साधारण अवकल समीकरण
अंतर समीकरण |
---|
![]() |
दायरा |
वर्गीकरण |
समाधान |
लोग |
गणित में, साधारण अवकल समीकरण (ओडीई) एक अवकल समीकरण है, जिसके अज्ञातओं में एक चर (गणित) के एक या अधिक फलन से निर्मित होते हैं और उन फलनों के व्युत्पन्न से संबंधित होते हैं।[1] साधारण इस शब्द का सामान्य प्रयोग आंशिक अवकल समीकरण शब्द के विपरीत किया जाता है, जो एक से अधिक स्वतंत्र चर के संदर्भ में हो सकता है।[2]
अवकल समीकरण
एक रेखीय अवकल समीकरण एक अवकल समीकरण है जो एक रेखीय बहुपद द्वारा अज्ञात फलन और इसके व्युत्पन्न द्वारा परिभाषित होता है, जो इस समीकरण के रूप में होता है।
जहाँ , ..., और समीकरण की भांति इसके पृथक कार्य हैं जिन्हें रैखिक होने की आवश्यकता नहीं है, और चर x.के अज्ञात फलन y के क्रमिक अवकलज हैं।
साधारण अवकल समीकरणों में रैखिक अवकल समीकरण अनेक कारणों से प्रभावी भूमिका होती हैं। अधिकांशतः प्रारंभिक और विशेष फलन जो भौतिकी और अनुप्रयुक्त गणित में पाए जाते हैं, रैखिक अवकल समीकरणों के हल हैं (होलोनोमिक फलन देखें)। जब भौतिक परिघटना को अरेखीय समीकरणों द्वारा रूपांकित किया जाता है, तो वे सामान्यतया इन्हें सरल हल के लिए रैखिक अवकल समीकरणों द्वारा अनुमानित किया जाता है। कुछ अरेखीय ओडीई जिन्हें स्पष्ट रूप से हल किया जा सकता है, वे सामान्यतः समीकरण को समकक्ष रैखिक ओडीई में बदलकर हल किया जाता है (उदाहरण के लिए रिकाटी समीकरण) को देखे।
कुछ ओडीई को स्पष्ट रूप से ज्ञात फलन और समाकल के संदर्भ में हल किया जा सकता है। जब यह पूर्ण न हो सके कि, टेलर श्रृंखला के हल की गणना के लिए समीकरण उपयोगी हो सकता है और अनुप्रयुक्त समस्याओं के लिए, सामान्य अवकल समीकरणों के लिए संख्यात्मक विधियाँ का निकटतम प्रदान कर सकती हैं।
पृष्ठभूमि

साधारण अंतरण समीकरण गणित तथा सामाजिक एवं प्राकृतिक विज्ञानों के अनेक संदर्भों में उत्पन्न होते हैं। परिवर्तन के गणितीय वर्णन भिन्नता और व्युत्पन्न का उपयोग करें। विभिन्न विभेद, व्युत्पादन और प्रकार्य समीकरणों द्वारा इस प्रकार संबद्ध हो जाते हैं कि अवकलक समीकरण एक ऐसा परिणाम होता है जिसमें गतिशील रूप से बदलते परिघटना, विकास और विभिन्नता वर्णित होते हैं। बहुत अधिक मात्राओं को अन्य राशियों में परिवर्तन की दर (उदाहरणार्थ, समय के संदर्भ में विस्थापन से व्युत्पन्न) अथवा मात्राओं के अनुपात के रूप में परिभाषित किया जाता है।
विशिष्ट गणितीय क्षेत्रों में ज्यामिति और विश्लेषणात्मक यांत्रिकी में सम्मिलित हैं। वैज्ञानिक क्षेत्रों में अधिकांश भौतिकी और खगोल विज्ञान (खगोलीय यांत्रिकी), मौसम विज्ञान (मौसम मॉडलिंग), रसायन विज्ञान (प्रतिक्रिया दर),[3] जीव विज्ञान (संक्रामक रोग, आनुवंशिक भिन्नता), पारिस्थितिकी और जनसंख्या मॉडलिंग (जनसंख्या प्रतियोगिता), अर्थशास्त्र (स्टॉक रुझान, ब्याज दरें और बाजार में संतुलन मूल्य परिवर्तन) के रूप में सम्मिलित होते है।
कई गणितज्ञों ने अवकल समीकरणों का अध्ययन किया है तथा इस क्षेत्र में योगदान दिया है, जिसमें आइजैक न्यूटन, गॉटफ्रीड लीबनिज, बर्नौली प्रमेय, रिकाटी, एलेक्सिस क्लाउड क्लेराट, डी'अलेम्बर्ट और यूलर सम्मिलित होते है।
एक सरल उदाहरण न्यूटन की गति का दूसरा नियम है, बल F के अनुसार किसी वस्तु के विस्थापन x और समय t के बीच संबंध, अवकल समीकरण द्वारा दिया जाता है।
जो स्थिर द्रव्यमान m के कणों की गति को बाधित करता है। सामान्यतः, F समय t पर कण की स्थिति x(t) का फलन होता है। अज्ञात फलन x(t) अवकल समीकरण के दोनों ओर प्रकट होता है, और इसे अंकन F(x(t)) में दर्शाया गया है।[4][5][6][7]
परिभाषाएँ
निम्नलिखित में, मान लीजिए कि y यहाँ आश्रित चर और x को स्वतंत्र चर के रूप में लेते, और y = f(x) x का अज्ञात फलन है। अवकलन के लिए अंकन लेखक के अनुसार भिन्न-भिन्न होता है। और जिस पर उनके अंकन कार्य के लिए सबसे उपयोगी होता है। इस संदर्भ में लीबनिज के अंकन (dy/dx, d2y/dx2, …, dny/dxn) अवकलन और समाकलन (गणित) के लिए अधिक उपयोगी है, जबकि अवकलन के लिए लैग्रेंज का संकेतन (y′, y′′, …, y(n)) किसी भी क्रम के व्युत्पन्न को सघन रूप से प्रदर्शित करने के लिए अधिक उपयोगी है, और और न्यूटन के अंकन के लिए अधिक उपयोगी है भौतिकी में अधिकांशता समय के संबंध में क्रम के व्युत्पन्न का प्रतिनिधित्व करने के लिए प्रयोग किया जाता है।
सामान्य परिभाषा
दिया हुआ F, x, y का एक फलन, और y का डेरिवेटिव समीकरण इस रूप में सदर्भित किया है।
क्रम n का एक निहित और स्पष्ट फलन साधारण अवकल समीकरण कहा जाता है।[8][9]
सामान्यता, क्रम एन के एक अंतर्निहित और स्पष्ट कार्य सामान्य अवकल समीकरण का रूप लेता है[10]
और भी वर्गीकरण हैं।
- स्वायत्त
- एक अवकलन समीकरण जो x पर निर्भर नहीं करता है, उसे स्वायत्त कहा जाता है।
- रैखिक
-
एक अवकलन समीकरण को रैखिक कहा जाता है यदि F को y के डेरिवेटिव के रैखिक संयोजन के रूप में लिखा जा सकता है।':
- सजातीय
- यदि r(x) = 0, और फलस्वरूप एक "स्वचालित" समाधान है trivial solution, y = 0. एक रैखिक समांगी समीकरण का हल एक 'पूरक फलन' होता है, जिसे यहाँ से निरूपित किया जाता है yc.
- गैर-सजातीय (या विषम)
- यदि आर (x) ≠ 0. पूरक फलन का अतिरिक्त हल 'विशेष समाकल' है, जिसे यहाँ से निरूपित किया गया है yp.
- गैर-रैखिक अंतर समीकरण गैर-रैखिक
- एक अवकल समीकरण जिसे रैखिक संयोजन के रूप में नहीं लिखा जा सकता।
ओडीई की प्रणाली
कई युग्मित अवकल समीकरण समीकरणों की एक प्रणाली बनाते हैं। यदि y एक सदिश है जिसके अवयव फलन हैं, y(x) = [y1(x), y2(x),..., ym(x)], और 'f' 'y' और उसके व्युत्पन्न का सदिश का उपयोगी फलन है, इस स्थिति में
क्रम n और आयाम m के साधारण अवकल समीकरणों की स्पष्ट प्रणाली है। स्तंभ सदिश रूप में,
ये जरूरी रैखिक नहीं हैं। अंतर्निहित एनालॉग है:
जहाँ 0 = (0, 0, ..., 0) शून्य सदिश है। आव्यूह रूप में है
, की एक प्रणाली के लिए कुछ स्रोतों की भी आवश्यक होती है, कि जैकबियन आव्यूह इसे एक अंतर्निहित ओडीई प्रणाली कहने के लिए गैर-एकवचन होना चाहिए। इस जैकोबियन गैर-विलक्षणता अवस्था को संतुष्ट करने वाली एक अंतर्निहित कोड प्रणाली को एक स्पष्ट ओड प्रणाली में बदला जा सकता है। इसी स्रोत में, एकल जेकोबियन के साथ निहित कोड को विभेदीय बीजीय समीकरण डीएएस कहा जाता है।यह भेद केवल इसकी शब्दावली में से नहीं है जो डीएईएस के मूल रूप से अलग-अलग लक्षण हैं और सामान्यतया गैर-विलक्षण ओड प्रणाली की अपेक्षा उनका हल करने में अधिक सहायक होते हैं।[14][15][16] संभावित रूप से अतिरिक्त व्युत्पन्न के लिए, हेसियन आव्यूह और आगे भी इस योजना के अनुसार गैर-एकवचन माना जाता है, चूँकि, ध्यान दें कि जिसमें एक से अधिक ऑर्डर का कोई भी ओडीई पहले ऑर्डर के ओडीई के प्रणाली के रूप में फिर से लिखा जा सकता है और सामान्यता होता है,[17] जो इस वर्गीकरणो के लिए पर्याप्त होने के लिए जैकबियन विलक्षणता मानदंड को सभी आदेशों पर व्यापक बनाता है.।
एक चरण चित्र के उपयोग के माध्यम से ओडीई की एक प्रणाली के आचरण की कल्पना की जा सकती है।
हल
एक अवकल समीकरण दिया है
एक फलन u: I ⊂ R → R, जहाँ I एक अंतराल है, F के लिए एक हल या अभिन्न वक्र कहलाता है, यदि u पर n-गुना अवकलनीय है, और
दो हल दिए u: J ⊂ R → R और v: I ⊂ R → R, u को v का प्रसार कहा जाता है यदि I ⊂ J और
एक हल जिसमें कोई प्रसार नहीं होता है, उसे उच्चिष् ठ हल कहा जाता है। सभी 'आर' पर परिभाषित हल को वैश्विक हल कहा जाता है।
nवें क्रम के समीकरण का एक सामान्य हल एक ऐसा हल है जिसमें एकीकरण का n एकतंत्र स्वतंत्र स्थिरांक होता है। एक विशेष हल सामान्य हल स्थिरांक को विशेष मूल्यों पर स्थापित करके, प्रायः प्राप्त किया जाता है, जिसे अधिकांशता समुच्चय 'प्रारंभिक मूल्य समस्या या सीमा मूल्य समस्या' को पूरा करने के लिए चुना जाता है।[18] एक विलक्षण हल एक ऐसा हल है जिसे सामान्य हल में एकतंत्र अचरों को निश्चित मान देकर प्राप्त नहीं किया जा सकता है।[19]
रेखीय ओडीई के संदर्भ में, इस शब्दावली विशेष हल का संदर्भ प्रारंभिक परिस्थितियों को पूरा करने वाला ओडीई का कोई हल होता है, जिसे बाद में सजातीय हल में जोड़ी जाती है जब मूल ओड का एक सामान्य समाधान होता है। इस अनुच्छेद में अनुमान विधि अनुभाग में इस शब्दावली का प्रयोग किया जाता है और अनिर्धारित गुणांक की पद्धति तथा प्राचलों की भिन्नता पर चर्चा करते समय इसका प्रयोग अक्सर इसका उपयोग किया जाता है।
परिमित अवधि के हल
अरेखीय स्वायत्त ओडीई के लिए कुछ स्थितियों के अनुसार परिमित अवधि के हल विकसित करना मुमकिन होता है,[20] यहाँ अर्थ यह है कि अपनी स्वयं की गति-नियति से प्रणाली एक समाप्ति समय पर मान शून्य तक पहुँच जाएगा और वहाँ पर सदा के लिए शून्य में रहता है। ये परिमित-अवधि के हल संपूर्ण वास्तविक रेखा पर विश्लेषणात्मक फलन नहीं कर सकते हैं, और क्योंकि वे अपने अंतिम समय में गैर-लिप्सचिट्ज़ फलन करेंगे, वे लिप्सचिट्ज़ अवकल समीकरणों के हल की विशिष्टता नहीं रखते हैं।
उदाहरण के रूप में, समीकरण:
परिमित अवधि हल स्वीकार करता है
सिद्धांत
एकाकी उपाय
सामान्य और आंशिक अवकल समीकरणों के विलक्षण हल के सिद्धांत का विषय लीबनिज के समय से ही शोध का विषय था, लेकिन केवल उन्नीसवीं शताब्दी के मध्य से ही इस पर विशेष ध्यान दिया गया है। इस विषय पर एक मूल्यवान लेकिन बहुत कम जानी-मानी कृति हौटेन 1854 की है। जीन गैस्टन डार्बौक्स 1873 के सिद्धांत में एक अग्रलेख थे, और इन हल की ज्यामितीय विवेचन में उन्होंने अनेक लेखकों, विशेष रूप से फेलिस कासोराती (गणितज्ञ) और आर्थर केली द्वारा काम किया का सूत्रपात किया। उत्तरार्द्ध के कारण (1872) प्रथम क्रम के अवकल समीकरणों के विलक्षण हल के सिद्धांत के रूप में स्वीकृत लगभग 1900 में हुई।
चतुष्कोणों में कमी
अवकल समीकरणों से निपटने के पुराने प्रयास में चतुर्भुज (गणित) में कमी को देखते हुए ध्यान में रखा गया था। जैसा कि अठारहवीं सदी के बीजगणितियों की आशा रही है कि वे n वीं डिग्री के सामान्य समीकरण को हल करने के लिए एक विधि खोजने की आवश्यकता थी, इसलिए विश्लेषकों को किसी भी अवकल समीकरण को एकीकृत करने के लिए एक सामान्य विधि खोजने की उम्मीद थी। चूँकि , कार्ल फ्रेडरिक गॉस (1799) में दिखाया कि जटिल अवकल समीकरणों के लिए जटिल संख्याओं की आवश्यकता होती है। इसलिए, विश्लेषकों ने फलन के अध्ययन का स्थान लेना शुरू किया, इस प्रकार एक नया और उपजाऊ क्षेत्र आरंभ किया। कॉची इस दृष्टिकोण के महत्व को समझने वाले पहले व्यक्ति थे। इसके बाद, वास्तविक प्रश्न यह नहीं रह गया कि ज्ञात फलनों या उनके समाकलों के माध्यम से कोई हल मुमकिन हो या उनके समांकों द्वारा, परंतु यह कोई दिया गया अवकल समीकरण स्वतंत्र चर या चरों के फलन की परिभाषा के लिए पर्याप्त है, और, यदि हां, तो उसके विशिष्ट गुण क्या हैं।
फ्यूचियन सिद्धांत
लाजर फुच्स द्वारा दो संस्मरण[21] एक उपन्यास दृष्टिकोण को प्रेरित किया, जिसे बाद में थॉमे और फर्डिनेंड जॉर्ज फ्रोबेनियस द्वारा विस्तृत किया गया। 1869 की शुरुआत में कोलेट का एक प्रमुख योगदानकर्ता था। एक अरेखीय प्रणाली को एकीकृत करने की उनकी पद्धति को 1868 में बर्ट्रेंड को सूचित की गई थी। अल्फ्रेड क्लेब्सच (1873) ने एबेलियन अभिन्न के अपने सिद्धांत के समानांतर ही सिद्धांत पर हमला किया। जैसा कि उत्तरार्द्ध को मौलिक वक्र के गुणों के अनुसार वर्गीकृत किया जा सकता है जो तर्कसंगत रूपांतरण के अधीन अपरिवर्तित रहता है, क्लेबश ने यह तर्कसंगत से एक से एक रूपांतरण के अधीन संगत सतहों के अपरिवर्तनीय गुणों f = 0 के अनुसार विभेद समीकरणों द्वारा परिभाषित उत्कृष्ट कार्यों को वर्गीकृत करने का प्रस्ताव करता है।
लाइ का सिद्धांत
1870 से, सोफस लाइ के काम ने एक बेहतर नींव पर अवकल समीकरण के सिद्धांत को रखा। उन्होंने दिखाया कि पुराने गणितज्ञों के एकीकरण सिद्धांत, लाइ समूहों का उपयोग करके, सामान्य स्रोत को संदर्भित किया जा सकता है, और सामान्य अवकल समीकरण जो एक ही अतिसूक्ष्म परिवर्तन को स्वीकार करते हैं, तुलनीय एकीकरण कठिनाइयों को प्रस्तुत करते हैं। उन्होंने संपर्क परिवर्तन के विषय पर भी बल दिया।
अवकल समीकरणों के लाई के समूह सिद्धांत को प्रमाणित किया गया है, अर्थात (1) कि यह अवकल समीकरणों को हल करने के लिए किये जाने वाले कई तदर्थ विधियों को एकीकृत करता है, और (2) कि यह हल खोजने के शक्तिशाली विधि प्रदान करता है। सिद्धांत में साधारण और आंशिक अवकल समीकरणों दोनों के लिए अनुप्रयोग हैं।[22]
एक सामान्य हल दृष्टिकोण अवकल और समीकरणों की सममिति गुणधर्म का उपयोग करता है, हलो के के निरंतर अत्यल्प परिवर्तन लाइे सिद्धांत प्रदान करता है। सतत समूह सिद्धांत, जहाँ लाई बीजगणित, और अवकल ज्यामिति का उपयोग एकीकृत समीकरण उत्पन्न करने के लिए रैखिक और अरेखीय (आंशिक) विभेद समीकरणों की संरचना को समझने के लिए किया जाता है, इसलिये इसके लचीले युग्म, पुनरावर्तन परिचालक, बैकलंड रूपांतरण तथा अंत में डीई के लिए सटीक विश्लेषणात्मक हल निकालने के लिए किया जाता है।
गणित, भौतिकी, अभियांत्रिकी तथा अन्य विधाओं में उत्पन्न होने वाले अवकल समीकरणों पर सममिति पद्धतियों का प्रयोग किया गया है।
स्टर्म-लिउविल सिद्धांत
स्टर्म-लिउविल सिद्धांत एक विशेष प्रकार के दूसरे क्रम के रैखिक साधारण अंतर समीकरण का सिद्धांत है। उनके समाधान दूसरे क्रम के सजातीय रैखिक समीकरणों के माध्यम से परिभाषित रैखिक प्रचालकों के अभिलक्षणिक मान और संबंधित अभिलक्षणिक फलन पर आधारित होती हैं। इन समस्याओं की पहचान स्टर्म-लिउविल प्रॉब्लम्स (एसएलपी) के रूप में की जाती है और इनका नाम जैक्स चार्ल्स फ्रांकोइस के नाम पर रखा गया है। स्टर्म और जे. लिउविल, जिन्होंने 1800 के दशक के मध्य में उनका अध्ययन किया था। एसएलपी में अनंत संख्या में अभिलक्षणिक मान होते हैं, और संबंधित अभिलक्षणिक फलन एक पूर्ण, ऑर्थोगोनल समुच्चय बनाते हैं, जो ऑर्थोगोनल प्रसार को मुमकिन बनाता है। अनुप्रयुक्त गणित, भौतिकी और इंजीनियरिंग में यह एक महत्वपूर्ण विचार है।[23] एसएलपी कुछ आंशिक अवकल समीकरणों के विश्लेषण में भी उपयोगी होते हैं।
हल का अस्तित्व और विशिष्टता
ऐसे कई प्रमेय हैं जो स्थानीय और विश्व स्तर पर ओडीई से जुड़ी प्रारंभिक मूल्य समस्याओं के हल के अस्तित्व और विशिष्टता को स्थापित करते हैं। दो मुख्य प्रमेय इस प्रकार हैं
प्रमेय मान्यता निष्कर्ष पियानो अस्तित्व प्रमेय एफ निरंतर केवल स्थानीय अस्तित्व पिकार्ड-लिंडेलोफ प्रमेय एफ लिप्सचिट्ज़ निरंतर स्थानीय अस्तित्व और विशिष्टता
ये दोनों प्रमेय मूल रूप में केवल स्थानीय परिणामों की ही गारंटी देते हैं। चूँकि, इन दोनों के आधारभूत स्वरूप में वैश्विक परिणाम देने के लिए इनका विस्तार किया जा सकता है, उदाहरण के लिए, यदि ग्रोनवॉल की असमानता की शर्तों को पूरा किया जाता है।
इसके अतिरिक्त, अद्वितीयता प्रमेय जैसे लिप्सचिट्ज़ ऊपर वाला अवकलनात्मक बीजगणितीय समीकरण प्रणालियों पर लागू नहीं होता है, क्योंकि उनके अरेखीय बीजगणितीय भाग से कई हल उत्पन्न हो सकते हैं।[24]
स्थानीय अस्तित्व और विशिष्टता प्रमेय सरलीकृत
प्रमेय को केवल इस प्रकार कहा जा सकता है।[25] समीकरण और प्रारंभिक मान समस्या के लिए:
वैश्विक विशिष्टता और हल का अधिकतम डोमेन
जब पिकार्ड-लिंडेलोफ प्रमेय की परिकल्पना संतुष्ट होती है, तो स्थानीय अस्तित्व और विशिष्टता को वैश्विक परिणाम तक बढ़ाया जा सकता है। ज्यादा ठीक:[26] प्रत्येक प्रारंभिक स्थिति के लिए (x0, y0) एक अद्वितीय अधिकतम (संभवतः अनंत) ओपन अंतराल सम्मलित है
ऐसा कि कोई भी हल जो इस प्रारंभिक स्थिति को संतुष्ट करता है, वह हल का प्रतिबंध (गणित) है जो डोमेन के साथ इस प्रारंभिक स्थिति को संतुष्ट करता है .
उस स्थिति में , वास्तव में दो संभावनाएँ हैं
- परिमित समय में विस्फोट:
- परिभाषा का डोमेन छोड़ता है:
जहां Ω ओपन समुच्चय है जिसमें F परिभाषित है, और इसकी सीमा है।
ध्यान दें कि हल का अधिकतम डोमेन
- हमेशा एक अंतराल होता है (विशिष्टता के लिए)
- से छोटा हो सकता है
- की विशिष्ट पसंद पर निर्भर हो सकता है (x0, y0).
- उदाहरण के रूप में
इसका अर्थ है कि F1(x, y) = y2, जो सी है और इसलिए स्थानीय रूप से लिपशित्ज़ निरंतर, पिकार्ड-लिंडेलोफ़ प्रमेय को संतुष्ट करता है।
इतनी सरल समुच्चय में भी, हल का अधिकतम डोमेन सभी नहीं हो सकता चूंकि का हल है
जिसका डोमेन अधिकतम है:
यह स्पष्ट रूप से दिखाता है कि अधिकतम अंतराल प्रारंभिक स्थितियों पर निर्भर हो सकता है। Y के प्रांत को अस्तित्व के रूप में लिया जा सकता है लेकिन यह एक ऐसे डोमेन की ओर ले जाएगा जो एक अंतराल नहीं है, जिससे प्रारंभिक स्थिति के विपरीत पक्ष प्रारंभिक स्थिति से डिस्कनेक्ट हो जाएगा, और इसलिए इसके द्वारा विशिष्ट रूप से निर्धारित नहीं किया जाएगा।
अधिकतम डोमेन न हीं है चूंकि
जो उपरोक्त प्रमेय के अनुसार दो संभावित स्थितियो में से एक है।
आदेश में कमी
यदि समीकरण के क्रम को कम किया जा सकता है तो अवकल समीकरणों को सामान्यता अधिक आसानी से हल किया जा सकता है।
प्रथम-क्रम प्रणाली में कमी
क्रम n का कोई स्पष्ट अवकल समीकरण,
अज्ञात फलनों के एक नए परिवार को परिभाषित करके n प्रथम-क्रम अवकल समीकरणों की वह प्रणाली के रूप में लिखा जा सकता है
मैं = 1, 2,..., एन के लिए। प्रथम-क्रम युग्मित अवकल समीकरणों की एन-आयामी प्रणाली तब है
सदिश संकेतन में अधिक सघन रूप से:
जहाँ
सटीक हलो का सारांश
कुछ अवकल समीकरणों के हल होते हैं जिन्हें सटीक और बंद रूप में लिखा जा सकता है। यहाँ कई महत्वपूर्ण वर्ग दिए गए हैं।
नीचे दी गई तालिका में, P(x), Q(x), P(y), Q(y), और M(x,y), N(x,y) के कोई पूर्णांक फलन हैं x, y, और b और c वास्तविक दिए गए स्थिरांक हैं, और C1, C2, ...एकतंत्र स्थिरांक हैं (सामान्य रूप से जटिल संख्या)। अवकल समीकरण उनके समतुल्य और वैकल्पिक रूपों में होते हैं जो एकीकरण के माध्यम से हल की ओर ले जाते हैं।
अभिन्न हल में, λ और ε एकीकरण के डमी चर हैं (संकलन में सूचकांकों के निरंतर अनुरूप), और अंकन ∫x F(λ) dλ सिर्फ एकीकृत करने का F(λ) मान है इसके संबंध में λ एकीकरण स्थानापन्न के बाद λ = x स्थिरांक जोड़े बिना स्पष्ट किया जाता है।
वियोज्य समीकरण
अवकलन समीकरण | हल विधि | सामान्य हल |
---|---|---|
प्रथम-क्रम, x और y में वियोज्य (सामान्य स्थति , विशेष स्थतियो के लिए नीचे देखें) [27]
|
चरों का पृथक्करण (P2Q1 द्वारा विभाजित)। | |
पहला क्रम, x में वियोज्य[25]
|
प्रत्यक्ष समाकलन। | |
प्रथम-क्रम, स्वायत्त, y में वियोज्य[25]
|
चरों का पृथक्करण (एफ द्वारा विभाजित). | |
प्रथम-क्रम, x और y में वियोज्य[25]
|
समाकलन
के माध्यम से बाहर। |
सामान्य प्रथम-क्रम समीकरण
अवकलन समीकरण | हल विधि | सामान्य हल |
---|---|---|
प्रथम-क्रम, सजातीय[25]
|
y = ux समुच्चय करें, फिर u और x में वेरिएबल्स को अलग करके हल करें. | |
प्रथम-क्रम, वियोज्य[27]
|
चरों का पृथक्करण (xy द्वारा विभाजित)। |
यदि N = M, हल है xy = C. |
सटीक अवकलन, पहला क्रम[25]
where |
समाकलन के माध्यम से बाहर। |
जहां और |
अयथार्थ अवकलन, प्रथम-क्रम[25]
जहां |
समाकलन कारक μ(x, y) संतोषजनक
|
यदि μ(x, y) उपयुक्त विधि से पाया जा सकता है, तो
जहां और |
सामान्य दूसरे क्रम के समीकरण
अवकलन समीकरण | हल विधि | सामान्य हल |
---|---|---|
दूसरा क्रम, स्वायत्त[28]
|
समीकरण के दोनों पक्षों को 2dy/dx, से गुणा करें, स्थानापन्न करें , फिर दो बार समाकलन करें। |
=== nवें क्रम के समीकरण === के लिए रैखिक
अवकलन समीकरण | हल विधि | सामान्य हल |
---|---|---|
प्रथम-क्रम, रैखिक, विषम, फलन गुणांक[25]
|
समाकलन गुणक | कवच सूत्र:
|
द्वितीय-क्रम, रैखिक, असमांगी, फलन गुणांक
|
समाकलन गुणक | |
दूसरा क्रम, रैखिक, असमांगी, स्थिर गुणांक[29]
|
पूरक फलन yc: मान लीजिए yc = eαx, में बहुपद को प्रतिस्थापित और हल करें, रैखिक रूप से स्वतंत्र फलन को खोजने के लिए .
विशेष समाकल yp: सामान्यता, मापदंडों की भिन्नता की विधि, चूँकि बहुत सरल है r(x) निरीक्षण कार्य कर सकता है.[25] |
If b2 > 4c, then
If b2 = 4c, then
If b2 < 4c, then
|
nवें क्रम, रैखिक, विषम, निरंतर गुणांक[29]
|
पूरक फलन yc: मान लीजिए yc = eαx, में बहुपद को प्रतिस्थापित और हल करें, रैखिक रूप से स्वतंत्र फलन को खोजने के लिए .
विशेष समाकल yp: सामान्यता, मापदंडों की भिन्नता की विधि, चूँकि बहुत सरल है r(x) निरीक्षण कार्य कर सकता है.[25] |
चूंकि αj डिग्री के बहुपद के हल हैंn: , तब: αj सभी अलग के लिए,
प्रत्येक रूट के लिए αj rबार-बार kj समय,
कुछ αj कॉम्प्लेक्स के लिए, फिर समुच्चय िंग α = χj + iγj, और यूलर के सूत्र का उपयोग करके, पिछले परिणामों में कुछ शब्दों को प्रपत्र में लिखे जाने की अनुमति देता है
जहां ϕj एक एकतंत्र स्थिरांक (चरण बदलाव) है।
|
अनुमान लगाने की विधि
जब एक ओडीई को हल करने के लिए अन्य सभी विधि विफल हो जाती हैं, या ऐसे स्थितियो में जहां हमें इस बारे में कुछ अंतर्ज्ञान होता है कि डीइ का हल कैसा दिख सकता है, तो कभी-कभी केवल हल का अनुमान लगाकर और इसे मान्य करके डीइ को हल करना मुमकिन होता है। इस विधि का उपयोग करने के लिए, हम केवल अवकल समीकरण के हल का अनुमान लगाते हैं, और फिर समीकरण को संतुष्ट करने के लिए हल को अवकल समीकरण में प्लग करते हैं। यदि ऐसा होता है तो हमारे पास डीइ का एक विशेष हल है, अन्यथा हम फिर से शुरू करते हैं और एक और अनुमान लगाने का प्रयास करते हैं। उदाहरण के लिए हम अनुमान लगा सकते हैं कि डीइ के हल का रूप है: चूंकि यह एक बहुत ही सामान्य उपाय है जो भौतिक रूप से साइनसोइडल विधि के रूप में निरूपित करता है।
पहले क्रम ओडीई के स्थिति में जो गैर-सजातीय है, हमें पहले डीइ के सजातीय भाग के लिए डीइ हल खोजने की आवश्यकता है, अन्यथा विशेषता समीकरण के रूप में जाना जाता है, और फिर अनुमान लगाकर पूरे गैर-सजातीय समीकरण का हल प्राप्त करके अंत में हम ओडीई का कुल हल प्राप्त करने के लिए इन दोनों हलो को एक साथ जोड़ते हैं, जो है
ओडीई हल करने के लिए सॉफ्टवेयर
- मैक्सिमा (सॉफ्टवेयर), एक ओपन-सोर्स कंप्यूटर बीजगणित प्रणाली।
- कोपासिस, ओडीई के एकीकरण और विश्लेषण के लिए एक मुफ्त आर्टिस्टिक लाइसेंस|आर्टिस्टिक लाइसेंस 2.0 सॉफ्टवेयर पैकेज है।
- मैटलैब, एक तकनीकी कंप्यूटिंग अनुप्रयोग आव्यूह प्रयोगशाला है
- जीएनयू ऑक्टेव, एक उच्च स्तरीय भाषा, मुख्य रूप से संख्यात्मक अभिकलन के लिए अभिप्रेत है।
- साइलैब, संख्यात्मक अभिकलन के लिए एक ओपन स्रोत अनुप्रयोग होता है।
- मेपल (सॉफ्टवेयर), सांकेतिक गणनाओं के लिए एक मालिकाना अनुप्रयोग होता है।
- मेथेमेटिका, मुख्य रूप से सांकेतिक गणनाओं के लिए एक मालिकाना अनुप्रयोग होता है।
- सिम्पी, एक पायथन पैकेज जो ओडीई को प्रतीकात्मक रूप से हल कर सकता है।
- जूलिया (प्रोग्रामिंग भाषा), मुख्य रूप से संख्यात्मक संगणना के लिए एक उच्च स्तरीय भाषा है।
- सेजमैथ, एक ओपन-सोर्स अनुप्रयोग जो गणित की कई शाखाओं में फैली क्षमताओं की एक विस्तृत श्रृंखला के साथ पायथन जैसे रचनाक्रम का उपयोग करता है।
- साईपाई, एक पाइथन पैकेज जिसमें एक ओडीई एकीकरण मापांक सम्मिलित होता है।
- 15 अंकों की सटीकता के फलनों के साथ संगणना के लिए मैटलैब में लिखा गया एक ओपन स्रोत पैकेज चेबफन है।
- जीएनयू आर, मुख्य रूप से आँकड़ों के लिए एक ओपन स्रोत संगणनात्मक वातावरण है, जिसमें ओडीई हल करने के लिए पैकेज सम्मिलित होते हैं।
यह भी देखें
- सीमा मूल्य समस्या
- अवकल समीकरणों के उदाहरण
- लाप्लास परिवर्तन अवकल समीकरणों पर लागू होता है
- गतिशील प्रणाली और अवकलन समीकरण विषयों की सूची
- आव्यूह अवकल समीकरण
- अनिर्धारित गुणांकों की विधि
- पुनरावृत्ति संबंध
टिप्पणियाँ
- ↑ Dennis G. Zill (15 March 2012). मॉडलिंग अनुप्रयोगों के साथ विभेदक समीकरणों में पहला कोर्स. Cengage Learning. ISBN 978-1-285-40110-2. Archived from the original on 17 January 2020. Retrieved 11 July 2019.
- ↑ ""साधारण अंतर समीकरण" शब्द की उत्पत्ति क्या है?". hsm.stackexchange.com. Stack Exchange. Retrieved 2016-07-28.
- ↑ Mathematics for Chemists, D.M. Hirst, Macmillan Press, 1976, (No ISBN) SBN: 333-18172-7
- ↑ Kreyszig (1972, p. 64)
- ↑ Simmons (1972, pp. 1, 2)
- ↑ Halliday & Resnick (1977, p. 78)
- ↑ Tipler (1991, pp. 78–83)
- ↑ Jump up to: 8.0 8.1 Harper (1976, p. 127)
- ↑ Kreyszig (1972, p. 2)
- ↑ Simmons (1972, p. 3)
- ↑ Jump up to: 11.0 11.1 Kreyszig (1972, p. 24)
- ↑ Simmons (1972, p. 47)
- ↑ Harper (1976, p. 128)
- ↑ Kreyszig (1972, p. 12)
- ↑ Ascher (1998, p. 12)
- ↑ Achim Ilchmann; Timo Reis (2014). विभेदक-बीजगणितीय समीकरण II में सर्वेक्षण. Springer. pp. 104–105. ISBN 978-3-319-11050-9.
- ↑ Ascher (1998, p. 5)
- ↑ Kreyszig (1972, p. 78)
- ↑ Kreyszig (1972, p. 4)
- ↑ Vardia T. Haimo (1985). "Finite Time Differential Equations". 1985 निर्णय और नियंत्रण पर 24वां IEEE सम्मेलन. pp. 1729–1733. doi:10.1109/CDC.1985.268832. S2CID 45426376.
- ↑ Crelle, 1866, 1868
- ↑ Lawrence (1999, p. 9)
- ↑ Logan, J. (2013). Applied mathematics (Fourth ed.).
- ↑ Ascher (1998, p. 13)
- ↑ Jump up to: 25.0 25.1 25.2 25.3 25.4 25.5 25.6 25.7 25.8 25.9 Elementary Differential Equations and Boundary Value Problems (4th Edition), W.E. Boyce, R.C. Diprima, Wiley International, John Wiley & Sons, 1986, ISBN 0-471-83824-1
- ↑ Boscain; Chitour 2011, p. 21
- ↑ Jump up to: 27.0 27.1 Mathematical Handbook of Formulas and Tables (3rd edition), S. Lipschutz, M. R. Spiegel, J. Liu, Schaum's Outline Series, 2009, ISC_2N 978-0-07-154855-7
- ↑ Further Elementary Analysis, R. Porter, G.Bell & Sons (London), 1978, ISBN 0-7135-1594-5
- ↑ Jump up to: 29.0 29.1 Mathematical methods for physics and engineering, K.F. Riley, M.P. Hobson, S.J. Bence, Cambridge University Press, 2010, ISC_2N 978-0-521-86153-3
संदर्भ
- Halliday, David; Resnick, Robert (1977), Physics (3rd ed.), New York: Wiley, ISBN 0-471-71716-9
- Harper, Charlie (1976), Introduction to Mathematical Physics, New Jersey: Prentice-Hall, ISBN 0-13-487538-9
- Kreyszig, Erwin (1972), Advanced Engineering Mathematics (3rd ed.), New York: Wiley, ISBN 0-471-50728-8.
- Polyanin, A. D. and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations (2nd edition), Chapman & Hall/CRC Press, Boca Raton, 2003. ISBN 1-58488-297-2
- Simmons, George F. (1972), Differential Equations with Applications and Historical Notes, New York: McGraw-Hill, LCCN 75173716
- Tipler, Paul A. (1991), Physics for Scientists and Engineers: Extended version (3rd ed.), New York: Worth Publishers, ISBN 0-87901-432-6
- Boscain, Ugo; Chitour, Yacine (2011), Introduction à l'automatique (PDF) (in français)
- Dresner, Lawrence (1999), Applications of Lie's Theory of Ordinary and Partial Differential Equations, Bristol and Philadelphia: Institute of Physics Publishing, ISBN 978-0750305303
- Ascher, Uri; Petzold, Linda (1998), Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, SIAM, ISBN 978-1-61197-139-2
ग्रन्थसूची
- Coddington, Earl A.; Levinson, Norman (1955). Theory of Ordinary Differential Equations. New York: McGraw-Hill.
- Hartman, Philip (2002) [1964], Ordinary differential equations, Classics in Applied Mathematics, vol. 38, Philadelphia: Society for Industrial and Applied Mathematics, doi:10.1137/1.9780898719222, ISBN 978-0-89871-510-1, MR 1929104
- W. Johnson, A Treatise on Ordinary and Partial Differential Equations, John Wiley and Sons, 1913, in University of Michigan Historical Math Collection
- Ince, Edward L. (1944) [1926], Ordinary Differential Equations, Dover Publications, New York, ISBN 978-0-486-60349-0, MR 0010757
- Witold Hurewicz, Lectures on Ordinary Differential Equations, Dover Publications, ISBN 0-486-49510-8
- Ibragimov, Nail H. (1993). CRC Handbook of Lie Group Analysis of Differential Equations Vol. 1-3. Providence: CRC-Press. ISBN 0-8493-4488-3..
- Teschl, Gerald (2012). Ordinary Differential Equations and Dynamical Systems. Providence: American Mathematical Society. ISBN 978-0-8218-8328-0.
- A. D. Polyanin, V. F. Zaitsev, and A. Moussiaux, Handbook of First Orडीइ r Partial Differential Equations, Taylor & Francis, London, 2002. ISBN 0-415-27267-X
- D. Zwillinger, Handbook of Differential Equations (3rd edition), Acaडीइ mic Press, Boston, 1997.
बाहरी कड़ियाँ


- "Differential equation, ordinary", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- EqWorld: The World of Mathematical Equations, containing a list of ordinary differential equations with their solutions.
- Online Notes / Differential Equations by Paul Dawkins, Lamar University.
- Differential Equations, S.O.S. Mathematics.
- A primer on analytical solution of differential equations from the Holistic Numerical Methods Institute, University of South Florida.
- Ordinary Differential Equations and Dynamical Systems lecture notes by Gerald Teschl.
- Notes on Diffy Qs: Differential Equations for Engineers An introductory textbook on differential equations by Jiri Lebl of UIUC.
- Mओडीईling with ओडीई using Scilab A tutorial on how to mओडीईl a physical system डीइ scribed by ओडीई using Scilab standard programming language by Openeering team.
- Solving an ordinary differential equation in Wolfram|Alpha