अनुवाद (ज्यामिति): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[ यूक्लिडियन ज्यामिति | यूक्लिडियन ज्यामिति]] में, एक अनुवाद एक [[ ज्यामितीय परिवर्तन |ज्यामितीय परिवर्तन]] है जो किसी आकृति, आकार या स्थान के प्रत्येक बिंदु को एक निश्चित दिशा में समान दूरी से स्थानांतरित करता है। एक अनुवाद को प्रत्येक बिंदु पर एक स्थिर सदिश स्थान के अतिरिक्त, या समन्वय प्रणाली के मूल को स्थानांतरित करने के रूप में भी व्याख्या किया जा सकता है। [[ यूक्लिडियन अंतरिक्ष | यूक्लिडियन अंतरिक्ष]] में, प्रत्येक अनुवाद एक [[ आइसोमेट्री | समरूप]] है।
[[ यूक्लिडियन ज्यामिति | यूक्लिडियन ज्यामिति]] में, एक अनुवाद एक [[ ज्यामितीय परिवर्तन |ज्यामितीय परिवर्तन]] है जो किसी आकृति, आकार या स्थान के प्रत्येक बिंदु को एक निश्चित दिशा में समान दूरी से स्थानांतरित करता है। एक अनुवाद को प्रत्येक बिंदु पर एक स्थिर सदिश स्थान के अतिरिक्त, या समन्वय प्रणाली के मूल को स्थानांतरित करने के रूप में भी व्याख्या किया जा सकता है। [[ यूक्लिडियन अंतरिक्ष |यूक्लिडियन अंतरिक्ष]] में, प्रत्येक अनुवाद एक [[ आइसोमेट्री |समरूप]] है।


== एक फलन के रूप में ==
== एक फलन के रूप में ==
{{see also|Displacement (geometry)}}
{{see also|विस्थापन (ज्यामिति)}}
यदि <math>\mathbf{v} </math> एक निश्चित सदिश है,जिसे अनुवाद सदिश के रूप में जाना जाता है, और <math>\mathbf{p}</math> किसी वस्तु की प्रारंभिक स्थिति है, फिर अनुवाद फलन <math>T_{\mathbf{v}} </math> रूप में काम करेगा <math> T_{\mathbf{v}}(\mathbf{p})=\mathbf{p}+\mathbf{v}</math>.
यदि <math>\mathbf{v} </math> एक निश्चित सदिश है,जिसे अनुवाद सदिश के रूप में जाना जाता है, और <math>\mathbf{p}</math> किसी वस्तु की प्रारंभिक स्थिति है, फिर अनुवाद फलन <math>T_{\mathbf{v}} </math> रूप में काम करेगा <math> T_{\mathbf{v}}(\mathbf{p})=\mathbf{p}+\mathbf{v}</math>.


यदि <math> T</math> एक अनुवाद है,तब फलन  T के अंतर्गत एक उपसमुच्चय A की [[ छवि (गणित) |छवि]] T द्वारा A का अनुवाद है. <math>T_{\mathbf{v}} </math> द्वारा <math>A </math> का अनुवाद अधिकांशतः <math>A+\mathbf{v} </math> लिखा जाता है .
यदि <math> T</math> एक अनुवाद है,तब फलन T के अंतर्गत एक उपसमुच्चय A की [[ छवि (गणित) |छवि]] T द्वारा A का अनुवाद है. <math>T_{\mathbf{v}} </math> द्वारा <math>A </math> का अनुवाद अधिकांशतः <math>A+\mathbf{v} </math> लिखा जाता है .


=== क्षैतिज और लंबवत अनुवाद ===
=== क्षैतिज और लंबवत अनुवाद ===
[[ ज्यामिति ]] में, लंबवत अनुवाद (जिसे वर्टिकल शिफ्ट के रूप में भी जाना जाता है) [[ कार्तीय समन्वय प्रणाली ]] के वर्टिकल एक्सिस के समानांतर दिशा में एक ज्यामितीय वस्तु का अनुवाद है।<ref>{{citation
[[ ज्यामिति | ज्यामिति]] में, लंबवत अनुवाद (जिसे वर्टिकल शिफ्ट के रूप में भी जाना जाता है) [[ कार्तीय समन्वय प्रणाली |कार्तीय समन्वय प्रणाली]] के वर्टिकल एक्सिस के समानांतर दिशा में एक ज्यामितीय वस्तु का अनुवाद है।<ref>{{citation
   | last1 = De Berg
   | last1 = De Berg
   | first1 = Mark
   | first1 = Mark
Line 26: Line 26:
   | isbn = 978-3-540-77973-5 }}.</ref><ref>{{citation|title=Methods of Geometry|first=James T.|last=Smith|publisher=John Wiley & Sons|year=2011|isbn=9781118031032|page=356|url=https://books.google.com/books?id=B0khWEZmOlwC&pg=PA356}}.</ref><ref>{{citation|title=The Role of Nonassociative Algebra in Projective Geometry|volume=159|series=[[Graduate Studies in Mathematics]]|first=John R.|last=Faulkner|publisher=American Mathematical Society|year= 2014|isbn=9781470418496|page=13|url=https://books.google.com/books?id=axIBBQAAQBAJ&pg=PA13}}.</ref>
   | isbn = 978-3-540-77973-5 }}.</ref><ref>{{citation|title=Methods of Geometry|first=James T.|last=Smith|publisher=John Wiley & Sons|year=2011|isbn=9781118031032|page=356|url=https://books.google.com/books?id=B0khWEZmOlwC&pg=PA356}}.</ref><ref>{{citation|title=The Role of Nonassociative Algebra in Projective Geometry|volume=159|series=[[Graduate Studies in Mathematics]]|first=John R.|last=Faulkner|publisher=American Mathematical Society|year= 2014|isbn=9781470418496|page=13|url=https://books.google.com/books?id=axIBBQAAQBAJ&pg=PA13}}.</ref>


[[File:Constant of integration 001.png|thumb|300px|फलन ''f''(''x'') = 3''x''<sup>2</sup> − 2 के विभिन्न प्रतिअवकलजों के आलेख. सभी एक दूसरे के लंबवत अनुवाद हैं।]]अधिकांशतः, फलन के ग्राफ़ के लिए लंबवत अनुवादों पर विचार किया जाता है। अगर f, x का कोई फलन है, तो फलन f(x) + c का ग्राफ़ (जिसके मान f के मानों में नियतांक c जोड़कर दिए गए हैं) दूरी c द्वारा ग्राफ़ f(x) के लंबवत अनुवाद से प्राप्त किया जा सकता है । इस कारण फलन f(x) + c को कभी-कभी f(x) का 'ऊर्ध्वाधर अनुवाद' कहा जाता है।<ref>{{citation|title=Nonlinear Filters for Image Processing|series=SPIE/IEEE series on imaging science & engineering|volume=59|first1=Edward R.|last1=Dougherty|first2=Jaakko|last2=Astol|publisher=SPIE Press|year=1999|isbn=9780819430335|page=169|url=https://books.google.com/books?id=4PV-sTF6qJQC&pg=PA169}}.</ref> उदाहरण के लिए, एक फलन के सभी [[अवकलज|प्रतिव्युत्पन्न]]   एक दूसरे से [[ एकीकरण की निरंतरता ]] से भिन्न होते हैं और इसलिए एक दूसरे के लंबवत अनुवाद होते हैं।<ref>{{citation|title=Single Variable Calculus: Early Transcendentals|first1=Dennis|last1=Zill|first2=Warren S.|last2=Wright|publisher=Jones & Bartlett Learning|year=2009|isbn=9780763749651|page=269|url=https://books.google.com/books?id=0n0iPYKLo74C&pg=PA269}}.</ref>
[[File:Constant of integration 001.png|thumb|300px|फलन ''f''(''x'') = 3''x''<sup>2</sup> − 2 के विभिन्न प्रतिअवकलजों के आलेख. सभी एक दूसरे के लंबवत अनुवाद हैं।]]अधिकांशतः, फलन के ग्राफ़ के लिए लंबवत अनुवादों पर विचार किया जाता है। अगर f, x का कोई फलन है, तो फलन f(x) + c का ग्राफ़ (जिसके मान f के मानों में नियतांक c जोड़कर दिए गए हैं) दूरी c द्वारा ग्राफ़ f(x) के लंबवत अनुवाद से प्राप्त किया जा सकता है । इस कारण फलन f(x) + c को कभी-कभी f(x) का 'ऊर्ध्वाधर अनुवाद' कहा जाता है।<ref>{{citation|title=Nonlinear Filters for Image Processing|series=SPIE/IEEE series on imaging science & engineering|volume=59|first1=Edward R.|last1=Dougherty|first2=Jaakko|last2=Astol|publisher=SPIE Press|year=1999|isbn=9780819430335|page=169|url=https://books.google.com/books?id=4PV-sTF6qJQC&pg=PA169}}.</ref> उदाहरण के लिए, एक फलन के सभी [[अवकलज|प्रतिव्युत्पन्न]] एक दूसरे से [[ एकीकरण की निरंतरता |एकीकरण की निरंतरता]] से भिन्न होते हैं और इसलिए एक दूसरे के लंबवत अनुवाद होते हैं।<ref>{{citation|title=Single Variable Calculus: Early Transcendentals|first1=Dennis|last1=Zill|first2=Warren S.|last2=Wright|publisher=Jones & Bartlett Learning|year=2009|isbn=9780763749651|page=269|url=https://books.google.com/books?id=0n0iPYKLo74C&pg=PA269}}.</ref>
[[ समारोह रेखांकन | फलन रेखांकन]] में, एक क्षैतिज अनुवाद एक [[ परिवर्तन (फ़ंक्शन) | परिवर्तन (फलन)]] होता है जिसके परिणामस्वरूप एक ग्राफ़ जो आधार ग्राफ़ को ''x''-अक्ष की दिशा में बाएँ या दाएँ स्थानांतरित करने के बराबर होता है। ग्राफ ''k'' इकाइयों को क्षैतिज रूप से ग्राफ पर प्रत्येक बिंदु को स्थानांतरित करके क्षैतिज रूप से 'k' इकाइयों का अनुवाद किया जाता है।
[[ समारोह रेखांकन | फलन रेखांकन]] में, एक क्षैतिज अनुवाद एक [[ परिवर्तन (फ़ंक्शन) |परिवर्तन (फलन)]] होता है जिसके परिणामस्वरूप एक ग्राफ़ जो आधार ग्राफ़ को ''x''-अक्ष की दिशा में बाएँ या दाएँ स्थानांतरित करने के बराबर होता है। ग्राफ ''k'' इकाइयों को क्षैतिज रूप से ग्राफ पर प्रत्येक बिंदु को स्थानांतरित करके क्षैतिज रूप से 'k' इकाइयों का अनुवाद किया जाता है।


आधार फलन ''f''(''x'') और स्थिरांक ''k'' के लिए, दिया गया फलन ''g''(''x'') = ''f'' (''x'' − ''k''), को ''f''(''x'') ''k'' इकाइयों को क्षैतिज रूप से स्थानांतरित करके रेखाचित्रत किया जा सकता है।
आधार फलन ''f''(''x'') और स्थिरांक ''k'' के लिए, दिया गया फलन ''g''(''x'') = ''f'' (''x'' − ''k''), को ''f''(''x'') ''k'' इकाइयों को क्षैतिज रूप से स्थानांतरित करके रेखाचित्रत किया जा सकता है।


यदि ज्यामितीय परिवर्तनों के संदर्भ [[ आधार समारोह | आधार फलन]] परिवर्तन के बारे में बात की गई थी, तो यह स्पष्ट हो सकता है कि फलन क्षैतिज रूप से जिस तरह से अनुवाद करते हैं, उसका अनुवाद क्यों करते हैं। कार्तीय तल पर अनुवादों को संबोधित करते समय इस प्रकार के संकेतन में अनुवाद प्रस्तुत करना स्वाभाविक है:
यदि ज्यामितीय परिवर्तनों के संदर्भ [[ आधार समारोह |आधार फलन]] परिवर्तन के बारे में बात की गई थी, तो यह स्पष्ट हो सकता है कि फलन क्षैतिज रूप से जिस तरह से अनुवाद करते हैं, उसका अनुवाद क्यों करते हैं। कार्तीय तल पर अनुवादों को संबोधित करते समय इस प्रकार के संकेतन में अनुवाद प्रस्तुत करना स्वाभाविक है:


:<math>(x,y)\rightarrow(x+a,y+b)</math>
:<math>(x,y)\rightarrow(x+a,y+b)</math>
Line 41: Line 41:
==== उदाहरण ====
==== उदाहरण ====


[[ परवलय ]] y = x<sup>2</sup> में, दाईं ओर 5 इकाइयों का एक क्षैतिज अनुवाद T(x, y) = (x + 5, y) द्वारा दर्शाया जाएगा। अब हमें इस परिवर्तन संकेतन को बीजगणितीय संकेतन से जोड़ना चाहिए। मूल [[ परवलय | परवलय]] पर बिंदु (ए, बी) पर विचार करें जो अनुवादित पैराबोला पर बिंदु (सी, डी) पर जाता है। हमारे अनुवाद के अनुसार, c = a + 5 और d = b मूल परवलय पर बिंदु b = a<sup>2 था । हमारे नए बिंदु को उसी समीकरण में d और c के संबंध में वर्णित किया जा सकता है। b = d और a= c- 5 तो ''d'' = ''b'' = ''a''<sup>2</sup> = (''c'' − 5)<sup>2</sup>. चूंकि यह हमारे नए परवलय के सभी बिंदुओं के लिए सही है, इसलिए नया समीकरण ''y'' = (''x'' − 5)<sup>2</sup>
[[ परवलय | परवलय]] y = x<sup>2</sup> में, दाईं ओर 5 इकाइयों का एक क्षैतिज अनुवाद T(x, y) = (x + 5, y) द्वारा दर्शाया जाएगा। अब हमें इस परिवर्तन संकेतन को बीजगणितीय संकेतन से जोड़ना चाहिए। मूल [[ परवलय |परवलय]] पर बिंदु (ए, बी) पर विचार करें जो अनुवादित पैराबोला पर बिंदु (सी, डी) पर जाता है। हमारे अनुवाद के अनुसार, c = a + 5 और d = b मूल परवलय पर बिंदु b = a<sup>2 था । हमारे नए बिंदु को उसी समीकरण में d और c के संबंध में वर्णित किया जा सकता है। b = d और a= c- 5 तो ''d'' = ''b'' = ''a''<sup>2</sup> = (''c'' − 5)<sup>2</sup>. चूंकि यह हमारे नए परवलय के सभी बिंदुओं के लिए सही है, इसलिए नया समीकरण ''y'' = (''x'' − 5)<sup>2</sup>


=== [[ शास्त्रीय भौतिकी ]] में अनुप्रयोग ===
=== [[ शास्त्रीय भौतिकी | शास्त्रीय भौतिकी]] में अनुप्रयोग ===
शास्त्रीय भौतिकी में,अनुवाद संबंधी गति वह गति है जो घूर्णन के विपरीत किसी वस्तु की [[ स्थिति (ज्यामिति) | स्थिति]] को परिवर्तित करती है। उदाहरण के लिए, व्हिटेकर के अनुसार:<ref name=Whittaker>{{cite book |title=कणों और कठोर निकायों की विश्लेषणात्मक गतिशीलता पर एक ग्रंथ|author=Edmund Taylor Whittaker|author-link=E. T. Whittaker |isbn=0-521-35883-3 |publisher=Cambridge University Press |year=1988 |url=https://books.google.com/books?id=epH1hCB7N2MC&q=rigid+bodies+translation&pg=PA4 |edition=Reprint of fourth edition of 1936 with foreword by William McCrea |page=1}}</ref>
शास्त्रीय भौतिकी में,अनुवाद संबंधी गति वह गति है जो घूर्णन के विपरीत किसी वस्तु की [[ स्थिति (ज्यामिति) |स्थिति]] को परिवर्तित करती है। उदाहरण के लिए, व्हिटेकर के अनुसार:<ref name=Whittaker>{{cite book |title=कणों और कठोर निकायों की विश्लेषणात्मक गतिशीलता पर एक ग्रंथ|author=Edmund Taylor Whittaker|author-link=E. T. Whittaker |isbn=0-521-35883-3 |publisher=Cambridge University Press |year=1988 |url=https://books.google.com/books?id=epH1hCB7N2MC&q=rigid+bodies+translation&pg=PA4 |edition=Reprint of fourth edition of 1936 with foreword by William McCrea |page=1}}</ref>


{{Quotation|यदि किसी पिंड को एक स्थान से दूसरे स्थान पर ले जाया जाता है, और यदि पिंड के प्रत्येक बिंदु के प्रारंभिक और अंतिम बिंदुओं को मिलाने वाली रेखाएँ  ℓ लंबाई की समानांतर सीधी रेखाओं का एक समूह हैं, जिससे कि अभिविन्यास अंतरिक्ष में पिंड अपरिवर्तित है, विस्थापन को '' दूरी ℓ के माध्यम से रेखाओं की दिशा के समानांतर अनुवाद '' कहा जाता है|[[E. T. Whittaker]]: ''[[A Treatise on the Analytical Dynamics of Particles and Rigid Bodies]]'', p. 1}}
{{Quotation|यदि किसी पिंड को एक स्थान से दूसरे स्थान पर ले जाया जाता है, और यदि पिंड के प्रत्येक बिंदु के प्रारंभिक और अंतिम बिंदुओं को मिलाने वाली रेखाएँ  ℓ लंबाई की समानांतर सीधी रेखाओं का एक समूह हैं, जिससे कि अभिविन्यास अंतरिक्ष में पिंड अपरिवर्तित है, विस्थापन को '' दूरी ℓ के माध्यम से रेखाओं की दिशा के समानांतर अनुवाद '' कहा जाता है|[[इ। टी. व्हिटेकर]]: ''[[कणों और कठोर निकायों की विश्लेषणात्मक गतिशीलता पर एक ग्रंथ]]'', पी। 1}}
एक अनुवाद सूत्र के अनुसार किसी वस्तु के सभी बिंदुओं (x,y,z)की स्थिति परिवर्तित करने वाला ऑपरेशन है ।
एक अनुवाद सूत्र के अनुसार किसी वस्तु के सभी बिंदुओं (x,y,z)की स्थिति परिवर्तित करने वाला ऑपरेशन है ।


:<math>(x,y,z) \to (x+\Delta x,y+\Delta y, z+\Delta z)</math>
:<math>(x,y,z) \to (x+\Delta x,y+\Delta y, z+\Delta z)</math>
यहाँ पे <math>(\Delta x,\ \Delta y,\ \Delta z)</math> वस्तु के प्रत्येक बिंदु के लिए समान [[ यूक्लिडियन वेक्टर | यूक्लिडियन सदिश]] है। अनुवाद सदिश <math>(\Delta x,\ \Delta y,\ \Delta z)</math> वस्तु के सभी बिंदुओं के लिए सामान्य वस्तु के एक विशेष प्रकार के [[ विस्थापन (वेक्टर) | विस्थापन]] का वर्णन करता है, जिसे सामान्यतः पर एक रैखिक विस्थापन कहा जाता है ताकि इसे रोटेशन से जुड़े विस्थापन से अलग किया जा सके, जिसे कोणीय विस्थापन कहा जाता है।
यहाँ पे <math>(\Delta x,\ \Delta y,\ \Delta z)</math> वस्तु के प्रत्येक बिंदु के लिए समान [[ यूक्लिडियन वेक्टर |यूक्लिडियन सदिश]] है। अनुवाद सदिश <math>(\Delta x,\ \Delta y,\ \Delta z)</math> वस्तु के सभी बिंदुओं के लिए सामान्य वस्तु के एक विशेष प्रकार के [[ विस्थापन (वेक्टर) |विस्थापन]] का वर्णन करता है, जिसे सामान्यतः पर एक रैखिक विस्थापन कहा जाता है ताकि इसे रोटेशन से जुड़े विस्थापन से अलग किया जा सके, जिसे कोणीय विस्थापन कहा जाता है।


[[ अंतरिक्ष समय ]] पर विचार करते [[ समय ]],समय निर्देशांक में परिवर्तन को अनुवाद माना जाता है।
[[ अंतरिक्ष समय | अंतरिक्ष समय]] पर विचार करते [[ समय |समय]] ,समय निर्देशांक में परिवर्तन को अनुवाद माना जाता है।


== एक   प्रचालक के रूप में ==
== एक प्रचालक के रूप में ==
{{main|Shift operator}}
{{main|शिफ्ट ऑपरेटर}}
[[ शिफ्ट ऑपरेटर | शिफ्ट   प्रचालक]] मूल स्थिति के एक फलन <math>f(\mathbf{v})</math> को,, अंतिम स्थिति के एक फलन <math>f(\mathbf{v}+\mathbf{\delta})</math> में, परिवर्तित कर देता है. दूसरे शब्दों में, <math>T_\mathbf{\delta}</math> परिभाषित किया गया है कि <math>T_\mathbf{\delta} f(\mathbf{v}) = f(\mathbf{v}+\mathbf{\delta}).</math> यह   प्रचालक एक फलन से अधिक अमूर्त है, क्योंकि <math>T_\mathbf{\delta}</math> अंतर्निहित वैक्टर के अतिरिक्त दो फलन के बीच संबंध को परिभाषित करता है। अनुवाद   प्रचालक कई प्रकार के फलन पर कार्य कर सकता है, जैसे जब अनुवाद   प्रचालक एक वेवफंक्शन पर कार्य करता है, जिसका अध्ययन क्वांटम यांत्रिकी के क्षेत्र में किया जाता है ।
[[ शिफ्ट ऑपरेटर | शिफ्ट प्रचालक]] मूल स्थिति के एक फलन <math>f(\mathbf{v})</math> को,, अंतिम स्थिति के एक फलन <math>f(\mathbf{v}+\mathbf{\delta})</math> में, परिवर्तित कर देता है. दूसरे शब्दों में, <math>T_\mathbf{\delta}</math> परिभाषित किया गया है कि <math>T_\mathbf{\delta} f(\mathbf{v}) = f(\mathbf{v}+\mathbf{\delta}).</math> यह प्रचालक एक फलन से अधिक अमूर्त है, क्योंकि <math>T_\mathbf{\delta}</math> अंतर्निहित वैक्टर के अतिरिक्त दो फलन के बीच संबंध को परिभाषित करता है। अनुवाद प्रचालक कई प्रकार के फलन पर कार्य कर सकता है, जैसे जब अनुवाद प्रचालक एक वेवफंक्शन पर कार्य करता है, जिसका अध्ययन क्वांटम यांत्रिकी के क्षेत्र में किया जाता है ।


एक समूह के रूप में
एक समूह के रूप में
Line 62: Line 62:
{{see also|अनुवाद ऑपरेटर (क्वांटम यांत्रिकी)#अनुवाद समूह}}
{{see also|अनुवाद ऑपरेटर (क्वांटम यांत्रिकी)#अनुवाद समूह}}


सभी अनुवादों का समूह अनुवाद समूह <math>\mathbb{T} </math> बनाता है, जो अंतरिक्ष के लिए ही समरूपी है, और [[ यूक्लिडियन समूह | यूक्लिडियन समूह]] <math> E(n) </math> का एक [[ सामान्य उपसमूह | सामान्य उपसमूह]] है . <math>E(n) </math> का [[ भागफल समूह | भागफल समूह]] द्वारा ऑर्थोगोनल समूह <math>\mathbb{T} </math> के लिए <math> O(n)</math> आइसोमोर्फिक है:
सभी अनुवादों का समूह अनुवाद समूह <math>\mathbb{T} </math> बनाता है, जो अंतरिक्ष के लिए ही समरूपी है, और [[ यूक्लिडियन समूह |यूक्लिडियन समूह]] <math> E(n) </math> का एक [[ सामान्य उपसमूह |सामान्य उपसमूह]] है . <math>E(n) </math> का [[ भागफल समूह |भागफल समूह]] द्वारा ऑर्थोगोनल समूह <math>\mathbb{T} </math> के लिए <math> O(n)</math> आइसोमोर्फिक है:
:<math>E(n)/\mathbb{T}\cong O(n) </math>
:<math>E(n)/\mathbb{T}\cong O(n) </math>
क्योंकि अनुवाद क्रम[[ विनिमेय ]] है, अनुवाद समूह [[ एबेलियन समूह ]] है। असीमित संख्या में संभावित अनुवाद हैं, इसलिए अनुवाद समूह एक [[ अनंत समूह ]] है।
क्योंकि अनुवाद क्रम[[ विनिमेय | विनिमेय]] है, अनुवाद समूह [[ एबेलियन समूह |एबेलियन समूह]] है। असीमित संख्या में संभावित अनुवाद हैं, इसलिए अनुवाद समूह एक [[ अनंत समूह |अनंत समूह]] है।


सापेक्षता के सिद्धांत में, अंतरिक्ष और समय को एक ही स्थान-समय के रूप में मानने के कारण,अनुवाद [[ समन्वय समय ]] में परिवर्तन का भी उल्लेख कर सकते हैं। उदाहरण के लिए, [[ गैलीलियन समूह ]] और पोंकारे समूह में समय के संबंध में अनुवाद सम्मलित हैं।
सापेक्षता के सिद्धांत में, अंतरिक्ष और समय को एक ही स्थान-समय के रूप में मानने के कारण,अनुवाद [[ समन्वय समय |समन्वय समय]] में परिवर्तन का भी उल्लेख कर सकते हैं। उदाहरण के लिए, [[ गैलीलियन समूह |गैलीलियन समूह]] और पोंकारे समूह में समय के संबंध में अनुवाद सम्मलित हैं।


===जाली समूह===
===जाली समूह===
{{main|Lattice (group)}}
{{main|लैटिस (समूह)}}
त्रि-आयामी अनुवाद समूह एक प्रकार का उपसमूह जाली समूह हैं,जो अनंत समूह हैं, लेकिन अनुवाद समूहों के विपरीत, [[ अंतिम रूप से उत्पन्न समूह ]] हैं। अर्थात्, एक परिमित जनक समुच्चय पूरे समूह को उत्पन्न करता है।
त्रि-आयामी अनुवाद समूह एक प्रकार का उपसमूह जाली समूह हैं,जो अनंत समूह हैं, लेकिन अनुवाद समूहों के विपरीत, [[ अंतिम रूप से उत्पन्न समूह |अंतिम रूप से उत्पन्न समूह]] हैं। अर्थात्, एक परिमित जनक समुच्चय पूरे समूह को उत्पन्न करता है।


== आव्यूह प्रतिनिधित्व ==<!-- This section is linked from [[Affine transformation]] -->
== आव्यूह प्रतिनिधित्व ==
अनुवाद एक निश्चित परिवर्तन है जिसमें कोई[[ निश्चित बिंदु (गणित) | निश्चित बिंदु]] नहीं है। [[ मैट्रिक्स गुणन | आव्यूह गुणन]] हमेशा एक निश्चित बिंदु के रूप में मूल होता है। फिर भी, आव्यूह गुणन के साथ सदिश स्थान के अनुवाद का प्रतिनिधित्व करने के लिए [[ सजातीय निर्देशांक |सजातीय निर्देशांक]] का उपयोग करना एक सामान्य समाधान है: चार सजातीय निर्देशांक <math>\mathbf{v}=(v_x, v_y, v_z, 1) </math>के रूप में उपयोग कर के, त्रिआयामी सदिश <math>\mathbf{v}=(v_x, v_y, v_z) </math> लिखें.<ref>Richard Paul, 1981, [https://books.google.com/books?id=UzZ3LAYqvRkC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false Robot manipulators: mathematics, programming, and control : the computer control of robot manipulators], MIT Press, Cambridge, MA</ref>
अनुवाद एक निश्चित परिवर्तन है जिसमें कोई[[ निश्चित बिंदु (गणित) | निश्चित बिंदु]] नहीं है। [[ मैट्रिक्स गुणन |आव्यूह गुणन]] हमेशा एक निश्चित बिंदु के रूप में मूल होता है। फिर भी, आव्यूह गुणन के साथ सदिश स्थान के अनुवाद का प्रतिनिधित्व करने के लिए [[ सजातीय निर्देशांक |सजातीय निर्देशांक]] का उपयोग करना एक सामान्य समाधान है: चार सजातीय निर्देशांक <math>\mathbf{v}=(v_x, v_y, v_z, 1) </math>के रूप में उपयोग कर के, त्रिआयामी सदिश <math>\mathbf{v}=(v_x, v_y, v_z) </math> लिखें.<ref>Richard Paul, 1981, [https://books.google.com/books?id=UzZ3LAYqvRkC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false Robot manipulators: mathematics, programming, and control : the computer control of robot manipulators], MIT Press, Cambridge, MA</ref>किसी ऑब्जेक्ट का [[ वेक्टर (ज्यामिति) |सदिश]] <math>\mathbf{v} </math> द्वारा अनुवाद करने के लिए, प्रत्येक सजातीय सदिश <math>\mathbf{p} </math> (सजातीय निर्देशांक में लिखित ) का अनुवाद आव्यूह से गुणा किया जा सकता है:
 
किसी ऑब्जेक्ट का [[ वेक्टर (ज्यामिति) | सदिश]] <math>\mathbf{v} </math> द्वारा अनुवाद करने के लिए, प्रत्येक सजातीय सदिश <math>\mathbf{p} </math> (सजातीय निर्देशांक में लिखित ) का अनुवाद आव्यूह से गुणा किया जा सकता है:


: <math> T_{\mathbf{v}} =  
: <math> T_{\mathbf{v}} =  
Line 103: Line 101:
सदिश की दिशा को उलट कर एक अनुवाद आव्यूह का व्युत्क्रम प्राप्त किया जा सकता है:
सदिश की दिशा को उलट कर एक अनुवाद आव्यूह का व्युत्क्रम प्राप्त किया जा सकता है:
: <math> T^{-1}_{\mathbf{v}} = T_{-\mathbf{v}} . \! </math>
: <math> T^{-1}_{\mathbf{v}} = T_{-\mathbf{v}} . \! </math>
इसी तरह, अनुवाद आव्यूह का उत्पाद सदिश जोड़कर दिया जाता है:
इसी तरह, अनुवाद आव्यूह का उत्पाद सदिश जोड़कर दिया जाता है:
: <math> T_{\mathbf{v}}T_{\mathbf{w}} = T_{\mathbf{v}+\mathbf{w}} . \! </math>
: <math> T_{\mathbf{v}}T_{\mathbf{w}} = T_{\mathbf{v}+\mathbf{w}} . \! </math>
क्योंकि सदिशों का योग क्रमविनिमेय है, इसलिए अनुवाद आव्यूहों का गुणन भी क्रमविनिमेय है विवेकाधीन आव्यूहों के गुणन के विपरीत)।
क्योंकि सदिशों का योग क्रमविनिमेय है, इसलिए अनुवाद आव्यूहों का गुणन भी क्रमविनिमेय है विवेकाधीन आव्यूहों के गुणन के विपरीत)।


==अक्षों का अनुवाद==
==अक्षों का अनुवाद==
{{main|Translation of axes}}
{{main|कुल्हाड़ियों का अनुवाद}}
जबकि ज्यामितीय अनुवाद को अधिकांशतः एक सक्रिय प्रक्रिया के रूप में देखा जाता है जो एक ज्यामितीय वस्तु की स्थिति को परिवर्तित करता है, एक समान परिणाम एक निष्क्रिय परिवर्तन द्वारा प्राप्त किया जा सकता है जो समन्वय प्रणाली को स्वयं स्थानांतरित करता है लेकिन वस्तु को स्थिर छोड़ देता है । सक्रिय ज्यामितीय अनुवाद के निष्क्रिय संस्करण को अक्षों के अनुवाद के रूप में जाना जाता है।
जबकि ज्यामितीय अनुवाद को अधिकांशतः एक सक्रिय प्रक्रिया के रूप में देखा जाता है जो एक ज्यामितीय वस्तु की स्थिति को परिवर्तित करता है, एक समान परिणाम एक निष्क्रिय परिवर्तन द्वारा प्राप्त किया जा सकता है जो समन्वय प्रणाली को स्वयं स्थानांतरित करता है लेकिन वस्तु को स्थिर छोड़ देता है । सक्रिय ज्यामितीय अनुवाद के निष्क्रिय संस्करण को अक्षों के अनुवाद के रूप में जाना जाता है।


== अनुवाद संबंधी समरूपता ==
== अनुवाद संबंधी समरूपता ==
{{main|Translational symmetry}}
{{main|अनुवादिक समरूपता}}
एक वस्तु जो अनुवाद से पहले और बाद में एक जैसी दिखती है, उसे अनुवाद संबंधी समरूपता कहा जाता है। एक सामान्य उदाहरण एक [[ आवधिक कार्य ]] है, जो एक अनुवाद   प्रचालक का एक [[ eigenfunction | अतिलक्षणिकफलन]] है।
एक वस्तु जो अनुवाद से पहले और बाद में एक जैसी दिखती है, उसे अनुवाद संबंधी समरूपता कहा जाता है। एक सामान्य उदाहरण एक [[ आवधिक कार्य |आवधिक कार्य]] है, जो एक अनुवाद प्रचालक का एक [[ eigenfunction |अतिलक्षणिकफलन]] है।


== अनुप्रयोग ==
== अनुप्रयोग ==


=== [[ वाहन की गतिशीलता ]] ===
=== [[ वाहन की गतिशीलता ]] ===
वाहन की गतिशीलता (या किसी [[ कठोर शरीर ]] की गति) का वर्णन करने के लिए, [[ जहाज की गति ]] और विमान के प्रमुख अक्षों सहित, एक यांत्रिक मॉडल का उपयोग करना साधारण है जिसमें छह डिग्री की स्वतंत्रता सम्मलित है, जिसमें तीन संदर्भ अक्षों के साथ-साथ उन तीन अक्षों के बारे में घुमाव सम्मलित हैं
वाहन की गतिशीलता (या किसी [[ कठोर शरीर |कठोर शरीर]] की गति) का वर्णन करने के लिए, [[ जहाज की गति |जहाज की गति]] और विमान के प्रमुख अक्षों सहित, एक यांत्रिक मॉडल का उपयोग करना साधारण है जिसमें छह डिग्री की स्वतंत्रता सम्मलित है, जिसमें तीन संदर्भ अक्षों के साथ-साथ उन तीन अक्षों के बारे में घुमाव सम्मलित हैं


इन अनुवादों को अधिकांशतः कहा जाता है:
इन अनुवादों को अधिकांशतः कहा जाता है:

Revision as of 14:41, 27 November 2022

यूक्लिडियन ज्यामिति में, एक अनुवाद एक ज्यामितीय परिवर्तन है जो किसी आकृति, आकार या स्थान के प्रत्येक बिंदु को एक निश्चित दिशा में समान दूरी से स्थानांतरित करता है। एक अनुवाद को प्रत्येक बिंदु पर एक स्थिर सदिश स्थान के अतिरिक्त, या समन्वय प्रणाली के मूल को स्थानांतरित करने के रूप में भी व्याख्या किया जा सकता है। यूक्लिडियन अंतरिक्ष में, प्रत्येक अनुवाद एक समरूप है।

एक फलन के रूप में

यदि एक निश्चित सदिश है,जिसे अनुवाद सदिश के रूप में जाना जाता है, और किसी वस्तु की प्रारंभिक स्थिति है, फिर अनुवाद फलन रूप में काम करेगा .

यदि एक अनुवाद है,तब फलन T के अंतर्गत एक उपसमुच्चय A की छवि T द्वारा A का अनुवाद है. द्वारा का अनुवाद अधिकांशतः लिखा जाता है .

क्षैतिज और लंबवत अनुवाद

ज्यामिति में, लंबवत अनुवाद (जिसे वर्टिकल शिफ्ट के रूप में भी जाना जाता है) कार्तीय समन्वय प्रणाली के वर्टिकल एक्सिस के समानांतर दिशा में एक ज्यामितीय वस्तु का अनुवाद है।[1][2][3]

फलन f(x) = 3x2 − 2 के विभिन्न प्रतिअवकलजों के आलेख. सभी एक दूसरे के लंबवत अनुवाद हैं।

अधिकांशतः, फलन के ग्राफ़ के लिए लंबवत अनुवादों पर विचार किया जाता है। अगर f, x का कोई फलन है, तो फलन f(x) + c का ग्राफ़ (जिसके मान f के मानों में नियतांक c जोड़कर दिए गए हैं) दूरी c द्वारा ग्राफ़ f(x) के लंबवत अनुवाद से प्राप्त किया जा सकता है । इस कारण फलन f(x) + c को कभी-कभी f(x) का 'ऊर्ध्वाधर अनुवाद' कहा जाता है।[4] उदाहरण के लिए, एक फलन के सभी प्रतिव्युत्पन्न एक दूसरे से एकीकरण की निरंतरता से भिन्न होते हैं और इसलिए एक दूसरे के लंबवत अनुवाद होते हैं।[5]

फलन रेखांकन में, एक क्षैतिज अनुवाद एक परिवर्तन (फलन) होता है जिसके परिणामस्वरूप एक ग्राफ़ जो आधार ग्राफ़ को x-अक्ष की दिशा में बाएँ या दाएँ स्थानांतरित करने के बराबर होता है। ग्राफ k इकाइयों को क्षैतिज रूप से ग्राफ पर प्रत्येक बिंदु को स्थानांतरित करके क्षैतिज रूप से 'k' इकाइयों का अनुवाद किया जाता है।

आधार फलन f(x) और स्थिरांक k के लिए, दिया गया फलन g(x) = f (x − k), को f(x) k इकाइयों को क्षैतिज रूप से स्थानांतरित करके रेखाचित्रत किया जा सकता है।

यदि ज्यामितीय परिवर्तनों के संदर्भ आधार फलन परिवर्तन के बारे में बात की गई थी, तो यह स्पष्ट हो सकता है कि फलन क्षैतिज रूप से जिस तरह से अनुवाद करते हैं, उसका अनुवाद क्यों करते हैं। कार्तीय तल पर अनुवादों को संबोधित करते समय इस प्रकार के संकेतन में अनुवाद प्रस्तुत करना स्वाभाविक है:

या

जहां पे तथा क्रमशः क्षैतिज और लंबवत परिवर्तन हैं।

उदाहरण

परवलय y = x2 में, दाईं ओर 5 इकाइयों का एक क्षैतिज अनुवाद T(x, y) = (x + 5, y) द्वारा दर्शाया जाएगा। अब हमें इस परिवर्तन संकेतन को बीजगणितीय संकेतन से जोड़ना चाहिए। मूल परवलय पर बिंदु (ए, बी) पर विचार करें जो अनुवादित पैराबोला पर बिंदु (सी, डी) पर जाता है। हमारे अनुवाद के अनुसार, c = a + 5 और d = b मूल परवलय पर बिंदु b = a2 था । हमारे नए बिंदु को उसी समीकरण में d और c के संबंध में वर्णित किया जा सकता है। b = d और a= c- 5 तो d = b = a2 = (c − 5)2. चूंकि यह हमारे नए परवलय के सभी बिंदुओं के लिए सही है, इसलिए नया समीकरण y = (x − 5)2

शास्त्रीय भौतिकी में अनुप्रयोग

शास्त्रीय भौतिकी में,अनुवाद संबंधी गति वह गति है जो घूर्णन के विपरीत किसी वस्तु की स्थिति को परिवर्तित करती है। उदाहरण के लिए, व्हिटेकर के अनुसार:[6]

यदि किसी पिंड को एक स्थान से दूसरे स्थान पर ले जाया जाता है, और यदि पिंड के प्रत्येक बिंदु के प्रारंभिक और अंतिम बिंदुओं को मिलाने वाली रेखाएँ ℓ लंबाई की समानांतर सीधी रेखाओं का एक समूह हैं, जिससे कि अभिविन्यास अंतरिक्ष में पिंड अपरिवर्तित है, विस्थापन को दूरी ℓ के माध्यम से रेखाओं की दिशा के समानांतर अनुवाद कहा जाता है

एक अनुवाद सूत्र के अनुसार किसी वस्तु के सभी बिंदुओं (x,y,z)की स्थिति परिवर्तित करने वाला ऑपरेशन है ।

यहाँ पे वस्तु के प्रत्येक बिंदु के लिए समान यूक्लिडियन सदिश है। अनुवाद सदिश वस्तु के सभी बिंदुओं के लिए सामान्य वस्तु के एक विशेष प्रकार के विस्थापन का वर्णन करता है, जिसे सामान्यतः पर एक रैखिक विस्थापन कहा जाता है ताकि इसे रोटेशन से जुड़े विस्थापन से अलग किया जा सके, जिसे कोणीय विस्थापन कहा जाता है।

अंतरिक्ष समय पर विचार करते समय ,समय निर्देशांक में परिवर्तन को अनुवाद माना जाता है।

एक प्रचालक के रूप में

शिफ्ट प्रचालक मूल स्थिति के एक फलन को,, अंतिम स्थिति के एक फलन में, परिवर्तित कर देता है. दूसरे शब्दों में, परिभाषित किया गया है कि यह प्रचालक एक फलन से अधिक अमूर्त है, क्योंकि अंतर्निहित वैक्टर के अतिरिक्त दो फलन के बीच संबंध को परिभाषित करता है। अनुवाद प्रचालक कई प्रकार के फलन पर कार्य कर सकता है, जैसे जब अनुवाद प्रचालक एक वेवफंक्शन पर कार्य करता है, जिसका अध्ययन क्वांटम यांत्रिकी के क्षेत्र में किया जाता है ।

एक समूह के रूप में

सभी अनुवादों का समूह अनुवाद समूह बनाता है, जो अंतरिक्ष के लिए ही समरूपी है, और यूक्लिडियन समूह का एक सामान्य उपसमूह है . का भागफल समूह द्वारा ऑर्थोगोनल समूह के लिए आइसोमोर्फिक है:

क्योंकि अनुवाद क्रम विनिमेय है, अनुवाद समूह एबेलियन समूह है। असीमित संख्या में संभावित अनुवाद हैं, इसलिए अनुवाद समूह एक अनंत समूह है।

सापेक्षता के सिद्धांत में, अंतरिक्ष और समय को एक ही स्थान-समय के रूप में मानने के कारण,अनुवाद समन्वय समय में परिवर्तन का भी उल्लेख कर सकते हैं। उदाहरण के लिए, गैलीलियन समूह और पोंकारे समूह में समय के संबंध में अनुवाद सम्मलित हैं।

जाली समूह

त्रि-आयामी अनुवाद समूह एक प्रकार का उपसमूह जाली समूह हैं,जो अनंत समूह हैं, लेकिन अनुवाद समूहों के विपरीत, अंतिम रूप से उत्पन्न समूह हैं। अर्थात्, एक परिमित जनक समुच्चय पूरे समूह को उत्पन्न करता है।

आव्यूह प्रतिनिधित्व

अनुवाद एक निश्चित परिवर्तन है जिसमें कोई निश्चित बिंदु नहीं है। आव्यूह गुणन हमेशा एक निश्चित बिंदु के रूप में मूल होता है। फिर भी, आव्यूह गुणन के साथ सदिश स्थान के अनुवाद का प्रतिनिधित्व करने के लिए सजातीय निर्देशांक का उपयोग करना एक सामान्य समाधान है: चार सजातीय निर्देशांक के रूप में उपयोग कर के, त्रिआयामी सदिश लिखें.[7]किसी ऑब्जेक्ट का सदिश द्वारा अनुवाद करने के लिए, प्रत्येक सजातीय सदिश (सजातीय निर्देशांक में लिखित ) का अनुवाद आव्यूह से गुणा किया जा सकता है:

जैसा कि नीचे दिखाया गया है, गुणा अपेक्षित परिणाम देगा:

सदिश की दिशा को उलट कर एक अनुवाद आव्यूह का व्युत्क्रम प्राप्त किया जा सकता है:

इसी तरह, अनुवाद आव्यूह का उत्पाद सदिश जोड़कर दिया जाता है:

क्योंकि सदिशों का योग क्रमविनिमेय है, इसलिए अनुवाद आव्यूहों का गुणन भी क्रमविनिमेय है विवेकाधीन आव्यूहों के गुणन के विपरीत)।

अक्षों का अनुवाद

जबकि ज्यामितीय अनुवाद को अधिकांशतः एक सक्रिय प्रक्रिया के रूप में देखा जाता है जो एक ज्यामितीय वस्तु की स्थिति को परिवर्तित करता है, एक समान परिणाम एक निष्क्रिय परिवर्तन द्वारा प्राप्त किया जा सकता है जो समन्वय प्रणाली को स्वयं स्थानांतरित करता है लेकिन वस्तु को स्थिर छोड़ देता है । सक्रिय ज्यामितीय अनुवाद के निष्क्रिय संस्करण को अक्षों के अनुवाद के रूप में जाना जाता है।

अनुवाद संबंधी समरूपता

एक वस्तु जो अनुवाद से पहले और बाद में एक जैसी दिखती है, उसे अनुवाद संबंधी समरूपता कहा जाता है। एक सामान्य उदाहरण एक आवधिक कार्य है, जो एक अनुवाद प्रचालक का एक अतिलक्षणिकफलन है।

अनुप्रयोग

वाहन की गतिशीलता

वाहन की गतिशीलता (या किसी कठोर शरीर की गति) का वर्णन करने के लिए, जहाज की गति और विमान के प्रमुख अक्षों सहित, एक यांत्रिक मॉडल का उपयोग करना साधारण है जिसमें छह डिग्री की स्वतंत्रता सम्मलित है, जिसमें तीन संदर्भ अक्षों के साथ-साथ उन तीन अक्षों के बारे में घुमाव सम्मलित हैं

इन अनुवादों को अधिकांशतः कहा जाता है:

  • सर्ज, फ्लाइट अनुदैर्ध्य अक्ष के साथ अनुवाद (आगे या पीछे)
  • स्वे, अनुप्रस्थ अक्ष के साथ अनुवाद (पक्ष की ओर से)
  • हीव,ऊर्ध्वाधर अक्ष के साथ अनुवाद (ऊपर या नीचे जाने के लिए)

इसी घुमाव को अधिकांशतः कहा जाता है:

यह भी देखें


बाहरी संबंध


संदर्भ

  1. De Berg, Mark; Cheong, Otfried; Van Kreveld, Marc; Overmars, Mark (2008), Computational Geometry Algorithms and Applications, Berlin: Springer, p. 91, doi:10.1007/978-3-540-77974-2, ISBN 978-3-540-77973-5.
  2. Smith, James T. (2011), Methods of Geometry, John Wiley & Sons, p. 356, ISBN 9781118031032.
  3. Faulkner, John R. (2014), The Role of Nonassociative Algebra in Projective Geometry, Graduate Studies in Mathematics, vol. 159, American Mathematical Society, p. 13, ISBN 9781470418496.
  4. Dougherty, Edward R.; Astol, Jaakko (1999), Nonlinear Filters for Image Processing, SPIE/IEEE series on imaging science & engineering, vol. 59, SPIE Press, p. 169, ISBN 9780819430335.
  5. Zill, Dennis; Wright, Warren S. (2009), Single Variable Calculus: Early Transcendentals, Jones & Bartlett Learning, p. 269, ISBN 9780763749651.
  6. Edmund Taylor Whittaker (1988). कणों और कठोर निकायों की विश्लेषणात्मक गतिशीलता पर एक ग्रंथ (Reprint of fourth edition of 1936 with foreword by William McCrea ed.). Cambridge University Press. p. 1. ISBN 0-521-35883-3.
  7. Richard Paul, 1981, Robot manipulators: mathematics, programming, and control : the computer control of robot manipulators, MIT Press, Cambridge, MA
  • Zazkis, R., Liljedahl, P., & Gadowsky, K. Conceptions of function translation: obstacles, intuitions, and rerouting. Journal of Mathematical Behavior, 22, 437-450. Retrieved April 29, 2014, from www.elsevier.com/locate/jmathb
  • Transformations of Graphs: Horizontal Translations. (2006, January 1). BioMath: Transformation of Graphs. Retrieved April 29, 2014