समानांतर परिवहन: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Construct in differential geometry}} | {{Short description|Construct in differential geometry}} | ||
[[File:Parallel Transport.svg|thumb|गोलाकार पर एक बंद लूप (ए से एन से बी और वापस ए तक) के चारों ओर एक | [[File:Parallel Transport.svg|thumb|गोलाकार पर एक बंद लूप (ए से एन से बी और वापस ए तक) के चारों ओर एक सदिश का समानांतर परिवहन। जिस कोण से यह मुड़ता है, <math>\alpha</math>, लूप के अंदर के क्षेत्र के समानुपाती होता है।]][[ज्यामिति]] में समांतर परिवहन ( या समांतर अनुवाद{{efn|In some sources like Spivak{{sfn|Spivak|1999|p=234|loc=Vol. 2, Ch. 6}}}} ) कई गुना में सरल वक्रों के साथ ज्यामितीय डेटा के परिवहन का एक तरीका है। यदि [[विविध]] एक [[अफाइन कनेक्शन|अफाइन संयोजन]] (एक प्रकार का व्युत्पन्न या [[स्पर्शरेखा बंडल]] पर संयोजन) से लैस है, तब यह संबंध को वक्र के साथ कई गुना के सदिश परिवहन की अनुमति देता है, ताकि वे संयोजन के सापेक्ष समानांतर रहें। | ||
संयोजन के लिए समानांतर परिवहन इस प्रकार एक तरीका प्रदान करता है, कुछ मायने में, एक वक्र के साथ कई गुना स्थानीय ज्यामिति को खिसकाना: जो पास के बिन्दुओं की ज्यामिती को जोड़ने की है। समानांतर परिवहन के कई विचार उपलब्ध हो सकते हैं, लेकिन एक - एक वक्र पर बिंदुओं की ज्यामिति को जोड़ने का तरीका - एक संयोजन प्रदान करने के समान है। वास्तव में, संबंध की सामान्य धारणा समानांतर परिवहन का सूक्ष्मातिसूक्ष्म | संयोजन के लिए समानांतर परिवहन इस प्रकार एक तरीका प्रदान करता है, कुछ मायने में, एक वक्र के साथ कई गुना स्थानीय ज्यामिति को खिसकाना: जो पास के बिन्दुओं की ज्यामिती को जोड़ने की है। समानांतर परिवहन के कई विचार उपलब्ध हो सकते हैं, लेकिन एक - एक वक्र पर बिंदुओं की ज्यामिति को जोड़ने का तरीका - एक संयोजन प्रदान करने के समान है। वास्तव में, संबंध की सामान्य धारणा समानांतर परिवहन का सूक्ष्मातिसूक्ष्म अनुरूप है। या इसके विपरीत समानांतर परिवहन एक संयोजन की स्थानीय प्राप्ति है। | ||
जैसा कि समानांतर परिवहन से संयोजन का स्थानीय रूप से अहसास होता है, यह स्थानीय [[वक्रता]] का निर्माण भी करता है जिसे [[होलोनोमी]] कहते हैं। एम्ब्रोस गायक प्रमेय वक्रता और होलोनोमी के बीच इस संबंध को स्पष्ट करता है। | जैसा कि समानांतर परिवहन से संयोजन का स्थानीय रूप से अहसास होता है, यह स्थानीय [[वक्रता]] का निर्माण भी करता है जिसे [[होलोनोमी]] कहते हैं। एम्ब्रोस गायक प्रमेय वक्रता और होलोनोमी के बीच इस संबंध को स्पष्ट करता है। | ||
Line 8: | Line 8: | ||
संयोजन की अन्य धारणाएँ भी अपनी समानांतर परिवहन प्रणालियों से सुसज्जित होती हैं। उदाहरणार्थ, एक सदिश पूल में कोसज़ुल संयोजन, सदिश की समानांतर परिवहन की अपेक्षा बहुत अधिक समान प्रकार के व्युत्पन्न के साथ भी उपलब्ध कराता है। एक [[एह्रेस्मान या कार्टन कनेक्शन|एह्रेस्मान या कार्टन संयोजन]] कई गुना से मुख्य बंडल के कुल स्थान तक घटता उठाने की आपूर्ति करता है। इस प्रकार की वक्र उत्थापन कभी कभी संदर्भों का समानांतर परिवहन माना जाता है। | संयोजन की अन्य धारणाएँ भी अपनी समानांतर परिवहन प्रणालियों से सुसज्जित होती हैं। उदाहरणार्थ, एक सदिश पूल में कोसज़ुल संयोजन, सदिश की समानांतर परिवहन की अपेक्षा बहुत अधिक समान प्रकार के व्युत्पन्न के साथ भी उपलब्ध कराता है। एक [[एह्रेस्मान या कार्टन कनेक्शन|एह्रेस्मान या कार्टन संयोजन]] कई गुना से मुख्य बंडल के कुल स्थान तक घटता उठाने की आपूर्ति करता है। इस प्रकार की वक्र उत्थापन कभी कभी संदर्भों का समानांतर परिवहन माना जाता है। | ||
== | == सदिश बंडल पर समानांतर परिवहन == | ||
मान लीजिए M एक चिकनी कई गुना हो। माना E→M सहसंयोजक व्युत्पन्न ∇ और γ के साथ एक सदिश बंडल बनें: I→M एक खुले अंतराल I द्वारा परिचालित एक चिकनी [[वक्र]]। एक खंड (फाइबर बंडल) <math>X</math> का <math>E</math> साथ में γ को 'समानांतर' कहा जाता है यदि | |||
:<math>\nabla_{\dot\gamma(t)}X=0\text{ for }t \in I.\,</math> | :<math>\nabla_{\dot\gamma(t)}X=0\text{ for }t \in I.\,</math> | ||
उदाहरण के तौर पर यदि <math>X</math> कई गुना के स्पर्शरेखा बंडल में एक [[स्पर्शरेखा स्थान]] है, इस अभिव्यक्ति का अर्थ है कि,अंतराल में प्रत्येक t के लिए, स्पर्शरेखा सदिश में <math>X</math> स्थिर होते हैं (व्युत्पन्न गायब हो जाते हैं) जब से एक अत्यल्प विस्थापन होता है <math>\gamma(t)</math> स्पर्शरेखा | उदाहरण के तौर पर यदि <math>X</math> कई गुना के स्पर्शरेखा बंडल में एक [[स्पर्शरेखा स्थान]] है, इस अभिव्यक्ति का अर्थ है कि,अंतराल में प्रत्येक t के लिए, स्पर्शरेखा सदिश में <math>X</math> स्थिर होते हैं (व्युत्पन्न गायब हो जाते हैं) जब से एक अत्यल्प विस्थापन होता है <math>\gamma(t)</math> स्पर्शरेखा सदिश की दिशा में <math>\dot{\gamma}(t)</math> पूरा हो गया है। | ||
मान लीजिए हमें एक | मान लीजिए हमें P = γ(0) ∈ M पर एक अवयव e<sub>0</sub> ∈ E<sub>P</sub> दिया गया है, एक खंड के अतिरिक्त। γ के साथ e<sub>0</sub> का समानांतर परिवहन γ पर एक समानांतर खंड X के लिए e<sub>0</sub> का विस्तार है। अधिक सटीक रूप से, X γ के साथ E का अद्वितीय भाग है जैसे कि | ||
#<math>\nabla_{\dot\gamma} X = 0 </math> | #<math>\nabla_{\dot\gamma} X = 0 </math> | ||
#<math>X_{\gamma(0)} = e_0.</math> | #<math>X_{\gamma(0)} = e_0.</math> | ||
Line 71: | Line 71: | ||
== सामान्यीकरण == | == सामान्यीकरण == | ||
समांतर परिवहन को अन्य प्रकार के संयोजनों के लिए अधिक सामान्य स्थिति में परिभाषित किया जा सकता है न कि सदिश पूल में वर्णित। एक सामान्यीकरण प्रमुख संयोजनों ([[कोबाशी और नोमिजो]] [[1996]], वॉल्यूम 1, अध्याय द्वितीय) के लिए है। च → एम संरचना झूठ समूह जी और एक प्रमुख संयोजन ω के साथ कई गुना मीटर पर एक प्रमुख बंडल हो। | समांतर परिवहन को अन्य प्रकार के संयोजनों के लिए अधिक सामान्य स्थिति में परिभाषित किया जा सकता है न कि सदिश पूल में वर्णित। एक सामान्यीकरण प्रमुख संयोजनों ([[कोबाशी और नोमिजो]] [[1996]], वॉल्यूम 1, अध्याय द्वितीय) के लिए है। च → एम संरचना झूठ समूह जी और एक प्रमुख संयोजन ω के साथ कई गुना मीटर पर एक प्रमुख बंडल हो। सदिश बंडलों के मामले में, पी पर एक प्रमुख संयोजन ω परिभाषित करता है, एम में प्रत्येक वक्र γ के लिए, एक मैपिंग | ||
:<math>\Gamma(\gamma)_s^t : P_{\gamma(s)} \rightarrow P_{\gamma(t)}</math> | :<math>\Gamma(\gamma)_s^t : P_{\gamma(s)} \rightarrow P_{\gamma(t)}</math> | ||
फाइबर से γ(s) से अधिक γ(t) से अधिक, जो [[सजातीय स्थानों]] का एक समरूपता है:अर्थात। <math>\Gamma_{\gamma(s)} gu = g\Gamma_{\gamma(s)}</math> प्रत्येक g∈G के लिए। | फाइबर से γ(s) से अधिक γ(t) से अधिक, जो [[सजातीय स्थानों]] का एक समरूपता है:अर्थात। <math>\Gamma_{\gamma(s)} gu = g\Gamma_{\gamma(s)}</math> प्रत्येक g∈G के लिए। |
Revision as of 22:19, 10 December 2022
ज्यामिति में समांतर परिवहन ( या समांतर अनुवाद[lower-alpha 1] ) कई गुना में सरल वक्रों के साथ ज्यामितीय डेटा के परिवहन का एक तरीका है। यदि विविध एक अफाइन संयोजन (एक प्रकार का व्युत्पन्न या स्पर्शरेखा बंडल पर संयोजन) से लैस है, तब यह संबंध को वक्र के साथ कई गुना के सदिश परिवहन की अनुमति देता है, ताकि वे संयोजन के सापेक्ष समानांतर रहें।
संयोजन के लिए समानांतर परिवहन इस प्रकार एक तरीका प्रदान करता है, कुछ मायने में, एक वक्र के साथ कई गुना स्थानीय ज्यामिति को खिसकाना: जो पास के बिन्दुओं की ज्यामिती को जोड़ने की है। समानांतर परिवहन के कई विचार उपलब्ध हो सकते हैं, लेकिन एक - एक वक्र पर बिंदुओं की ज्यामिति को जोड़ने का तरीका - एक संयोजन प्रदान करने के समान है। वास्तव में, संबंध की सामान्य धारणा समानांतर परिवहन का सूक्ष्मातिसूक्ष्म अनुरूप है। या इसके विपरीत समानांतर परिवहन एक संयोजन की स्थानीय प्राप्ति है।
जैसा कि समानांतर परिवहन से संयोजन का स्थानीय रूप से अहसास होता है, यह स्थानीय वक्रता का निर्माण भी करता है जिसे होलोनोमी कहते हैं। एम्ब्रोस गायक प्रमेय वक्रता और होलोनोमी के बीच इस संबंध को स्पष्ट करता है।
संयोजन की अन्य धारणाएँ भी अपनी समानांतर परिवहन प्रणालियों से सुसज्जित होती हैं। उदाहरणार्थ, एक सदिश पूल में कोसज़ुल संयोजन, सदिश की समानांतर परिवहन की अपेक्षा बहुत अधिक समान प्रकार के व्युत्पन्न के साथ भी उपलब्ध कराता है। एक एह्रेस्मान या कार्टन संयोजन कई गुना से मुख्य बंडल के कुल स्थान तक घटता उठाने की आपूर्ति करता है। इस प्रकार की वक्र उत्थापन कभी कभी संदर्भों का समानांतर परिवहन माना जाता है।
सदिश बंडल पर समानांतर परिवहन
मान लीजिए M एक चिकनी कई गुना हो। माना E→M सहसंयोजक व्युत्पन्न ∇ और γ के साथ एक सदिश बंडल बनें: I→M एक खुले अंतराल I द्वारा परिचालित एक चिकनी वक्र। एक खंड (फाइबर बंडल) का साथ में γ को 'समानांतर' कहा जाता है यदि
उदाहरण के तौर पर यदि कई गुना के स्पर्शरेखा बंडल में एक स्पर्शरेखा स्थान है, इस अभिव्यक्ति का अर्थ है कि,अंतराल में प्रत्येक t के लिए, स्पर्शरेखा सदिश में स्थिर होते हैं (व्युत्पन्न गायब हो जाते हैं) जब से एक अत्यल्प विस्थापन होता है स्पर्शरेखा सदिश की दिशा में पूरा हो गया है।
मान लीजिए हमें P = γ(0) ∈ M पर एक अवयव e0 ∈ EP दिया गया है, एक खंड के अतिरिक्त। γ के साथ e0 का समानांतर परिवहन γ पर एक समानांतर खंड X के लिए e0 का विस्तार है। अधिक सटीक रूप से, X γ के साथ E का अद्वितीय भाग है जैसे कि
नोट करें कि किसी दिए गए निर्देशांक पैच में, (1) एक साधारण अवकल समीकरण को परिभाषित करता है, जो (2) द्वारा दी गई प्रारंभिक स्थिति के साथ होता है. इस प्रकार पिकार्ड लिंडलफ प्रमेय समाधान के अस्तित्व और विशिष्टता की गारंटी देता है।
इस प्रकार संयोजन ∇ वक्र के साथ फाइबर के तत्वों को स्थानांतरित करने का एक तरीका परिभाषित करता है, और यह वक्र के साथ बिंदुओं पर तंतुओं के बीच रैखिक समरूपता प्रदान करता है:
सदिश स्थान से γ(s) के ऊपर स्थित γ(t) के ऊपर। इस समरूपता को वक्र से संबद्ध समांतर परिवहन मानचित्र के रूप में जाना जाता है। इस तरह से प्राप्त तंतुओं के बीच समरूपता सामान्य रूप से वक्र की पसंद पर निर्भर करती है: यदि वे नहीं करते हैं, तो प्रत्येक वक्र के साथ समांतर परिवहन का उपयोग पूरे एम पर ई के समांतर वर्गों को परिभाषित करने के लिए किया जा सकता है। यह तभी संभव है जब ∇ की वक्रता शून्य हो।
विशेष रूप से, बिंदु x पर शुरू होने वाले एक बंद वक्र के समानांतर समानांतर परिवहन x पर स्पर्शरेखा स्थान के एक ऑटोमोर्फिसम को परिभाषित करता है जो आवश्यक रूप से तुच्छ नहीं है। एक्स पर आधारित सभी बंद वक्रों द्वारा परिभाषित समांतर परिवहन ऑटोमोर्फिज्म एक परिवर्तन समूह बनाते हैं जिसे एक्स पर ∇ का होलोनॉमी समूह कहा जाता है। इस समूह और x पर ∇ की वक्रता के मान के बीच घनिष्ठ संबंध है; यह होलोनॉमी#एम्ब्रोस–सिंगर प्रमेय|एम्ब्रोस–सिंगर होलोनॉमी प्रमेय की सामग्री है।
समानांतर परिवहन से संयोजन पुनर्प्राप्त करना
एक सहसंयोजक व्युत्पन्न ∇ दिया गया है, एक वक्र के साथ समानांतर परिवहन γ हालत को एकीकृत करके प्राप्त किया जाता है इसके विपरीत, यदि समानांतर परिवहन की कोई उपयुक्त धारणा उपलब्ध हो तो तत्संबंधी संबंधन भेदभाव द्वारा प्राप्त किया जा सकता है। यह दृष्टिकोण अनिवार्य रूप से नेबेलमैन (1951) के कारण है; गुगेनहाइमर (1977) देखें। लुमिस्ट (2001) भी इस दृष्टिकोण को अपनाते हैं।
मैपिंग के संग्रह के कई गुना में प्रत्येक वक्र γ के लिए एक असाइनमेंट पर विचार करें
ऐसा है कि
- , ई की पहचान परिवर्तनγ(s).
- Γ की γ, s, और t पर निर्भरता सहज है।
हालत में चिकनाई की धारणा 3. नीचे पिन करने के लिए कुछ मुश्किल है (फाइबर बंडलों में समानांतर परिवहन के नीचे चर्चा देखें)। विशेष रूप से कोबाशि और नामिजो जैसे आधुनिक लेखक सामान्यतः किसी अन्य अर्थ में संयोजन से आने वाले संयोजन के समानांतर परिवहन को देखते हैं, जहां सहजता अधिक आसानी से अभिव्यक्त होती है।
फिर भी, समानांतर परिवहन के लिए इस तरह के एक नियम को देखते हुए, ई में संबद्ध अतिसूक्ष्म संयोजन को निम्नानुसार पुनर्प्राप्त करना संभव है। γ प्रारंभिक बिंदु γ(0) और प्रारंभिक स्पर्शरेखा सदिश X = γ′(0) के साथ एम में एक भिन्न वक्र हो। यदि V, γ के ऊपर E का एक खंड है, तो मान लीजिए
फिर भी, समानांतर परिवहन के लिए ऐसा नियम दिया गया है, निम्नानुसार ई में संबद्ध अतिसूक्ष्म संबंध को पुनर्प्राप्त करना संभव है। γ प्रारंभिक बिंदु γ(0) और प्रारंभिक स्पर्शरेखा सदिश X = γ′(0) के साथ एम में एक भिन्न वक्र हो। यदि V, γ के ऊपर E का एक खंड है, तो मान लीजिए
यह संबंधित अन्तरायिक संयोजन को ∇ ई पर परिभाषित करता है। एक ही समानांतर परिवहन Γ को इस अतिसूक्ष्म संबंध से पुनर्प्राप्त करता है।
विशेष स्थिति: स्पर्शरेखा बंडल
चलो एम एक चिकनी कई गुना हो। फिर एम के स्पर्शरेखा बंडल पर एक संयोजन जिसे एफिन संयोजन कहा जाता है, एक वर्ग वक्र (एफिन) जियोडेसिक श्रेणी को अलग करता है।[2] एक चिकनी वक्र γ: I → M एक 'affine geodesic' है यदि समानांतर ले जाया जाता है , समानांतर ले जाया जाता है , वह है
समय के लिए सम्मान के साथ व्युत्पन्न ले, यह अधिक परिचित रूप लेता है
रीमानियन ज्यामिति में समानांतर परिवहन
मिथ्या रिमेंनियन ज्यामिति में मेट्रिक संयोजन एक ऐसा संयोजन है जिसके समांतर परिवहन के मापन में दूरीक प्रदिश को सुरक्षित रखा जाता है। इस प्रकार एक मीट्रिक संयोजन कोई भी संयोजन Γ है जैसे कि, किन्हीं दो सदिशों के लिए एक्स, वाई ∈ टी के लिएγ(s)
व्युत्पन्न को t = 0 पर लेते हुए, संबंधित अवकल संकारक ∇ को मीट्रिक के संबंध में एक उत्पाद नियम को पूरा करना चाहिए:
भूगणित
यदि ∇ एक मीट्रिक संयोजन है, तो एफाइन जियोडेसिक्स रिमेंनियन ज्यामिति के सामान्य जियोडेसिक्स हैं और स्थानीय रूप से दूरी को कम करने वाले वक्र हैं। अधिक सटीक, पहले ध्यान दें कि यदि γ: I → M, जहां, जहां I एक खुला अंतराल है,एक जियोडेसिक है, तो वास्तव में,इसका मानदंड I पर स्थिर है।
यह गॉस के लेम्मा के एक आवेदन से निम्नानुसार है कि यदि ए का आदर्श है तो वक्र पर दो करीब पर्याप्त अंक के बीच मीट्रिक द्वारा प्रेरित दूरी γ(t1) और γ (टी2), द्वारा दि गई है।
ऊपर दिया गया सूत्र उन बिंदुओं के लिए सही नहीं हो सकता है जो पर्याप्त रूप से पास नहीं हैं क्योंकि जियोडेसिक उदाहरण के लिए कई गुना लपेट सकता है (उदाहरण के लिए एक गोले पर)।
सामान्यीकरण
समांतर परिवहन को अन्य प्रकार के संयोजनों के लिए अधिक सामान्य स्थिति में परिभाषित किया जा सकता है न कि सदिश पूल में वर्णित। एक सामान्यीकरण प्रमुख संयोजनों (कोबाशी और नोमिजो 1996, वॉल्यूम 1, अध्याय द्वितीय) के लिए है। च → एम संरचना झूठ समूह जी और एक प्रमुख संयोजन ω के साथ कई गुना मीटर पर एक प्रमुख बंडल हो। सदिश बंडलों के मामले में, पी पर एक प्रमुख संयोजन ω परिभाषित करता है, एम में प्रत्येक वक्र γ के लिए, एक मैपिंग
फाइबर से γ(s) से अधिक γ(t) से अधिक, जो सजातीय स्थानों का एक समरूपता है:अर्थात। प्रत्येक g∈G के लिए।
फिर से समानांतर यातायात के सामान्यीकरण भी संभव हो सकते हैं। अहरमैन संयोजन के संदर्भ में जहां संयोजन स्पर्शरेखा रिक्त स्थान के "क्षैतिज उठाने" की विशेष धारणा पर निर्भर करता है,कोई क्षैतिज लिफ्टों के माध्यम से समानांतर परिवहन को परिभाषित कर सकता है। कार्टन संयोजन अतिरिक्त संरचना के साथ एह्रेसमैन संयोजन हैं जो समानांतर परिवहन को कई गुना में वक्र के साथ एक निश्चित मॉडल स्थान "रोलिंग" मानचित्र के रूप में सोचने की अनुमति देता है। इस रोलिंग को विकास (अंतर ज्यामिति) कहा जाता है।
सन्निकटन: शिल्ड की सीढ़ी
समानांतर परिवहन को शिल्ड की सीढ़ी द्वारा विवेकपूर्ण रूप से अनुमानित किया जा सकता है, जो एक वक्र के साथ परिमित कदम उठाता है, और लेवी-सिविता समांतर चतुर्भुजों को अनुमानित समांतर चतुर्भुजों द्वारा अनुमानित करता है।
यह भी देखें
- घुमावदार स्पेसटाइम के गणित का मूल परिचय
- संयोजन (गणित)
- विकास (अंतर ज्यामिति)
- एफ़िन संयोजन
- सहपरिवर्ती व्युत्पन्न
- जियोडेसिक (सामान्य सापेक्षता)
- ज्यामितीय चरण
- व्युत्पन्न झूठ
- बालक की सीढ़ी
- लेवी-सीविटा समांतर चतुर्भुज
- समानांतर वक्र, समान नाम, लेकिन अलग धारणा
टिप्पणियाँ
उद्धरण
- ↑ Spivak 1999, p. 234, Vol. 2, Ch. 6.
- ↑ (Kobayashi & Nomizu 1996, Volume 1, Chapter III)
संदर्भ
- Guggenheimer, Heinrich (1977), Differential Geometry, Dover, ISBN 0-486-63433-7
- Knebelman (1951), "Spaces of relative parallelism", Annals of Mathematics, 2, The Annals of Mathematics, Vol. 53, No. 3, 53 (3): 387–399, doi:10.2307/1969562, JSTOR 1969562
- Kobayashi, Shoshichi; Nomizu, Katsumi (1996), Foundations of Differential Geometry, Volume 1, Wiley-Interscience, ISBN 0-471-15733-3; Volume 2, ISBN 0-471-15732-5.
- Lumiste, Ü. (2001) [1994], "Connections on a manifold", Encyclopedia of Mathematics, EMS Press
- Spivak, Michael (1999). A Comprehensive Introduction to Differential Geometry, Vol. II. Publish-or-Perish Press. ISBN 0914098713.
बाहरी संबंध
- Spherical Geometry Demo. An applet demonstrating parallel transport of tangent vectors on a sphere.