अर्धसरल मॉड्यूल: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Direct sum of irreducible modules}}{{see also|अर्धसरल बीजगणित}} | {{Short description|Direct sum of irreducible modules}}{{see also|अर्धसरल बीजगणित}} | ||
गणित में, विशेष रूप से [[अमूर्त बीजगणित]] के क्षेत्र में जिसे [[मॉड्यूल सिद्धांत]] के रूप में जाना जाता है, एक '''अर्धसरल मॉड्यूल''' या '''पूरी तरह से कम करने योग्य मॉड्यूल''' एक प्रकार का मॉड्यूल है जिसे इसके भागों से आसानी से समझा जा सकता है। एक वलय (गणित) जो अपने आप में एक अर्धसरल मॉड्यूल है, उसे आर्टिनियन '''अर्धसरल वलय''' के रूप में जाना जाता है। कुछ महत्वपूर्ण वलय, जैसे कि विशेषता शून्य के | गणित में, विशेष रूप से [[अमूर्त बीजगणित]] के क्षेत्र में जिसे [[मॉड्यूल सिद्धांत]] के रूप में जाना जाता है, एक '''अर्धसरल मॉड्यूल''' या '''पूरी तरह से कम करने योग्य मॉड्यूल''' एक प्रकार का मॉड्यूल है जिसे इसके भागों से आसानी से समझा जा सकता है। एक वलय (गणित) जो अपने आप में एक अर्धसरल मॉड्यूल है, उसे आर्टिनियन '''अर्धसरल वलय''' के रूप में जाना जाता है। कुछ महत्वपूर्ण वलय, जैसे कि विशेषता शून्य के [[क्षेत्रों]] पर [[परिमित समूह|परिमित समूहों]] के समूह वलय, अर्धसरल वलय हैं। एक [[आर्टिनियन अंगूठी|आर्टिनियन वलय]] को प्रारंभ में उसके सबसे बड़े अर्धसरल भागफल के माध्यम से समझा जाता है। आर्टिनियन अर्धसरल छल्लों की संरचना को [[आर्टिन-वेडरबर्न प्रमेय]] द्वारा अच्छी तरह से समझा जाता है, जो इन छल्लों को [[मैट्रिक्स रिंग|आव्युह रिंग]] के परिमित [[प्रत्यक्ष उत्पाद|प्रत्यक्ष उत्पादों]] के रूप में प्रदर्शित करता है। | ||
समान धारणा के समूह-सिद्धांत एनालॉग के लिए, [[अर्धसरल प्रतिनिधित्व]] देखें। | समान धारणा के समूह-सिद्धांत एनालॉग के लिए, [[अर्धसरल प्रतिनिधित्व]] देखें। | ||
Line 14: | Line 14: | ||
For <math>3 \Rightarrow 2</math>, the starting idea is to find an irreducible submodule by picking any nonzero <math>x\in M</math> and letting <math>P</math> be a [[maximal submodule]] such that <math>x \notin P</math>.-- by Zorn's lemma? -- It can be shown that the complement of <math>P</math> is irreducible.<ref>Nathan Jacobson, Basic Algebra II (Second Edition), p.120</ref> --> | For <math>3 \Rightarrow 2</math>, the starting idea is to find an irreducible submodule by picking any nonzero <math>x\in M</math> and letting <math>P</math> be a [[maximal submodule]] such that <math>x \notin P</math>.-- by Zorn's lemma? -- It can be shown that the complement of <math>P</math> is irreducible.<ref>Nathan Jacobson, Basic Algebra II (Second Edition), p.120</ref> --> | ||
अर्धसरल मॉड्यूल का सबसे मूलभूत उदाहरण एक फ़ील्ड पर एक मॉड्यूल है, अर्थात, एक [[ सदिश स्थल | सदिश स्थल]] । दूसरी ओर, पूर्णांकों का वलय '''Z''' अपने आप में एक अर्धसरल मॉड्यूल नहीं है, क्योंकि सबमॉड्यूल 2 '''Z''' एक सीधा सारांश नहीं है। | अर्धसरल मॉड्यूल का सबसे मूलभूत उदाहरण एक फ़ील्ड पर एक मॉड्यूल है, अर्थात, एक [[ सदिश स्थल |सदिश स्थल]] । दूसरी ओर, पूर्णांकों का वलय '''Z''' अपने आप में एक अर्धसरल मॉड्यूल नहीं है, क्योंकि सबमॉड्यूल 2 '''Z''' एक सीधा सारांश नहीं है। | ||
सेमीसिंपल, [[अविभाज्य मॉड्यूल]] से अधिक शक्तिशाली | सेमीसिंपल, [[अविभाज्य मॉड्यूल]] से अधिक शक्तिशाली है, जो कि अविभाज्य मॉड्यूल के मॉड्यूल का प्रत्यक्ष योग है। | ||
मान लीजिए कि A, फ़ील्ड K के ऊपर एक बीजगणित है। तब A के ऊपर एक बाएँ मॉड्यूल M को '''<nowiki/>'बिल्कुल अर्धसरल'''' कहा जाता है, यदि K के किसी फ़ील्ड एक्सटेंशन F के लिए, ''F'' ⊗ <sub>''K''</sub> ''M , F'' ⊗ <sub>''K''</sub> ''A'' के ऊपर एक अर्धसरल मॉड्यूल है। | मान लीजिए कि A, फ़ील्ड K के ऊपर एक बीजगणित है। तब A के ऊपर एक बाएँ मॉड्यूल M को '''<nowiki/>'बिल्कुल अर्धसरल'''' कहा जाता है, यदि K के किसी फ़ील्ड एक्सटेंशन F के लिए, ''F'' ⊗ <sub>''K''</sub> ''M , F'' ⊗ <sub>''K''</sub> ''A'' के ऊपर एक अर्धसरल मॉड्यूल है। | ||
Line 28: | Line 28: | ||
== [[एंडोमोर्फिज्म]] रिंग्स == | == [[एंडोमोर्फिज्म]] रिंग्स == | ||
* एक रिंग R के ऊपर एक अर्धसरल मॉड्यूल M को R से M के [[ एबेलियन समूह ]] एंडोमोर्फिज्म के रिंग में एक [[वलय समरूपता]] के रूप में भी सोचा जा सकता है। इस होमोमोर्फिज्म की छवि एक [[ अर्धआदिम अंगूठी | अर्धआदिम वलय]] | * एक रिंग R के ऊपर एक अर्धसरल मॉड्यूल M को R से M के [[ एबेलियन समूह |एबेलियन समूह]] एंडोमोर्फिज्म के रिंग में एक [[वलय समरूपता]] के रूप में भी सोचा जा सकता है। इस होमोमोर्फिज्म की छवि एक [[ अर्धआदिम अंगूठी |अर्धआदिम वलय]] है, और प्रत्येक सेमीप्रिमिटिव वलय ऐसी छवि के लिए आइसोमोर्फिक है। . | ||
* अर्धसरल मॉड्यूल की [[एंडोमोर्फिज्म रिंग]] न केवल सेमीप्रिमिटिव है, किंतु वॉन न्यूमैन नियमित रिंग भी है। | * अर्धसरल मॉड्यूल की [[एंडोमोर्फिज्म रिंग]] न केवल सेमीप्रिमिटिव है, किंतु वॉन न्यूमैन नियमित रिंग भी है। | ||
Line 41: | Line 41: | ||
या अधिक त्रुटिहीन शब्दों में | या अधिक त्रुटिहीन शब्दों में | ||
: <math>B \cong f(A) \oplus s(C).</math> | : <math>B \cong f(A) \oplus s(C).</math> | ||
विशेष रूप से, अर्धसरल रिंग के ऊपर कोई भी मॉड्यूल [[ इंजेक्शन मॉड्यूल ]] और [[प्रोजेक्टिव मॉड्यूल]] होता है। चूँकि "प्रोजेक्टिव" का तात्पर्य "सपाट" है, एक अर्धसरल वलय एक वॉन न्यूमैन नियमित वलय है । | विशेष रूप से, अर्धसरल रिंग के ऊपर कोई भी मॉड्यूल [[ इंजेक्शन मॉड्यूल |इंजेक्शन मॉड्यूल]] और [[प्रोजेक्टिव मॉड्यूल]] होता है। चूँकि "प्रोजेक्टिव" का तात्पर्य "सपाट" है, एक अर्धसरल वलय एक वॉन न्यूमैन नियमित वलय है । | ||
अर्धसरल वलय बीजगणितज्ञों के लिए विशेष रुचि रखते हैं। उदाहरण के लिए, यदि बेस रिंग आर अर्धसरल है, तब सभी आर-मॉड्यूल स्वचालित रूप से अर्धसरल होंगे। इसके अतिरिक्त, प्रत्येक सरल (बाएं) आर-मॉड्यूल आर के न्यूनतम बाएं आदर्श के लिए आइसोमोर्फिक है, अर्थात, आर एक बाएं [[ कश रिंग ]] है। | अर्धसरल वलय बीजगणितज्ञों के लिए विशेष रुचि रखते हैं। उदाहरण के लिए, यदि बेस रिंग आर अर्धसरल है, तब सभी आर-मॉड्यूल स्वचालित रूप से अर्धसरल होंगे। इसके अतिरिक्त, प्रत्येक सरल (बाएं) आर-मॉड्यूल आर के न्यूनतम बाएं आदर्श के लिए आइसोमोर्फिक है, अर्थात, आर एक बाएं [[ कश रिंग |कश रिंग]] है। | ||
अर्धसरल वलय आर्टिनियन वलय और नोथेरियन वलय दोनों हैं। उपरोक्त गुणों से, एक वलय अर्धसरल है यदि और केवल यदि यह आर्टिनियन है और इसका [[ जैकबसन कट्टरपंथी ]] शून्य है। | अर्धसरल वलय आर्टिनियन वलय और नोथेरियन वलय दोनों हैं। उपरोक्त गुणों से, एक वलय अर्धसरल है यदि और केवल यदि यह आर्टिनियन है और इसका [[ जैकबसन कट्टरपंथी |जैकबसन कट्टरपंथी]] शून्य है। | ||
यदि एक आर्टिनियन सेमीसिम्पल रिंग में रिंग [[सबरिंग]] के केंद्र के रूप में एक क्षेत्र होता है, तब इसे अर्धसरल बीजगणित कहा जाता है। | यदि एक आर्टिनियन सेमीसिम्पल रिंग में रिंग [[सबरिंग]] के केंद्र के रूप में एक क्षेत्र होता है, तब इसे अर्धसरल बीजगणित कहा जाता है। | ||
Line 56: | Line 56: | ||
===सरल छल्ले === | ===सरल छल्ले === | ||
{{main|साधारण | {{main|साधारण रिंग }} | ||
किसी को सावधान रहना चाहिए कि शब्दावली के अतिरिक्त, सभी साधारण वलय अर्धसरल नहीं होते हैं। समस्या यह है कि अंगूठी बहुत बड़ी हो सकती है, अर्थात (बाएं/दाएं) आर्टिनियन नहीं। वास्तव में, यदि R न्यूनतम बाएँ/दाएँ आदर्श के साथ एक साधारण वलय है, मानचित्र R अर्धसरल है। | किसी को सावधान रहना चाहिए कि शब्दावली के अतिरिक्त, सभी साधारण वलय अर्धसरल नहीं होते हैं। समस्या यह है कि अंगूठी बहुत बड़ी हो सकती है, अर्थात (बाएं/दाएं) आर्टिनियन नहीं। वास्तव में, यदि R न्यूनतम बाएँ/दाएँ आदर्श के साथ एक साधारण वलय है, मानचित्र R अर्धसरल है। | ||
Line 62: | Line 62: | ||
सरल, किन्तु अर्धसरल नहीं, छल्लों के उत्कृष्ट उदाहरण [[वेइल बीजगणित]] हैं, जैसे कि <math>\mathbb{Q}</math>-बीजगणित | सरल, किन्तु अर्धसरल नहीं, छल्लों के उत्कृष्ट उदाहरण [[वेइल बीजगणित]] हैं, जैसे कि <math>\mathbb{Q}</math>-बीजगणित | ||
: <math> A=\mathbb{Q}{\left[x,y\right]}/\langle xy-yx-1\rangle\ ,</math> | : <math> A=\mathbb{Q}{\left[x,y\right]}/\langle xy-yx-1\rangle\ ,</math> | ||
जो एक सरल गैर-अनुवांशिक [[डोमेन (रिंग सिद्धांत)]] है। इन और कई अन्य अच्छे उदाहरणों पर कई गैर-अनुवांशिक रिंग सिद्धांत ग्रंथों में अधिक विस्तार से चर्चा की गई है, जिसमें लैम के पाठ का अध्याय 3 भी सम्मिलित है, जिसमें उन्हें गैर-आर्टिनियन सरल रिंगों के रूप में वर्णित किया गया है। वेइल अलजेब्रा के लिए मॉड्यूल सिद्धांत का अच्छी तरह से अध्ययन किया गया है और यह अर्धसरल रिंगों से अधिक | जो एक सरल गैर-अनुवांशिक [[डोमेन (रिंग सिद्धांत)]] है। इन और कई अन्य अच्छे उदाहरणों पर कई गैर-अनुवांशिक रिंग सिद्धांत ग्रंथों में अधिक विस्तार से चर्चा की गई है, जिसमें लैम के पाठ का अध्याय 3 भी सम्मिलित है, जिसमें उन्हें गैर-आर्टिनियन सरल रिंगों के रूप में वर्णित किया गया है। वेइल अलजेब्रा के लिए मॉड्यूल सिद्धांत का अच्छी तरह से अध्ययन किया गया है और यह अर्धसरल रिंगों से अधिक भिन्न है। | ||
=== जैकबसन सेमीसिंपल === | === जैकबसन सेमीसिंपल === | ||
{{main| | {{main|सेमीप्रिमिटिव रिंग }} | ||
एक रिंग को जैकबसन अर्धसरल (या जे-अर्धसरल या सेमीप्रिमिटिव रिंग) कहा जाता है, यदि अधिकतम बाएं आदर्शों का प्रतिच्छेदन शून्य है, अर्थात, यदि जैकबसन रेडिकल शून्य है। प्रत्येक रिंग जो अपने ऊपर एक मॉड्यूल के रूप में अर्धसरल है, उसमें शून्य जैकबसन रेडिकल है, किन्तु शून्य जैकबसन रेडिकल वाली प्रत्येक रिंग अपने ऊपर एक मॉड्यूल के रूप में अर्धसरल नहीं है। एक जे-अर्धसरल रिंग अर्धसरल है यदि और केवल यदि यह एक आर्टिनियन रिंग है, तब भ्रम से बचने के लिए अर्धसरल रिंग्स को अधिकांशतः आर्टिनियन अर्धसरल रिंग्स कहा जाता है। | एक रिंग को जैकबसन अर्धसरल (या जे-अर्धसरल या सेमीप्रिमिटिव रिंग) कहा जाता है, यदि अधिकतम बाएं आदर्शों का प्रतिच्छेदन शून्य है, अर्थात, यदि जैकबसन रेडिकल शून्य है। प्रत्येक रिंग जो अपने ऊपर एक मॉड्यूल के रूप में अर्धसरल है, उसमें शून्य जैकबसन रेडिकल है, किन्तु शून्य जैकबसन रेडिकल वाली प्रत्येक रिंग अपने ऊपर एक मॉड्यूल के रूप में अर्धसरल नहीं है। एक जे-अर्धसरल रिंग अर्धसरल है यदि और केवल यदि यह एक आर्टिनियन रिंग है, तब भ्रम से बचने के लिए अर्धसरल रिंग्स को अधिकांशतः आर्टिनियन अर्धसरल रिंग्स कहा जाता है। | ||
Revision as of 16:20, 1 December 2023
गणित में, विशेष रूप से अमूर्त बीजगणित के क्षेत्र में जिसे मॉड्यूल सिद्धांत के रूप में जाना जाता है, एक अर्धसरल मॉड्यूल या पूरी तरह से कम करने योग्य मॉड्यूल एक प्रकार का मॉड्यूल है जिसे इसके भागों से आसानी से समझा जा सकता है। एक वलय (गणित) जो अपने आप में एक अर्धसरल मॉड्यूल है, उसे आर्टिनियन अर्धसरल वलय के रूप में जाना जाता है। कुछ महत्वपूर्ण वलय, जैसे कि विशेषता शून्य के क्षेत्रों पर परिमित समूहों के समूह वलय, अर्धसरल वलय हैं। एक आर्टिनियन वलय को प्रारंभ में उसके सबसे बड़े अर्धसरल भागफल के माध्यम से समझा जाता है। आर्टिनियन अर्धसरल छल्लों की संरचना को आर्टिन-वेडरबर्न प्रमेय द्वारा अच्छी तरह से समझा जाता है, जो इन छल्लों को आव्युह रिंग के परिमित प्रत्यक्ष उत्पादों के रूप में प्रदर्शित करता है।
समान धारणा के समूह-सिद्धांत एनालॉग के लिए, अर्धसरल प्रतिनिधित्व देखें।
परिभाषा
एक (आवश्यक रूप से क्रमविनिमेय नहीं) रिंग पर एक मॉड्यूल (गणित) को अर्धसरल (या पूरी तरह से कम करने योग्य) कहा जाता है यदि यह सरल मॉड्यूल (इरेड्यूसिबल) सबमॉड्यूल के मॉड्यूल का प्रत्यक्ष योग है।
मॉड्यूल एम के लिए, निम्नलिखित समतुल्य हैं:
- एम अर्धसरल है; अर्थात, इरेड्यूसेबल मॉड्यूल का प्रत्यक्ष योग।
- एम इसके अपरिवर्तनीय उपमॉड्यूल का योग है।
- एम का प्रत्येक सबमॉड्यूल एक सीधा सारांश है: एम के प्रत्येक सबमॉड्यूल एन के लिए, एक पूरक पी है जैसे कि M = N ⊕ P.
समतुल्यता के प्रमाण के लिए अर्धसरल निरूपण § समतुल्य लक्षण वर्णन देखें ।
अर्धसरल मॉड्यूल का सबसे मूलभूत उदाहरण एक फ़ील्ड पर एक मॉड्यूल है, अर्थात, एक सदिश स्थल । दूसरी ओर, पूर्णांकों का वलय Z अपने आप में एक अर्धसरल मॉड्यूल नहीं है, क्योंकि सबमॉड्यूल 2 Z एक सीधा सारांश नहीं है।
सेमीसिंपल, अविभाज्य मॉड्यूल से अधिक शक्तिशाली है, जो कि अविभाज्य मॉड्यूल के मॉड्यूल का प्रत्यक्ष योग है।
मान लीजिए कि A, फ़ील्ड K के ऊपर एक बीजगणित है। तब A के ऊपर एक बाएँ मॉड्यूल M को 'बिल्कुल अर्धसरल' कहा जाता है, यदि K के किसी फ़ील्ड एक्सटेंशन F के लिए, F ⊗ K M , F ⊗ K A के ऊपर एक अर्धसरल मॉड्यूल है।
गुण
- यदि M अर्धसरल है और N एक उपसबमॉड्यूल है, तब N और M/N भी अर्धसरल हैं।
- अर्धसरल मॉड्यूल का एक इच्छानुसार प्रत्यक्ष योग अर्धसरल है।
- एक मॉड्यूल एम अंतिम रूप से उत्पन्न मॉड्यूल और अर्धसरल होता है यदि और केवल यदि यह आर्टिनियन है और मॉड्यूल का रेडिकल शून्य है।
एंडोमोर्फिज्म रिंग्स
- एक रिंग R के ऊपर एक अर्धसरल मॉड्यूल M को R से M के एबेलियन समूह एंडोमोर्फिज्म के रिंग में एक वलय समरूपता के रूप में भी सोचा जा सकता है। इस होमोमोर्फिज्म की छवि एक अर्धआदिम वलय है, और प्रत्येक सेमीप्रिमिटिव वलय ऐसी छवि के लिए आइसोमोर्फिक है। .
- अर्धसरल मॉड्यूल की एंडोमोर्फिज्म रिंग न केवल सेमीप्रिमिटिव है, किंतु वॉन न्यूमैन नियमित रिंग भी है।
अर्धसरल वलय
एक रिंग को (बाएं-) अर्धसरल कहा जाता है यदि यह अपने ऊपर बाएं मॉड्यूल के रूप में अर्धसरल है।[1] आश्चर्यजनक बात यह है कि बायां-अर्धसरल वलय दायां-अर्धसरल भी होता है और इसके विपरीत भी। इसलिए बाएं/दाएं का अंतर अनावश्यक है, और कोई भी बिना किसी अस्पष्टता के अर्धसरल छल्लों के बारे में बात कर सकता है।
एक अर्धसरल वलय को समजात बीजगणित के संदर्भ में चित्रित किया जा सकता है: अर्थात्, एक वलय आर अर्धसरल है यदि और केवल तभी जब बाएं (या दाएं) आर-मॉड्यूल का कोई छोटा त्रुटिहीन अनुक्रम विभाजित हो। अर्थात्, एक संक्षिप्त त्रुटिहीन क्रम के लिए
वहां उपस्तिथ s : C → B ऐसी कि रचना g ∘ s : C → C पहचान है. मानचित्र को एक अनुभाग के रूप में जाना जाता है। इससे यह निष्कर्ष निकलता है
या अधिक त्रुटिहीन शब्दों में
विशेष रूप से, अर्धसरल रिंग के ऊपर कोई भी मॉड्यूल इंजेक्शन मॉड्यूल और प्रोजेक्टिव मॉड्यूल होता है। चूँकि "प्रोजेक्टिव" का तात्पर्य "सपाट" है, एक अर्धसरल वलय एक वॉन न्यूमैन नियमित वलय है ।
अर्धसरल वलय बीजगणितज्ञों के लिए विशेष रुचि रखते हैं। उदाहरण के लिए, यदि बेस रिंग आर अर्धसरल है, तब सभी आर-मॉड्यूल स्वचालित रूप से अर्धसरल होंगे। इसके अतिरिक्त, प्रत्येक सरल (बाएं) आर-मॉड्यूल आर के न्यूनतम बाएं आदर्श के लिए आइसोमोर्फिक है, अर्थात, आर एक बाएं कश रिंग है।
अर्धसरल वलय आर्टिनियन वलय और नोथेरियन वलय दोनों हैं। उपरोक्त गुणों से, एक वलय अर्धसरल है यदि और केवल यदि यह आर्टिनियन है और इसका जैकबसन कट्टरपंथी शून्य है।
यदि एक आर्टिनियन सेमीसिम्पल रिंग में रिंग सबरिंग के केंद्र के रूप में एक क्षेत्र होता है, तब इसे अर्धसरल बीजगणित कहा जाता है।
उदाहरण
- एक क्रमविनिमेय वलय के लिए, निम्नलिखित चार गुण समतुल्य हैं: एक अर्धसरल वलय होना; आर्टिनियन रिंग और कम रिंग होना;[2] क्रुल आयाम 0 की एक छोटी अंगूठी नोथेरियन अंगूठी होने के नाते; और खेतों के एक सीमित प्रत्यक्ष उत्पाद के समरूपी होना।
- यदि K एक क्षेत्र है और G क्रम n का एक परिमित समूह है, मानचित्र समूह वलय K[G] अर्धसरल है यदि और केवल यदि K की विशेषता (बीजगणित) n को विभाजित नहीं करती है। यह माश्के का प्रमेय है, जो समूह प्रतिनिधित्व सिद्धांत में एक महत्वपूर्ण परिणाम है।
- वेडरबर्न-आर्टिन प्रमेय के अनुसार, एक यूनिटल रिंग आर अर्धसरल है यदि और केवल यदि यह (आइसोमोर्फिक) है Mn1(D1) × Mn2(D2) × ... × Mnr(Dr), जहां प्रत्येक डीi एक विभाजन वलय है और प्रत्येक ni एक धनात्मक पूर्णांक है, और एमn(डी) डी में प्रविष्टियों के साथ एन-बाय-एन आव्युह की अंगूठी को दर्शाता है।
- अर्धसरल गैर-इकाई वलय का एक उदाहरण M ∞(K) है, एक फ़ील्ड K पर पंक्ति-परिमित, स्तंभ-परिमित, अनंत आव्यूह है ।
सरल छल्ले
किसी को सावधान रहना चाहिए कि शब्दावली के अतिरिक्त, सभी साधारण वलय अर्धसरल नहीं होते हैं। समस्या यह है कि अंगूठी बहुत बड़ी हो सकती है, अर्थात (बाएं/दाएं) आर्टिनियन नहीं। वास्तव में, यदि R न्यूनतम बाएँ/दाएँ आदर्श के साथ एक साधारण वलय है, मानचित्र R अर्धसरल है।
सरल, किन्तु अर्धसरल नहीं, छल्लों के उत्कृष्ट उदाहरण वेइल बीजगणित हैं, जैसे कि -बीजगणित
जो एक सरल गैर-अनुवांशिक डोमेन (रिंग सिद्धांत) है। इन और कई अन्य अच्छे उदाहरणों पर कई गैर-अनुवांशिक रिंग सिद्धांत ग्रंथों में अधिक विस्तार से चर्चा की गई है, जिसमें लैम के पाठ का अध्याय 3 भी सम्मिलित है, जिसमें उन्हें गैर-आर्टिनियन सरल रिंगों के रूप में वर्णित किया गया है। वेइल अलजेब्रा के लिए मॉड्यूल सिद्धांत का अच्छी तरह से अध्ययन किया गया है और यह अर्धसरल रिंगों से अधिक भिन्न है।
जैकबसन सेमीसिंपल
एक रिंग को जैकबसन अर्धसरल (या जे-अर्धसरल या सेमीप्रिमिटिव रिंग) कहा जाता है, यदि अधिकतम बाएं आदर्शों का प्रतिच्छेदन शून्य है, अर्थात, यदि जैकबसन रेडिकल शून्य है। प्रत्येक रिंग जो अपने ऊपर एक मॉड्यूल के रूप में अर्धसरल है, उसमें शून्य जैकबसन रेडिकल है, किन्तु शून्य जैकबसन रेडिकल वाली प्रत्येक रिंग अपने ऊपर एक मॉड्यूल के रूप में अर्धसरल नहीं है। एक जे-अर्धसरल रिंग अर्धसरल है यदि और केवल यदि यह एक आर्टिनियन रिंग है, तब भ्रम से बचने के लिए अर्धसरल रिंग्स को अधिकांशतः आर्टिनियन अर्धसरल रिंग्स कहा जाता है।
उदाहरण के लिए, पूर्णांकों का वलय, 'Z', J-अर्धसरल है, किन्तु आर्टिनियन अर्धसरल नहीं है।
यह भी देखें
- सामाजिक (गणित)
- अर्धसरल बीजगणित
संदर्भ
टिप्पणियाँ
- ↑ Sengupta 2012, p. 125
- ↑ Bourbaki 2012, VIII, pg. 133.
संदर्भ
- बोर्बाकी, निकोलस (2012), बीजगणित चौ. 8 (2nd ed.), बर्लिन, न्यूयॉर्क: स्प्रिंगर-वेरलाग, ISBN 978-3-540-35315-7
- जैकबसन, नातान (1989), मूल बीजगणित II (2nd ed.), डब्ल्यू एच फ्रीमैन, ISBN 978-0-7167-1933-5
- पीटना, त्सित-यूएन (2001), नॉनकम्यूटेटिव रिंग्स में पहला कोर्स, गणित में स्नातक पाठ, vol. 131 (2nd ed.), बर्लिन, न्यूयॉर्क: स्प्रिंगर-वेरलाग, doi:10.1007/978-1-4419-8616-0, ISBN 978-0-387-95325-0, MR 1838439
- लैंग, Serge (2002), बीजगणित (3rd ed.), बर्लिन, न्यूयॉर्क: स्प्रिंगर-वेरलाग, ISBN 978-0387953854
- प्रवेश करना, आर.एस. (1982), साहचर्य बीजगणित, गणित में स्नातक पाठ, स्प्रिंगर-वेरलाग, ISBN 978-1-4757-0165-4
- सेनगुप्ता, अंबर (2012). "प्रेरित अभ्यावेदन". परिमित समूहों का प्रतिनिधित्व: एक अर्धसरल परिचय. न्यूयॉर्क. pp. 235–248. doi:10.1007/978-1-4614-1231-1_8. ISBN 9781461412311. OCLC 769756134.
{{cite book}}
: CS1 maint: location missing publisher (link)