व्याख्या (मॉडल सिद्धांत): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{distinguish|Interpretation function}}
{{distinguish|व्याख्या फलन}}
[[मॉडल सिद्धांत]] में, [[संरचना ([[गणितीय तर्क]])]] ''एम'' की दूसरी संरचना ''एन'' (आमतौर पर अलग [[हस्ताक्षर (तर्क)]]) की व्याख्या तकनीकी धारणा है जो ''एन'' के अंदर ''एम'' का प्रतिनिधित्व करने के विचार का अनुमान लगाती है। उदाहरण के लिए, किसी संरचना ''एन'' के प्रत्येक कटौती या निश्चित विस्तार की ''एन'' में व्याख्या होती है।
[[मॉडल सिद्धांत|'''मॉडल सिद्धांत''']] में, संरचना ([[गणितीय तर्क]]) ''M'' की दूसरी संरचना ''N'' (सामान्यतः भिन्न [[हस्ताक्षर (तर्क)]] की व्याख्या तकनीकी धारणा करती है जो ''N'' के अंदर ''M'' का प्रतिनिधित्व करने के विचार का अनुमान लगाती है। उदाहरण के लिए, किसी संरचना ''N'' के प्रत्येक डिडक्शन या निश्चित विस्तार की ''N'' में व्याख्या होती है।


कई मॉडल-सैद्धांतिक गुणों को व्याख्यात्मकता के तहत संरक्षित किया गया है। उदाहरण के लिए, यदि ''एन'' का सिद्धांत [[स्थिर सिद्धांत]] है और ''एम'' की व्याख्या ''एन'' में की जा सकती है, तो ''एम'' का सिद्धांत भी स्थिर है।
अनेक मॉडल-सैद्धांतिक गुणों को व्याख्यात्मकता के अनुसार संरक्षित किया गया है। उदाहरण के लिए, यदि ''N'' का सिद्धांत [[स्थिर सिद्धांत]] है और ''N'' की व्याख्या ''N'' में की जा सकती है, तब ''M'' का सिद्धांत भी स्थिर होता है।


ध्यान दें कि गणितीय तर्क के अन्य क्षेत्रों में, व्याख्या शब्द संरचना (गणितीय तर्क) को संदर्भित कर सकता है,<ref>
ध्यान दें कि गणितीय तर्क के अन्य क्षेत्रों में, "व्याख्या" शब्द यहां परिभाषित अर्थ में उपयोग किए जाने के अतिरिक्त संरचना, <ref>
{{Cite book|last=Goldblatt |first=Robert |authorlink = Robert Goldblatt|url=https://www.worldcat.org/oclc/853624133 |title=Topoi : the categorial analysis of logic |chapter=11.2 Formal Language and Semantics|date=2006 |publisher=Dover Publications |isbn=978-0-486-31796-0 |edition=2nd|location=Mineola, N.Y. |oclc=853624133}}
{{Cite book|last=Goldblatt |first=Robert |authorlink = Robert Goldblatt|url=https://www.worldcat.org/oclc/853624133 |title=Topoi : the categorial analysis of logic |chapter=11.2 Formal Language and Semantics|date=2006 |publisher=Dover Publications |isbn=978-0-486-31796-0 |edition=2nd|location=Mineola, N.Y. |oclc=853624133}}
</ref><ref>
</ref> <ref>
{{cite book|last=Hodges |first=Wilfrid |editor-last=Meijers |editor-first=Anthonie |date=2009 |chapter=Functional Modelling and Mathematical Models |title=Philosophy of technology and engineering sciences |series=Handbook of the Philosophy of Science |publisher=Elsevier |volume=9 |isbn=978-0-444-51667-1}}
{{cite book|last=Hodges |first=Wilfrid |editor-last=Meijers |editor-first=Anthonie |date=2009 |chapter=Functional Modelling and Mathematical Models |title=Philosophy of technology and engineering sciences |series=Handbook of the Philosophy of Science |publisher=Elsevier |volume=9 |isbn=978-0-444-51667-1}}
</ref> यहां परिभाषित अर्थ में उपयोग किए जाने के बजाय। व्याख्या की ये दो धारणाएँ संबंधित हैं लेकिन फिर भी भिन्न हैं।
</ref> को संदर्भित कर सकता है। "व्याख्या" की यह दो धारणाएँ इससे संबंधित हैं किंतु फिर भी यह भिन्न होते हैं।


==परिभाषा==
==परिभाषा==


एक संरचना ''एम'' की संरचना ''एन'' में मापदंडों के साथ व्याख्या (या क्रमशः मापदंडों के बिना)
संरचना ''N'' में मापदंडों के साथ (या क्रमशः मापदंडों के बिना) संरचना ''M'' की व्याख्या जोड़ी <math>(n,f)</math> होती है जहां ''n'' प्राकृतिक संख्या है और <math>f</math> ''N<sup>n</sup>'' के उपसमुच्चय से [[विशेषण]] [[मानचित्र (गणित)]] ''M'' है इस प्रकार के प्रत्येक समुच्चय ''X'' ⊆ ''M<sup>k</sup>'' का <math>f</math>-प्रीइमेज (अधिक स्पष्ट रूप से <math>f^k</math>-प्रीइमेज) बिना मापदंडों के पूर्व-ऑर्डर फॉर्मूला द्वारा ''M'' में परिभाषित किया जा सकता है | और (''N'' में) पूर्व-ऑर्डर फॉर्मूले द्वारा इसको [[निश्चित सेट|निश्चित समुच्चय]] किया जा सकता है। मापदंड (या क्रमशः मापदंड के बिना) होता हैं। चूँकि व्याख्या <math>(n,f)</math> के लिए ''n'' का मान अधिकांशतः संदर्भ से स्पष्ट होता है, मानचित्र <math>f</math> को ही व्याख्या भी कहा जाता है।
एक जोड़ी है <math>(n,f)</math> कहाँ
n प्राकृतिक संख्या है और <math>f</math> के उपसमुच्चय से [[विशेषण]] [[मानचित्र (गणित)]] है
एन<sup>n</sup>M पर
ऐसा कि प्रीइमेज|<math>f</math>-प्रीइमेज (अधिक सटीक रूप से) <math>f^k</math>-प्रीइमेज) प्रत्येक सेट X ⊆ M का<sup>k</sup> प्रथम-क्रम तर्क द्वारा एम में [[निश्चित सेट]]#फॉर्मेशन नियम|मापदंडों के बिना प्रथम-क्रम सूत्र
मापदंडों के साथ (या क्रमशः मापदंडों के बिना) प्रथम-क्रम सूत्र द्वारा निश्चित (एन में) है{{clarification needed|date=November 2022|reason="Parameter" has a specific meaning in mathematical logic, correct? If so, a link to an article explaining the specific meaning of "parameter" in the context of mathematical logic would be helpful to beginners.}}.
चूँकि व्याख्या के लिए n का मान <math>(n,f)</math> अक्सर सन्दर्भ, मानचित्र से स्पष्ट होता है <math>f</math> को ही व्याख्या भी कहा जाता है।


यह सत्यापित करने के लिए कि एम में सेट किए गए प्रत्येक निश्चित (पैरामीटर के बिना) की प्रीइमेज एन (पैरामीटर के साथ या बिना) में निश्चित है, यह निम्नलिखित निश्चित सेट की प्रीइमेज की जांच करने के लिए पर्याप्त है:
यह सत्यापित करने के लिए कि ''M'' में समुच्चय किए गए प्रत्येक निश्चित (मापदंड के बिना) इसकी प्रीइमेज ''N'' (मापदंड के साथ या इसके बिना) इसमें यह निश्चित होता है, यह निम्नलिखित निश्चित समुच्चय की प्रीइमेज की जांच करने के लिए पर्याप्त होता है |
* एम का डोमेन;
* ''M'' का डोमेन।
*एम का विकर्ण#ज्यामिति<sup>2</sup>;
*''M<sup>2</sup>'' का विकर्ण या ज्यामिति
* M के हस्ताक्षर में हर रिश्ता;
* M के हस्ताक्षर में प्रत्येक संबंध।
* एम के हस्ताक्षर में प्रत्येक फ़ंक्शन के फ़ंक्शन का ग्राफ़।
* ''M'' के हस्ताक्षर में प्रत्येक फलन का ग्राफ़।


मॉडल सिद्धांत में निश्चित शब्द अक्सर मापदंडों के साथ निश्चितता को संदर्भित करता है; यदि इस परिपाटी का उपयोग किया जाता है, तो मापदंडों के बिना निश्चितता को 0-परिभाषित शब्द द्वारा व्यक्त किया जाता है। इसी प्रकार, मापदंडों के साथ व्याख्या को केवल व्याख्या के रूप में संदर्भित किया जा सकता है, और मापदंडों के बिना व्याख्या को '0-व्याख्या' के रूप में संदर्भित किया जा सकता है।
मॉडल सिद्धांत में निश्चित शब्द अधिकांशतः मापदंडों के साथ निश्चितता को संदर्भित करता है | यदि इस कन्वेंशन का उपयोग किया जाता है, तब मापदंडों के बिना निश्चितता को 0-परिभाषित शब्द द्वारा व्यक्त किया जाता है। इसी प्रकार, मापदंडों के साथ व्याख्या को केवल व्याख्या के रूप में संदर्भित किया जा सकता है, और मापदंडों के बिना व्याख्या को '0-व्याख्या' के रूप में संदर्भित किया जा सकता है।


==द्वि-व्याख्यात्मकता==
==द्वि-व्याख्यात्मकता==


यदि एल, एम और एन तीन संरचनाएं हैं, तो एल की व्याख्या एम में की जाती है,
यदि एल, एम और एन तीन संरचनाएं हैं, तब एल की व्याख्या एम में की जाती है,
और एम की व्याख्या एन में की जाती है, तो कोई स्वाभाविक रूप से एन में एल की समग्र व्याख्या बना सकता है।
और एम की व्याख्या एन में की जाती है, तब कोई स्वाभाविक रूप से एन में एल की समग्र व्याख्या बना सकता है।
यदि दो संरचनाओं एम और एन की एक-दूसरे में व्याख्या की जाती है, तो व्याख्याओं को दो संभावित तरीकों से जोड़कर, व्यक्ति अपने आप में दोनों संरचनाओं में से प्रत्येक की व्याख्या प्राप्त कर सकता है।
यदि दो संरचनाओं एम और एन की एक-दूसरे में व्याख्या की जाती है, तब व्याख्याओं को दो संभावित तरीकों से जोड़कर, व्यक्ति अपने आप में दोनों संरचनाओं में से प्रत्येक की व्याख्या प्राप्त कर सकता है।
यह अवलोकन किसी को संरचनाओं के बीच तुल्यता संबंध को परिभाषित करने की अनुमति देता है, जो [[टोपोलॉजिकल स्पेस]] स्थान के बीच होमोटॉपी तुल्यता की याद दिलाता है।
यह अवलोकन किसी को संरचनाओं के बीच तुल्यता संबंध को परिभाषित करने की अनुमति देता है, जो [[टोपोलॉजिकल स्पेस]] स्थान के बीच होमोटॉपी तुल्यता की याद दिलाता है।


Line 39: Line 33:
==उदाहरण==
==उदाहरण==


'Z' × 'Z' से 'Q' पर आंशिक मानचित्र f जो (x, y) को x/y पर मैप करता है यदि y ≠ 0 [[पूर्णांक]]ों के रिंग (गणित) 'Z' में [[तर्कसंगत संख्या]]ओं के क्षेत्र (गणित) 'Q' की व्याख्या प्रदान करता है (सटीक होने के लिए, व्याख्या (2, f) है)।
'Z' × 'Z' से 'Q' पर आंशिक मानचित्र f जो (x, y) को x/y पर मैप करता है यदि y ≠ 0 [[पूर्णांक]]ों के रिंग (गणित) 'Z' में [[तर्कसंगत संख्या]]ओं के क्षेत्र (गणित) 'Q' की व्याख्या प्रदान करता है (स्पष्ट होने के लिए, व्याख्या (2, f) है)।
वास्तव में, इस विशेष व्याख्या का उपयोग अक्सर तर्कसंगत संख्याओं को परिभाषित करने के लिए किया जाता है।
वास्तव में, इस विशेष व्याख्या का उपयोग अधिकांशतः तर्कसंगत संख्याओं को परिभाषित करने के लिए किया जाता है।
यह देखने के लिए कि यह व्याख्या है (पैरामीटर के बिना), किसी को 'क्यू' में निश्चित सेटों की निम्नलिखित पूर्वछवियों की जांच करने की आवश्यकता है:
यह देखने के लिए कि यह व्याख्या है (मापदंड के बिना), किसी को 'क्यू' में निश्चित समुच्चयों की निम्नलिखित पूर्वछवियों की जांच करने की आवश्यकता है:
* 'Q' की पूर्वछवि को ¬ (y = 0) द्वारा दिए गए सूत्र φ(x,y) द्वारा परिभाषित किया गया है;
* 'Q' की पूर्वछवि को ¬ (y = 0) द्वारा दिए गए सूत्र φ(x,y) द्वारा परिभाषित किया गया है;
*'Q' के विकर्ण की पूर्वछवि सूत्र द्वारा परिभाषित की गई है {{nowrap|φ(''x''<sub>1</sub>, ''y''<sub>1</sub>, ''x''<sub>2</sub>, ''y''<sub>2</sub>)}} द्वारा दिए गए {{nowrap|''x''<sub>1</sub> &times; ''y''<sub>2</sub>}} = {{nowrap|''x''<sub>2</sub> &times; ''y''<sub>1</sub>}};
*'Q' के विकर्ण की पूर्वछवि सूत्र द्वारा परिभाषित की गई है {{nowrap|φ(''x''<sub>1</sub>, ''y''<sub>1</sub>, ''x''<sub>2</sub>, ''y''<sub>2</sub>)}} द्वारा दिए गए {{nowrap|''x''<sub>1</sub> &times; ''y''<sub>2</sub>}} = {{nowrap|''x''<sub>2</sub> &times; ''y''<sub>1</sub>}};

Revision as of 21:00, 3 August 2023

मॉडल सिद्धांत में, संरचना (गणितीय तर्क) M की दूसरी संरचना N (सामान्यतः भिन्न हस्ताक्षर (तर्क) की व्याख्या तकनीकी धारणा करती है जो N के अंदर M का प्रतिनिधित्व करने के विचार का अनुमान लगाती है। उदाहरण के लिए, किसी संरचना N के प्रत्येक डिडक्शन या निश्चित विस्तार की N में व्याख्या होती है।

अनेक मॉडल-सैद्धांतिक गुणों को व्याख्यात्मकता के अनुसार संरक्षित किया गया है। उदाहरण के लिए, यदि N का सिद्धांत स्थिर सिद्धांत है और N की व्याख्या N में की जा सकती है, तब M का सिद्धांत भी स्थिर होता है।

ध्यान दें कि गणितीय तर्क के अन्य क्षेत्रों में, "व्याख्या" शब्द यहां परिभाषित अर्थ में उपयोग किए जाने के अतिरिक्त संरचना, [1] [2] को संदर्भित कर सकता है। "व्याख्या" की यह दो धारणाएँ इससे संबंधित हैं किंतु फिर भी यह भिन्न होते हैं।

परिभाषा

संरचना N में मापदंडों के साथ (या क्रमशः मापदंडों के बिना) संरचना M की व्याख्या जोड़ी होती है जहां n प्राकृतिक संख्या है और Nn के उपसमुच्चय से विशेषण मानचित्र (गणित) M है इस प्रकार के प्रत्येक समुच्चय XMk का -प्रीइमेज (अधिक स्पष्ट रूप से -प्रीइमेज) बिना मापदंडों के पूर्व-ऑर्डर फॉर्मूला द्वारा M में परिभाषित किया जा सकता है | और (N में) पूर्व-ऑर्डर फॉर्मूले द्वारा इसको निश्चित समुच्चय किया जा सकता है। मापदंड (या क्रमशः मापदंड के बिना) होता हैं। चूँकि व्याख्या के लिए n का मान अधिकांशतः संदर्भ से स्पष्ट होता है, मानचित्र को ही व्याख्या भी कहा जाता है।

यह सत्यापित करने के लिए कि M में समुच्चय किए गए प्रत्येक निश्चित (मापदंड के बिना) इसकी प्रीइमेज N (मापदंड के साथ या इसके बिना) इसमें यह निश्चित होता है, यह निम्नलिखित निश्चित समुच्चय की प्रीइमेज की जांच करने के लिए पर्याप्त होता है |

  • M का डोमेन।
  • M2 का विकर्ण या ज्यामिति
  • M के हस्ताक्षर में प्रत्येक संबंध।
  • M के हस्ताक्षर में प्रत्येक फलन का ग्राफ़।

मॉडल सिद्धांत में निश्चित शब्द अधिकांशतः मापदंडों के साथ निश्चितता को संदर्भित करता है | यदि इस कन्वेंशन का उपयोग किया जाता है, तब मापदंडों के बिना निश्चितता को 0-परिभाषित शब्द द्वारा व्यक्त किया जाता है। इसी प्रकार, मापदंडों के साथ व्याख्या को केवल व्याख्या के रूप में संदर्भित किया जा सकता है, और मापदंडों के बिना व्याख्या को '0-व्याख्या' के रूप में संदर्भित किया जा सकता है।

द्वि-व्याख्यात्मकता

यदि एल, एम और एन तीन संरचनाएं हैं, तब एल की व्याख्या एम में की जाती है, और एम की व्याख्या एन में की जाती है, तब कोई स्वाभाविक रूप से एन में एल की समग्र व्याख्या बना सकता है। यदि दो संरचनाओं एम और एन की एक-दूसरे में व्याख्या की जाती है, तब व्याख्याओं को दो संभावित तरीकों से जोड़कर, व्यक्ति अपने आप में दोनों संरचनाओं में से प्रत्येक की व्याख्या प्राप्त कर सकता है। यह अवलोकन किसी को संरचनाओं के बीच तुल्यता संबंध को परिभाषित करने की अनुमति देता है, जो टोपोलॉजिकल स्पेस स्थान के बीच होमोटॉपी तुल्यता की याद दिलाता है।

दो संरचनाएं एम और एन 'द्वि-व्याख्यात्मक' हैं यदि एन में एम की व्याख्या और एम में एन की व्याख्या मौजूद है जैसे कि एम की स्वयं में और एन की समग्र व्याख्याएं क्रमशः एम और एन में निश्चित हैं (मिश्रित व्याख्याओं को एम और एन पर संचालन के रूप में देखा जा रहा है)।

उदाहरण

'Z' × 'Z' से 'Q' पर आंशिक मानचित्र f जो (x, y) को x/y पर मैप करता है यदि y ≠ 0 पूर्णांकों के रिंग (गणित) 'Z' में तर्कसंगत संख्याओं के क्षेत्र (गणित) 'Q' की व्याख्या प्रदान करता है (स्पष्ट होने के लिए, व्याख्या (2, f) है)। वास्तव में, इस विशेष व्याख्या का उपयोग अधिकांशतः तर्कसंगत संख्याओं को परिभाषित करने के लिए किया जाता है। यह देखने के लिए कि यह व्याख्या है (मापदंड के बिना), किसी को 'क्यू' में निश्चित समुच्चयों की निम्नलिखित पूर्वछवियों की जांच करने की आवश्यकता है:

  • 'Q' की पूर्वछवि को ¬ (y = 0) द्वारा दिए गए सूत्र φ(x,y) द्वारा परिभाषित किया गया है;
  • 'Q' के विकर्ण की पूर्वछवि सूत्र द्वारा परिभाषित की गई है φ(x1, y1, x2, y2) द्वारा दिए गए x1 × y2 = x2 × y1;
  • 0 और 1 की पूर्वछवियाँ x = 0 और x = y द्वारा दिए गए सूत्र φ(x,y) द्वारा परिभाषित की जाती हैं;
  • जोड़ के ग्राफ की पूर्वछवि सूत्र द्वारा परिभाषित की गई है φ(x1, y1, x2, y2, x3, y3) द्वारा दिए गए x1×y2×y3 + x2×y1×y3 = x3×y1×y2;
  • गुणन के ग्राफ की पूर्वछवि सूत्र द्वारा परिभाषित की गई है φ(x1, y1, x2, y2, x3, y3) द्वारा दिए गए x1×x2×y3 = x3×y1×y2.

संदर्भ

  1. Goldblatt, Robert (2006). "11.2 Formal Language and Semantics". Topoi : the categorial analysis of logic (2nd ed.). Mineola, N.Y.: Dover Publications. ISBN 978-0-486-31796-0. OCLC 853624133.
  2. Hodges, Wilfrid (2009). "Functional Modelling and Mathematical Models". In Meijers, Anthonie (ed.). Philosophy of technology and engineering sciences. Handbook of the Philosophy of Science. Vol. 9. Elsevier. ISBN 978-0-444-51667-1.