाहरी संबंध