जेकोबियन आव्यूह और निर्धारक: Difference between revisions
No edit summary |
|||
Line 2: | Line 2: | ||
{{Redirect|जैकबियन आव्यूह|परिचालक|जैकोबी आव्यूह (प्रचालक)}} | {{Redirect|जैकबियन आव्यूह|परिचालक|जैकोबी आव्यूह (प्रचालक)}} | ||
{{Calculus |Multivariable}} | {{Calculus |Multivariable}} | ||
[[सदिश कलन]] में, अनेक चरों के [[सदिश-मूल्यवान फलन]] का जेकोबियन आव्यूह ({{IPAc-en|dʒ|ə|ˈ|k|əʊ|b|i|ə|n}},<ref>{{cite web|url=https://en.oxforddictionaries.com/definition/jacobian|title=जैकबियन - ऑक्सफोर्ड डिक्शनरी द्वारा अंग्रेजी में जैकोबियन की परिभाषा|website=Oxford Dictionaries - English|access-date=2 May 2018|url-status=dead|archive-url=https://web.archive.org/web/20171201043633/https://en.oxforddictionaries.com/definition/jacobian|archive-date=1 December 2017}}</ref><ref>{{cite web|url=http://www.dictionary.com/browse/jacobian|title=jacobian की परिभाषा|website=Dictionary.com|access-date=2 May 2018|url-status=live|archive-url=https://web.archive.org/web/20171201040801/http://www.dictionary.com/browse/jacobian|archive-date=1 December 2017}}</ref><ref>{{cite web|url=https://forvo.com/word/jacobian/|title=याकूब उच्चारण: याकूब में हिन्दी का उच्चारण कैसे करें|first=Forvo|last=Team|website=forvo.com|access-date=2 May 2018}}</ref> {{IPAc-en|dʒ|ᵻ|-|,_|j|ᵻ|-}}) इसके सभी प्रथम-क्रम [[आंशिक अवकलज]] का [[मैट्रिक्स (गणित)|आव्यूह]] | [[सदिश कलन]] में, अनेक चरों के [[सदिश-मूल्यवान फलन]] का जेकोबियन आव्यूह ({{IPAc-en|dʒ|ə|ˈ|k|əʊ|b|i|ə|n}},<ref>{{cite web|url=https://en.oxforddictionaries.com/definition/jacobian|title=जैकबियन - ऑक्सफोर्ड डिक्शनरी द्वारा अंग्रेजी में जैकोबियन की परिभाषा|website=Oxford Dictionaries - English|access-date=2 May 2018|url-status=dead|archive-url=https://web.archive.org/web/20171201043633/https://en.oxforddictionaries.com/definition/jacobian|archive-date=1 December 2017}}</ref><ref>{{cite web|url=http://www.dictionary.com/browse/jacobian|title=jacobian की परिभाषा|website=Dictionary.com|access-date=2 May 2018|url-status=live|archive-url=https://web.archive.org/web/20171201040801/http://www.dictionary.com/browse/jacobian|archive-date=1 December 2017}}</ref><ref>{{cite web|url=https://forvo.com/word/jacobian/|title=याकूब उच्चारण: याकूब में हिन्दी का उच्चारण कैसे करें|first=Forvo|last=Team|website=forvo.com|access-date=2 May 2018}}</ref> {{IPAc-en|dʒ|ᵻ|-|,_|j|ᵻ|-}}) इसके सभी प्रथम-क्रम [[आंशिक अवकलज]] का [[मैट्रिक्स (गणित)|आव्यूह]] है। जब यह आव्यूह वर्गाकार आव्यूह होता है, अर्थात, जब फलन निविष्ट के रूप में चर की समान संख्या लेता है जैसे इसके निर्गत के [[सदिश घटकों]] की संख्या होती है, तो इसके [[निर्धारक]] को जैकबियन निर्धारक कहा जाता है। दोनों आव्यूह और (यदि लागू हो) निर्धारक को अक्सर साहित्य में जैकबियन के रूप में संदर्भित किया जाता है।<ref>{{cite web|url=http://mathworld.wolfram.com/याकूब.html|title=याकूब|first=Weisstein, Eric|last=W.|website=mathworld.wolfram.com|access-date=2 May 2018|url-status=live|archive-url=https://web.archive.org/web/20171103144419/http://mathworld.wolfram.com/याकूब.html|archive-date=3 November 2017}}</ref> | ||
मान लीजिए {{math|'''f''' : '''R'''<sup>''n''</sup> → '''R'''<sup>''m''</sup>}} एक ऐसा फलन है जिसके प्रत्येक प्रथम कोटि के आंशिक अवकलज {{math|'''R'''<sup>''n''</sup>}} | मान लीजिए {{math|'''f''' : '''R'''<sup>''n''</sup> → '''R'''<sup>''m''</sup>}} एक ऐसा फलन है जिसके प्रत्येक प्रथम कोटि के आंशिक अवकलज {{math|'''R'''<sup>''n''</sup>}} पर विद्यमान हैं। यह फलन निविष्ट के रूप में एक बिंदु {{math|'''x''' ∈ '''R'''<sup>''n''</sup>}} लेता है और निर्गत के रूप में सदिश {{math|'''f'''('''x''') ∈ '''R'''<sup>''m''</sup>}} उत्पन्न करता है। तब {{math|'''f'''}} के जैकोबियन आव्यूह को एक {{math|''m''×''n''}} आव्यूह के रूप में परिभाषित किया जाता है, जिसे {{math|'''J'''}} द्वारा निरूपित किया जाता है, जिसकी {{math|(''i'',''j'')}}वीं प्रविष्टि <math display="inline">\mathbf J_{ij} = \frac{\partial f_i}{\partial x_j}</math> है, या स्पष्ट रूप से | ||
:<math>\mathbf J = \begin{bmatrix} | :<math>\mathbf J = \begin{bmatrix} | ||
Line 21: | Line 21: | ||
है, जहां <math>\nabla^{\mathrm T} f_i </math> <math>i</math> अवयव के [[ढाल|प्रवणता]] का स्थानान्तरण (पंक्ति सदिश) है। | है, जहां <math>\nabla^{\mathrm T} f_i </math> <math>i</math> अवयव के [[ढाल|प्रवणता]] का स्थानान्तरण (पंक्ति सदिश) है। | ||
जेकोबियन आव्यूह, जिसकी प्रविष्टियाँ निम्नलिखित {{math|'''x'''}} के फलन हैं ,उनको | जेकोबियन आव्यूह, जिसकी प्रविष्टियाँ निम्नलिखित {{math|'''x'''}} के फलन हैं ,उनको विभिन्न तरीकों से निरूपित किया जाता है, सामान्य अंकन सम्मिलित में{{cn|reason=Unclear whether the two last notations are commonly used|date=November 2020}} {{math|''D'''''f'''}}, {{math|'''J'''<sub>'''f'''</sub>}}, <math>\nabla \mathbf{f}</math>, और <math>\frac{\partial(f_1,..,f_m)}{\partial(x_1, ..,x_n)}</math> सम्मिलित हैं। कुछ लेखक जैकोबियन को ऊपर दिए गए रूप के [[स्थानान्तरण]] के रूप में परिभाषित करते हैं। | ||
जेकोबियन आव्यूह प्रत्येक बिंदु पर {{math|'''f'''}} | जेकोबियन आव्यूह प्रत्येक बिंदु पर {{math|'''f'''}} के [[अंतर]] का [[प्रतिनिधित्व]] करता है जहां {{math|'''f'''}} अवकलनीय है। विस्तार से, यदि {{math|'''h'''}} एक [[कॉलम मैट्रिक्स|स्तंभ आव्यूह]], द्वारा प्रदर्शित [[विस्थापन वेक्टर|विस्थापन सदिश]] है, तो [[कॉलम मैट्रिक्स|आव्यूह]] [[उत्पाद]] {{math|'''J'''('''x''') ⋅ '''h'''}} एक अन्य विस्थापन सदिश है, जो कि {{math|'''x'''}} के [[पड़ोस]] में {{math|'''f'''}} के परिवर्तन का सबसे अच्छा रैखिक सन्निकटन है, यदि {{math|'''f'''('''x''')}} {{math|'''x'''}} पर [[अवकलनीय]] है।{{efn|Differentiability at {{math|'''x'''}} implies, but is not implied by, the existence of all first-order partial derivatives at {{math|'''x'''}}, and hence is a stronger condition.}} इसका मतलब यह है कि वह फलन जो {{math|'''y'''}} को {{math|'''f'''('''x''') + '''J'''('''x''') ⋅ ('''y''' – '''x''')}} से मानचित्रित करता है, {{math|'''x'''}} के करीब {{math|'''y'''}} बिंदुओं के लिए {{math|'''f'''('''y''')}} का सबसे अच्छा [[रैखिक सन्निकटन]] है। इस [[रेखीय फलन]] को {{math|'''x'''}} पर {{math|'''f'''}} के अवकलज या [[अवकल]] के रूप में जाना जाता है। | ||
जब {{math|1=''m'' = ''n''}}, जेकोबियन आव्यूह वर्गाकार होता है, तो इसलिए इसका [[निर्धारक]] {{math|'''x'''}} का एक सुपरिभाषित फलन होता है, जिसे {{math|'''f'''}} का जैकबियन निर्धारक कहा जाता है। यह {{math|'''f'''}} | जब {{math|1=''m'' = ''n''}}, जेकोबियन आव्यूह वर्गाकार होता है, तो इसलिए इसका [[निर्धारक]] {{math|'''x'''}} का एक सुपरिभाषित फलन होता है, जिसे {{math|'''f'''}} का जैकबियन निर्धारक कहा जाता है। यह {{math|'''f'''}} के स्थानीय व्यवहार के बारे में महत्वपूर्ण जानकारी रखता है। विशेष रूप से फलन {{math|'''f'''}} में एक बिंदु {{math|'''x'''}} के पड़ोस में एक अलग-अलग प्रतिलोम फलन होता है यदि और केवल जैकबियन निर्धारक {{math|'''x'''}} पर गैर-शून्य है (सार्वभौमिक व्युत्क्रमणीय की संबंधित समस्या के लिए [[जैकोबियन अनुमान]] देखें)। जेकोबियन निर्धारक [[कई पूर्णांको]] में चर बदलते समय भी प्रकट होता है ([[कई चर के लिए प्रतिस्थापन नियम]] देखें)। | ||
जब {{math|1=''m'' = 1}}, अर्थात जब | जब {{math|1=''m'' = 1}}, अर्थात जब {{math|''f'' : '''R'''<sup>''n''</sup> → '''R'''}} एक [[अदिश क्षेत्र|अदिश]] [[मूल्यवान फलन]] है, तो जैकोबियन आव्यूह [[पंक्ति वेक्टर|पंक्ति सदिश]] <math>\nabla^{\mathrm T} f</math> तक कम हो जाता है, {{math|''f''}} के सभी प्रथम-क्रम आंशिक अवकलज का यह पंक्ति सदिश {{math|''f''}} की [[प्रवणता]] का स्थानान्तरण है, अर्थात <math> \mathbf{J}_{f} = \nabla^T f </math>। आगे विशेष रूप से, जब {{math|1=''m'' = ''n'' = 1}}, वह है जब {{math|''f'' : '''R''' → '''R'''}} एकल चर का एक [[अदिश-मूल्यवान फलन]] हो, तो जैकोबियन आव्यूह में एक ही प्रविष्टि होती है, यह प्रविष्टि फलन {{math|''f''}} का अवकलज है। | ||
इन अवधारणाओं का नाम [[गणितज्ञ]] [[कार्ल गुस्ताव जैकब जैकोबी]] (1804-1851) के नाम पर रखा गया है। | इन अवधारणाओं का नाम [[गणितज्ञ]] [[कार्ल गुस्ताव जैकब जैकोबी]] (1804-1851) के नाम पर रखा गया है। | ||
Line 33: | Line 33: | ||
== जैकबियन आव्यूह == | == जैकबियन आव्यूह == | ||
कई चरो में सदिश-मूल्यवान फलन का जेकोबियन कई चरो में [[अदिश]] मूल्यवान फलन की [[प्रवणता]] को सामान्यीकृत करता है, जो बदले में एकल चर के अदिश-मूल्यवान फलन के अवकलज का सामान्यीकरण करता है। दूसरे शब्दों में, [[कई चरो में]] | कई चरो में सदिश-मूल्यवान फलन का जेकोबियन कई चरो में [[अदिश]] मूल्यवान फलन की [[प्रवणता]] को सामान्यीकृत करता है, जो बदले में एकल चर के अदिश-मूल्यवान फलन के अवकलज का सामान्यीकरण करता है। दूसरे शब्दों में, [[कई चरो में]] एक अदिश-मूल्यवान फलन का जैकोबियन आव्यूह इसकी प्रवणता (का स्थानान्तरण) है और एक चर के अदिश-मूल्यवान फलन की प्रवणता इसका अवकलज है। | ||
प्रत्येक बिंदु पर जहां एक फलन अवकलनीय है, इसके जैकबियन आव्यूह को "खिंचाव", "घूर्णन" या "रूपांतरण" की मात्रा का वर्णन करने के बारे में भी सोचा जा सकता है जो फलन उस बिंदु के पास स्थानीय रूप से लागू होता है। उदाहरण के लिए, यदि {{math|(''x''′, ''y''′) {{=}} '''f'''(''x'', ''y'')}} का उपयोग किसी छवि को सुचारू रूप से बदलने के लिए किया जाता है, तो जैकोबियन आव्यूह {{math|'''J'''<sub>'''f'''</sub>(''x'', ''y'')}}, वर्णन करता है कि कैसे {{math|(''x'', ''y'')}} के पड़ोस में छवि रूपांतरित है। | प्रत्येक बिंदु पर जहां एक फलन अवकलनीय है, इसके जैकबियन आव्यूह को "खिंचाव", "घूर्णन" या "रूपांतरण" की मात्रा का वर्णन करने के बारे में भी सोचा जा सकता है जो फलन उस बिंदु के पास स्थानीय रूप से लागू होता है। उदाहरण के लिए, यदि {{math|(''x''′, ''y''′) {{=}} '''f'''(''x'', ''y'')}} का उपयोग किसी छवि को सुचारू रूप से बदलने के लिए किया जाता है, तो जैकोबियन आव्यूह {{math|'''J'''<sub>'''f'''</sub>(''x'', ''y'')}}, वर्णन करता है कि कैसे {{math|(''x'', ''y'')}} के पड़ोस में छवि रूपांतरित है। | ||
Line 39: | Line 39: | ||
यदि एक बिंदु पर एक फलन अवकलनीय है, तो इसका अंतर जैकबियन आव्यूह द्वारा निर्देशांक में दिया जाता है। हालाँकि किसी फलन को उसके जैकोबियन आव्यूह को परिभाषित करने के लिए अअवकलनीय होने की आवश्यकता नहीं है, क्योंकि केवल इसके पहले-क्रम के [[आंशिक अवकलज]] मौजूद होने की आवश्यकता है। | यदि एक बिंदु पर एक फलन अवकलनीय है, तो इसका अंतर जैकबियन आव्यूह द्वारा निर्देशांक में दिया जाता है। हालाँकि किसी फलन को उसके जैकोबियन आव्यूह को परिभाषित करने के लिए अअवकलनीय होने की आवश्यकता नहीं है, क्योंकि केवल इसके पहले-क्रम के [[आंशिक अवकलज]] मौजूद होने की आवश्यकता है। | ||
यदि {{math|'''f'''}} , {{math|'''R'''<sup>''n''</sup>}} के किसी बिंदु {{math|'''p'''}} पर [[अवकलनीय]] है , तो इसके [[अवकल]] को {{math|'''J'''<sub>'''f'''</sub>('''p''')}} द्वारा निरूपित किया जाता है। इस मामले में, {{math|'''J'''<sub>'''f'''</sub>('''p''')}} द्वारा दर्शाया गया [[रैखिक परिवर्तन]] बिंदु | यदि {{math|'''f'''}} , {{math|'''R'''<sup>''n''</sup>}} के किसी बिंदु {{math|'''p'''}} पर [[अवकलनीय]] है , तो इसके [[अवकल]] को {{math|'''J'''<sub>'''f'''</sub>('''p''')}} द्वारा निरूपित किया जाता है। इस मामले में, {{math|'''J'''<sub>'''f'''</sub>('''p''')}} द्वारा दर्शाया गया [[रैखिक परिवर्तन]] बिंदु {{math|'''p'''}} के पास {{math|'''f'''}} का इस अर्थ में सबसे अच्छा [[रैखिक सन्निकटन]] है , | ||
:<math>\mathbf f(\mathbf x) - \mathbf f(\mathbf p) = \mathbf J_{\mathbf f}(\mathbf p)(\mathbf x - \mathbf p) + o(\|\mathbf x - \mathbf p\|) \quad (\text{as } \mathbf{x} \to \mathbf{p}),</math> | :<math>\mathbf f(\mathbf x) - \mathbf f(\mathbf p) = \mathbf J_{\mathbf f}(\mathbf p)(\mathbf x - \mathbf p) + o(\|\mathbf x - \mathbf p\|) \quad (\text{as } \mathbf{x} \to \mathbf{p}),</math> | ||
Line 57: | Line 57: | ||
[[File:Jacobian_determinant_and_distortion.svg|thumb|400px|एक अरेखीय मानचित्र <math>f \colon \mathbb{R}^{2} \to \mathbb{R}^{2}</math> एक विकृत समांतर चतुर्भुज (दाएं, लाल रंग में) को एक छोटा वर्ग (बाएं, लाल रंग में) भेजता है। एक बिंदु पर जेकोबियन उस बिंदु के पास विकृत समानांतर चतुर्भुज का सबसे अच्छा रैखिक सन्निकटन देता है (दाएं, पारभासी सफेद रंग में), और जेकोबियन निर्धारक मूल वर्ग के सन्निकट समांतर चतुर्भुज के क्षेत्रफल का अनुपात देता है।]]यदि {{math|1=''m'' = ''n''}}, तो {{math|'''f'''}} , {{math|'''R'''<sup>''n''</sup>}} से स्वयं में एक फलन है और जैकोबियन आव्यूह एक [[वर्ग आव्यूह]] है। इसके बाद हम इसका [[निर्धारक]] बना सकते हैं, जिसे जैकबियन निर्धारक के रूप में जाना जाता है। जैकबियन निर्धारक को कभी-कभी केवल "जैकोबियन" के रूप में जाना जाता है। | [[File:Jacobian_determinant_and_distortion.svg|thumb|400px|एक अरेखीय मानचित्र <math>f \colon \mathbb{R}^{2} \to \mathbb{R}^{2}</math> एक विकृत समांतर चतुर्भुज (दाएं, लाल रंग में) को एक छोटा वर्ग (बाएं, लाल रंग में) भेजता है। एक बिंदु पर जेकोबियन उस बिंदु के पास विकृत समानांतर चतुर्भुज का सबसे अच्छा रैखिक सन्निकटन देता है (दाएं, पारभासी सफेद रंग में), और जेकोबियन निर्धारक मूल वर्ग के सन्निकट समांतर चतुर्भुज के क्षेत्रफल का अनुपात देता है।]]यदि {{math|1=''m'' = ''n''}}, तो {{math|'''f'''}} , {{math|'''R'''<sup>''n''</sup>}} से स्वयं में एक फलन है और जैकोबियन आव्यूह एक [[वर्ग आव्यूह]] है। इसके बाद हम इसका [[निर्धारक]] बना सकते हैं, जिसे जैकबियन निर्धारक के रूप में जाना जाता है। जैकबियन निर्धारक को कभी-कभी केवल "जैकोबियन" के रूप में जाना जाता है। | ||
किसी दिए गए बिंदु पर जेकोबियन निर्धारक उस बिंदु के निकट {{math|'''f'''}} | किसी दिए गए बिंदु पर जेकोबियन निर्धारक उस बिंदु के निकट {{math|'''f'''}} के व्यवहार के बारे में महत्वपूर्ण जानकारी देता है। उदाहरण के लिए, [[निरंतर अवकलनीय फलन]] {{math|'''f'''}} एक बिंदु {{math|'''p''' ∈ '''R'''<sup>''n''</sup>}} के निकट [[व्युत्क्रमणीय]] होता है यदि {{math|'''p'''}} पर जैकबियन निर्धारक गैर-शून्य है। यह व्युत्क्रम फलन प्रमेय है। इसके अलावा, यदि {{math|'''p'''}} पर जैकोबियन निर्धारक [[सकारात्मक संख्या|सकारात्मक]] है, तो {{math|'''f'''}} {{math|'''p'''}} के पास अभिविन्यास को संरक्षित करता है, यदि यह [[ऋणात्मक संख्या|ऋणात्मक]] है, तो {{math|'''f'''}} अभिविन्यास को व्युत्क्रमणीय कर देता है। {{math|'''p'''}} पर जेकोबियन निर्धारक का [[निरपेक्ष मान]] हमें वह कारक देता है जिसके द्वारा {{math|'''f'''}} {{math|'''p'''}} के निकट [[आयतन]] का विस्तार या संकुचन करता है ,यही कारण है कि यह सामान्य [[प्रतिस्थापन नियम]] में होता है। | ||
जैकोबियन निर्धारक का उपयोग तब किया जाता है जब अपने प्रक्षेत्र के भीतर किसी क्षेत्र पर किसी फलन के [[एकाधिक अभिन्न]] का मूल्यांकन करते समय [[चरों में परिवर्तन]] किया जाता है। निर्देशांक के परिवर्तन के लिए समायोजित करने के लिए जैकबियन निर्धारक का परिमाण अभिन्न के भीतर गुणक कारक के रूप में उत्पन्न होता है। ऐसा इसलिए है क्योंकि {{math|''n''}}आयामी {{math|''dV''}} अवयव सामान्य रूप से नई समन्वय प्रणाली में एक [[समानांतर]] चतुर्भुज है, और एक समानांतर चतुर्भुज का {{math|''n''}} आयतन इसके किनारे वाले सदिश का निर्धारक है। | जैकोबियन निर्धारक का उपयोग तब किया जाता है जब अपने प्रक्षेत्र के भीतर किसी क्षेत्र पर किसी फलन के [[एकाधिक अभिन्न]] का मूल्यांकन करते समय [[चरों में परिवर्तन]] किया जाता है। निर्देशांक के परिवर्तन के लिए समायोजित करने के लिए जैकबियन निर्धारक का परिमाण अभिन्न के भीतर गुणक कारक के रूप में उत्पन्न होता है। ऐसा इसलिए है क्योंकि {{math|''n''}}आयामी {{math|''dV''}} अवयव सामान्य रूप से नई समन्वय प्रणाली में एक [[समानांतर]] चतुर्भुज है, और एक समानांतर चतुर्भुज का {{math|''n''}} आयतन इसके किनारे वाले सदिश का निर्धारक है। | ||
Line 67: | Line 67: | ||
:<math>\mathbf J_{\mathbf f^{-1}} = {\mathbf J_{\mathbf f}}^{-1} .</math> | :<math>\mathbf J_{\mathbf f^{-1}} = {\mathbf J_{\mathbf f}}^{-1} .</math> | ||
के कुछ पड़ोस तक सीमित होने पर {{math|'''f'''}} | के कुछ पड़ोस तक सीमित होने पर {{math|'''f'''}} व्युत्क्रमणीय होता है। दूसरे शब्दों में, यदि एक बिंदु पर जेकोबियन निर्धारक शून्य नहीं है, तो इस बिंदु के पास फलन स्थानीय रूप से व्युत्क्रमणीय है, अर्थात इस बिंदु का एक [[पड़ोस (गणित)|पड़ोसी]] है जिसमें फलन व्युत्क्रमणीय होता है। | ||
(अप्रमाणित) [[जेकोबियन अनुमान]] एक [[बहुपद]] फलन के मामले में वैश्विक व्युत्क्रम से संबंधित है, जो कि n चर में n [[बहुपदों]] द्वारा परिभाषित एक फलन है। यह दावा करता है कि, यदि जेकोबियन निर्धारक एक गैर-शून्य स्थिरांक है (या, समतुल्य रूप से, कि इसमें कोई जटिल शून्य नहीं है), तो फलन व्युत्क्रमणीय है और इसका व्युत्क्रम एक बहुपद फलन है। | (अप्रमाणित) [[जेकोबियन अनुमान]] एक [[बहुपद]] फलन के मामले में वैश्विक व्युत्क्रम से संबंधित है, जो कि n चर में n [[बहुपदों]] द्वारा परिभाषित एक फलन है। यह दावा करता है कि, यदि जेकोबियन निर्धारक एक गैर-शून्य स्थिरांक है (या, समतुल्य रूप से, कि इसमें कोई जटिल शून्य नहीं है), तो फलन व्युत्क्रमणीय है और इसका व्युत्क्रम एक बहुपद फलन है। | ||
Line 82: | Line 82: | ||
=== उदाहरण 1 === | === उदाहरण 1 === | ||
फलन | फलन {{math|'''f''' : '''R'''<sup>2</sup> → '''R'''<sup>2</sup>}} पर विचार करें, जिसमें {{math|(''x'', ''y'') ↦ (''f''<sub>1</sub>(''x'', ''y''), ''f''<sub>2</sub>(''x'', ''y'')),}} | ||
:<math> \mathbf f\left(\begin{bmatrix} x\\y\end{bmatrix}\right) = \begin{bmatrix} f_1(x,y)\\f_2(x,y)\end{bmatrix} = | :<math> \mathbf f\left(\begin{bmatrix} x\\y\end{bmatrix}\right) = \begin{bmatrix} f_1(x,y)\\f_2(x,y)\end{bmatrix} = | ||
\begin{bmatrix} x^2 y \\5 x + \sin y | \begin{bmatrix} x^2 y \\5 x + \sin y | ||
Line 91: | Line 91: | ||
और | और | ||
:<math>f_2(x, y) = 5 x + \sin y</math> | :<math>f_2(x, y) = 5 x + \sin y</math> | ||
हैं और {{math|'''f'''}} | हैं और {{math|'''f'''}} जैकोबियन आव्यूह | ||
:<math>\mathbf J_{\mathbf f}(x, y) = \begin{bmatrix} | :<math>\mathbf J_{\mathbf f}(x, y) = \begin{bmatrix} | ||
\dfrac{\partial f_1}{\partial x} & \dfrac{\partial f_1}{\partial y}\\[1em] | \dfrac{\partial f_1}{\partial x} & \dfrac{\partial f_1}{\partial y}\\[1em] | ||
Line 103: | Line 103: | ||
=== उदाहरण 2, ध्रुवीय-कार्तीय रूपांतरण === | === उदाहरण 2, ध्रुवीय-कार्तीय रूपांतरण === | ||
[[ध्रुवीय समन्वय प्रणाली|ध्रुवीय निर्देशांक]] | [[ध्रुवीय समन्वय प्रणाली|ध्रुवीय निर्देशांक]] {{math|(''r'', ''φ'')}} से [[कार्तीय निर्देशांक]] (x, y) में रूपांतरण फलन {{math|'''F''': '''R'''<sup>+</sup> × [0, 2{{pi}}) → '''R'''<sup>2</sup>}} द्वारा घटकों के साथ दिया जाता है, | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 119: | Line 119: | ||
=== उदाहरण 3, गोलीय-कार्तीय रूपांतरण === | === उदाहरण 3, गोलीय-कार्तीय रूपांतरण === | ||
[[गोलाकार समन्वय प्रणाली|गोलाकार निर्देशांक]] {{math|(''ρ'', ''φ'', ''θ'')}}<ref>Joel Hass, Christopher Heil, and Maurice Weir. ''Thomas' Calculus Early Transcendentals, 14e''. Pearson, 2018, p. 959.</ref> से [[कार्तीय निर्देशांक]] (x, y, z) में रूपांतरण फलन | [[गोलाकार समन्वय प्रणाली|गोलाकार निर्देशांक]] {{math|(''ρ'', ''φ'', ''θ'')}}<ref>Joel Hass, Christopher Heil, and Maurice Weir. ''Thomas' Calculus Early Transcendentals, 14e''. Pearson, 2018, p. 959.</ref> से [[कार्तीय निर्देशांक]] (x, y, z) में रूपांतरण फलन {{math|'''F''': '''R'''<sup>+</sup> × [0, ''π'') × [0, 2''π'') → '''R'''<sup>3</sup>}} द्वारा घटकों के साथ दिया जाता है, | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 139: | Line 139: | ||
\cos \varphi & - \rho \sin \varphi & 0 | \cos \varphi & - \rho \sin \varphi & 0 | ||
\end{bmatrix}.</math> | \end{bmatrix}.</math> | ||
[[निर्धारक]] {{math|''ρ''<sup>2</sup> sin ''φ''}} है। चूँकि | [[निर्धारक]] {{math|''ρ''<sup>2</sup> sin ''φ''}} है। चूँकि {{math|''dV'' {{=}} ''dx'' ''dy'' ''dz''}} एक आयताकार विभेदक आयतन अवयव के लिए आयतन है (क्योंकि एक आयताकार आयत का आयतन इसके पक्षों का गुणनफल है), हम {{math|''dV'' {{=}} ''ρ''<sup>2</sup> sin ''φ'' ''dρ'' ''dφ'' ''dθ''}} की व्याख्या गोलाकार [[अंतर आयतन अवयव]] के आयतन के रूप में कर सकते हैं। आयताकार विभेदक आयतन अवयव के आयतन के विपरीत, यह विभेदक आयतन अवयव का आयतन स्थिर नहीं है, और निर्देशांक ({{math|''ρ''}} और {{math|''φ''}}) के साथ बदलता रहता है। इसका उपयोग दो समन्वय प्रणालियों के बीच पूर्णांको को बदलने के लिए किया जा सकता है, | ||
:<math>\iiint_{\mathbf F(U)} f(x, y, z) \,dx \,dy \,dz = \iiint_U f(\rho \sin \varphi \cos \theta, \rho \sin \varphi\sin \theta, \rho \cos \varphi) \, \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta .</math> | :<math>\iiint_{\mathbf F(U)} f(x, y, z) \,dx \,dy \,dz = \iiint_U f(\rho \sin \varphi \cos \theta, \rho \sin \varphi\sin \theta, \rho \cos \varphi) \, \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta .</math> | ||
=== उदाहरण 4 === | === उदाहरण 4 === | ||
Line 195: | Line 195: | ||
=== गतिकीय प्रणाली === | === गतिकीय प्रणाली === | ||
विधि <math>\dot{\mathbf{x}} = F(\mathbf{x})</math> की एक [[गतिशील प्रणाली|गतिकीय प्रणाली]] पर विचार करें, जहां <math>\dot{\mathbf{x}}</math> [[विकास पैरामीटर|विकास प्राचल]] <math>t</math> | विधि <math>\dot{\mathbf{x}} = F(\mathbf{x})</math> की एक [[गतिशील प्रणाली|गतिकीय प्रणाली]] पर विचार करें, जहां <math>\dot{\mathbf{x}}</math> [[विकास पैरामीटर|विकास प्राचल]] <math>t</math> (समय ) के संबंध में <math>\mathbf{x}</math> (घटक-वार) का अवकलज है, और <math>F \colon \mathbb{R}^{n} \to \mathbb{R}^{n}</math> अवकलनीय है। यदि <math>F(\mathbf{x}_{0}) = 0</math>, तो <math>\mathbf{x}_{0}</math> एक [[स्थिर बिंदु]] है (जिसे [[स्थिर अवस्था]] भी कहा जाता है)। [[हार्टमैन-ग्रोबमैन प्रमेय]] के अनुसार, एक स्थिर बिंदु के निकट प्रणाली का व्यवहार <math>\mathbf{J}_{F} \left( \mathbf{x}_{0} \right)</math> के [[ईगेनवैल्यू|आइगेनवैल्यू]] से संबंधित है, जो स्थिर बिंदु पर <math>F</math> का जैकोबियन है।<ref>{{cite book |first=D. K. |last=Arrowsmith |first2=C. M. |last2=Place |title=डायनेमिक सिस्टम: डिफरेंशियल इक्वेशन, मैप्स और अराजक व्यवहार|chapter=The Linearization Theorem |publisher=Chapman & Hall |location=London |year=1992 |isbn=0-412-39080-9 |pages=77–81 |chapter-url=https://books.google.com/books?id=8qCcP7KNaZ0C&pg=PA77 }} </ref> विशेष रूप से, यदि आइगेनवैल्यू में सभी वास्तविक भाग हैं जो नकारात्मक हैं, तो प्रणाली स्थिर बिंदु के पास स्थिर है, यदि किसी आइगेनवैल्यू का वास्तविक भाग सकारात्मक होता है, तो बिंदु अस्थिर होता है। यदि आइगेनमानों का सबसे बड़ा वास्तविक भाग शून्य है, तो जेकोबियन आव्यूह स्थिरता के मूल्यांकन की अनुमति नहीं देता है।<ref>{{cite book |first=Morris |last=Hirsch |first2=Stephen |last2=Smale |title=विभेदक समीकरण, गतिशील प्रणाली और रैखिक बीजगणित|year=1974 |isbn=0-12-349550-4 }}</ref> | ||
=== न्यूटन की विधि === | === न्यूटन की विधि === | ||
Line 226: | Line 226: | ||
{{Matrix classes}} | {{Matrix classes}} | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 27/12/2022]] | [[Category:Created On 27/12/2022]] |
Revision as of 15:33, 23 January 2023
के बारे में लेखों की एक श्रृंखला का हिस्सा |
पथरी |
---|
सदिश कलन में, अनेक चरों के सदिश-मूल्यवान फलन का जेकोबियन आव्यूह (/dʒəˈkoʊbiən/,[1][2][3] /dʒɪ-, jɪ-/) इसके सभी प्रथम-क्रम आंशिक अवकलज का आव्यूह है। जब यह आव्यूह वर्गाकार आव्यूह होता है, अर्थात, जब फलन निविष्ट के रूप में चर की समान संख्या लेता है जैसे इसके निर्गत के सदिश घटकों की संख्या होती है, तो इसके निर्धारक को जैकबियन निर्धारक कहा जाता है। दोनों आव्यूह और (यदि लागू हो) निर्धारक को अक्सर साहित्य में जैकबियन के रूप में संदर्भित किया जाता है।[4]
मान लीजिए f : Rn → Rm एक ऐसा फलन है जिसके प्रत्येक प्रथम कोटि के आंशिक अवकलज Rn पर विद्यमान हैं। यह फलन निविष्ट के रूप में एक बिंदु x ∈ Rn लेता है और निर्गत के रूप में सदिश f(x) ∈ Rm उत्पन्न करता है। तब f के जैकोबियन आव्यूह को एक m×n आव्यूह के रूप में परिभाषित किया जाता है, जिसे J द्वारा निरूपित किया जाता है, जिसकी (i,j)वीं प्रविष्टि है, या स्पष्ट रूप से
है, जहां अवयव के प्रवणता का स्थानान्तरण (पंक्ति सदिश) है।
जेकोबियन आव्यूह, जिसकी प्रविष्टियाँ निम्नलिखित x के फलन हैं ,उनको विभिन्न तरीकों से निरूपित किया जाता है, सामान्य अंकन सम्मिलित में[citation needed] Df, Jf, , और सम्मिलित हैं। कुछ लेखक जैकोबियन को ऊपर दिए गए रूप के स्थानान्तरण के रूप में परिभाषित करते हैं।
जेकोबियन आव्यूह प्रत्येक बिंदु पर f के अंतर का प्रतिनिधित्व करता है जहां f अवकलनीय है। विस्तार से, यदि h एक स्तंभ आव्यूह, द्वारा प्रदर्शित विस्थापन सदिश है, तो आव्यूह उत्पाद J(x) ⋅ h एक अन्य विस्थापन सदिश है, जो कि x के पड़ोस में f के परिवर्तन का सबसे अच्छा रैखिक सन्निकटन है, यदि f(x) x पर अवकलनीय है।[lower-alpha 1] इसका मतलब यह है कि वह फलन जो y को f(x) + J(x) ⋅ (y – x) से मानचित्रित करता है, x के करीब y बिंदुओं के लिए f(y) का सबसे अच्छा रैखिक सन्निकटन है। इस रेखीय फलन को x पर f के अवकलज या अवकल के रूप में जाना जाता है।
जब m = n, जेकोबियन आव्यूह वर्गाकार होता है, तो इसलिए इसका निर्धारक x का एक सुपरिभाषित फलन होता है, जिसे f का जैकबियन निर्धारक कहा जाता है। यह f के स्थानीय व्यवहार के बारे में महत्वपूर्ण जानकारी रखता है। विशेष रूप से फलन f में एक बिंदु x के पड़ोस में एक अलग-अलग प्रतिलोम फलन होता है यदि और केवल जैकबियन निर्धारक x पर गैर-शून्य है (सार्वभौमिक व्युत्क्रमणीय की संबंधित समस्या के लिए जैकोबियन अनुमान देखें)। जेकोबियन निर्धारक कई पूर्णांको में चर बदलते समय भी प्रकट होता है (कई चर के लिए प्रतिस्थापन नियम देखें)।
जब m = 1, अर्थात जब f : Rn → R एक अदिश मूल्यवान फलन है, तो जैकोबियन आव्यूह पंक्ति सदिश तक कम हो जाता है, f के सभी प्रथम-क्रम आंशिक अवकलज का यह पंक्ति सदिश f की प्रवणता का स्थानान्तरण है, अर्थात । आगे विशेष रूप से, जब m = n = 1, वह है जब f : R → R एकल चर का एक अदिश-मूल्यवान फलन हो, तो जैकोबियन आव्यूह में एक ही प्रविष्टि होती है, यह प्रविष्टि फलन f का अवकलज है।
इन अवधारणाओं का नाम गणितज्ञ कार्ल गुस्ताव जैकब जैकोबी (1804-1851) के नाम पर रखा गया है।
जैकबियन आव्यूह
कई चरो में सदिश-मूल्यवान फलन का जेकोबियन कई चरो में अदिश मूल्यवान फलन की प्रवणता को सामान्यीकृत करता है, जो बदले में एकल चर के अदिश-मूल्यवान फलन के अवकलज का सामान्यीकरण करता है। दूसरे शब्दों में, कई चरो में एक अदिश-मूल्यवान फलन का जैकोबियन आव्यूह इसकी प्रवणता (का स्थानान्तरण) है और एक चर के अदिश-मूल्यवान फलन की प्रवणता इसका अवकलज है।
प्रत्येक बिंदु पर जहां एक फलन अवकलनीय है, इसके जैकबियन आव्यूह को "खिंचाव", "घूर्णन" या "रूपांतरण" की मात्रा का वर्णन करने के बारे में भी सोचा जा सकता है जो फलन उस बिंदु के पास स्थानीय रूप से लागू होता है। उदाहरण के लिए, यदि (x′, y′) = f(x, y) का उपयोग किसी छवि को सुचारू रूप से बदलने के लिए किया जाता है, तो जैकोबियन आव्यूह Jf(x, y), वर्णन करता है कि कैसे (x, y) के पड़ोस में छवि रूपांतरित है।
यदि एक बिंदु पर एक फलन अवकलनीय है, तो इसका अंतर जैकबियन आव्यूह द्वारा निर्देशांक में दिया जाता है। हालाँकि किसी फलन को उसके जैकोबियन आव्यूह को परिभाषित करने के लिए अअवकलनीय होने की आवश्यकता नहीं है, क्योंकि केवल इसके पहले-क्रम के आंशिक अवकलज मौजूद होने की आवश्यकता है।
यदि f , Rn के किसी बिंदु p पर अवकलनीय है , तो इसके अवकल को Jf(p) द्वारा निरूपित किया जाता है। इस मामले में, Jf(p) द्वारा दर्शाया गया रैखिक परिवर्तन बिंदु p के पास f का इस अर्थ में सबसे अच्छा रैखिक सन्निकटन है ,
जहाँ o(‖x − p‖) एक संख्या है जो x और p के बीच की दूरी की तुलना में बहुत तेजी से शून्य तक पहुँचती है, जब x ,p तक पहुंचता है। यह सन्निकटन डिग्री एक के अपने टेलर बहुपद ,अर्थात्
- द्वारा एकल चर के एक अदिश फलन के सन्निकटन के लिए विशिष्ट है।
इस अर्थ में, जैकबियन को कई चरों के सदिश-मूल्यवान फलन के "प्रथम-क्रम अवकलज" के रूप में माना जा सकता है। विशेष रूप से, इसका मतलब यह है कि कई चरों के अदिश-मूल्यवान फलन की प्रवणता भी इसके"प्रथम-क्रम अवकलज" के रूप में मानी जा सकती है।
संगत अवकलनीय फलन f : Rn → Rm और g : Rm → Rk श्रृंखला नियम को संतुष्ट करते हैं, अर्थात् Rn में x के लिए ।
कई चरों के अदिश फलन की प्रवणता के जैकबियन का एक विशेष नाम, हेसियन आव्यूह है , जो एक अर्थ में प्रश्न में फलन का दूसरा अवकलज है।
जैकबियन निर्धारक
यदि m = n, तो f , Rn से स्वयं में एक फलन है और जैकोबियन आव्यूह एक वर्ग आव्यूह है। इसके बाद हम इसका निर्धारक बना सकते हैं, जिसे जैकबियन निर्धारक के रूप में जाना जाता है। जैकबियन निर्धारक को कभी-कभी केवल "जैकोबियन" के रूप में जाना जाता है।
किसी दिए गए बिंदु पर जेकोबियन निर्धारक उस बिंदु के निकट f के व्यवहार के बारे में महत्वपूर्ण जानकारी देता है। उदाहरण के लिए, निरंतर अवकलनीय फलन f एक बिंदु p ∈ Rn के निकट व्युत्क्रमणीय होता है यदि p पर जैकबियन निर्धारक गैर-शून्य है। यह व्युत्क्रम फलन प्रमेय है। इसके अलावा, यदि p पर जैकोबियन निर्धारक सकारात्मक है, तो f p के पास अभिविन्यास को संरक्षित करता है, यदि यह ऋणात्मक है, तो f अभिविन्यास को व्युत्क्रमणीय कर देता है। p पर जेकोबियन निर्धारक का निरपेक्ष मान हमें वह कारक देता है जिसके द्वारा f p के निकट आयतन का विस्तार या संकुचन करता है ,यही कारण है कि यह सामान्य प्रतिस्थापन नियम में होता है।
जैकोबियन निर्धारक का उपयोग तब किया जाता है जब अपने प्रक्षेत्र के भीतर किसी क्षेत्र पर किसी फलन के एकाधिक अभिन्न का मूल्यांकन करते समय चरों में परिवर्तन किया जाता है। निर्देशांक के परिवर्तन के लिए समायोजित करने के लिए जैकबियन निर्धारक का परिमाण अभिन्न के भीतर गुणक कारक के रूप में उत्पन्न होता है। ऐसा इसलिए है क्योंकि nआयामी dV अवयव सामान्य रूप से नई समन्वय प्रणाली में एक समानांतर चतुर्भुज है, और एक समानांतर चतुर्भुज का n आयतन इसके किनारे वाले सदिश का निर्धारक है।
एक संतुलन बिंदु के निकट व्यवहार का अनुमान लगाकर विभेदक समीकरणों की प्रणालियों के लिए संतुलन की स्थिरता का निर्धारण करने के लिए जैकबियन का भी उपयोग किया जा सकता है। इसके अनुप्रयोगों में डिजीज प्रतिरूपण में डिजीज मुक्त संतुलन की स्थिरता का निर्धारण करना सम्मिलित है।[5]
व्युत्क्रम
व्युत्क्रम फलन प्रमेय के अनुसार, व्युत्क्रम फलन के जैकोबियन आव्यूह का व्युत्क्रमणीय आव्यूह व्युत्क्रम फलन का जकोबियन आव्यूह होता है। अर्थात, यदि फलन f : Rn → Rn का जैकोबियन संतत है और Rn में बिंदु p पर एकवचन नहीं है, तो p और
के कुछ पड़ोस तक सीमित होने पर f व्युत्क्रमणीय होता है। दूसरे शब्दों में, यदि एक बिंदु पर जेकोबियन निर्धारक शून्य नहीं है, तो इस बिंदु के पास फलन स्थानीय रूप से व्युत्क्रमणीय है, अर्थात इस बिंदु का एक पड़ोसी है जिसमें फलन व्युत्क्रमणीय होता है।
(अप्रमाणित) जेकोबियन अनुमान एक बहुपद फलन के मामले में वैश्विक व्युत्क्रम से संबंधित है, जो कि n चर में n बहुपदों द्वारा परिभाषित एक फलन है। यह दावा करता है कि, यदि जेकोबियन निर्धारक एक गैर-शून्य स्थिरांक है (या, समतुल्य रूप से, कि इसमें कोई जटिल शून्य नहीं है), तो फलन व्युत्क्रमणीय है और इसका व्युत्क्रम एक बहुपद फलन है।
महत्वपूर्ण बिंदु
यदि f : Rn → Rm एक अवकलनीय फलन है, तो f का एक महत्वपूर्ण बिंदु एक बिंदु है जहां जेकोबियन आव्यूह का कोटि अधिकतम नहीं है। इसका मतलब यह है कि महत्वपूर्ण बिंदु पर कोटि कुछ पड़ोसी बिंदु पर कोटि से कम है। दूसरे शब्दों में, k को f की छवि में निहित खुली गेंदों का अधिकतम आयाम होना चाहिए, तो एक बिंदु महत्वपूर्ण है यदि f के कोटि k के सभी अवयस्क शून्य हैं।
एसे मामले में जहां m = n = k, एक बिंदु महत्वपूर्ण है यदि जेकोबियन निर्धारक शून्य है।
उदाहरण
उदाहरण 1
फलन f : R2 → R2 पर विचार करें, जिसमें (x, y) ↦ (f1(x, y), f2(x, y)),
- द्वारा दिया गया है।
फिर हमारे पास
और
हैं और f जैकोबियन आव्यूह
है और जैकोबियन निर्धारक
- है।
उदाहरण 2, ध्रुवीय-कार्तीय रूपांतरण
ध्रुवीय निर्देशांक (r, φ) से कार्तीय निर्देशांक (x, y) में रूपांतरण फलन F: R+ × [0, 2π) → R2 द्वारा घटकों के साथ दिया जाता है,
जेकोबियन निर्धारक r के बराबर है। इसका उपयोग दो समन्वय प्रणालियों के बीच पूर्णांको को बदलने के लिए किया जा सकता है,
उदाहरण 3, गोलीय-कार्तीय रूपांतरण
गोलाकार निर्देशांक (ρ, φ, θ)[6] से कार्तीय निर्देशांक (x, y, z) में रूपांतरण फलन F: R+ × [0, π) × [0, 2π) → R3 द्वारा घटकों के साथ दिया जाता है,
इस निर्देशांक परिवर्तन के लिए यह जेकोबियन आव्यूह है
निर्धारक ρ2 sin φ है। चूँकि dV = dx dy dz एक आयताकार विभेदक आयतन अवयव के लिए आयतन है (क्योंकि एक आयताकार आयत का आयतन इसके पक्षों का गुणनफल है), हम dV = ρ2 sin φ dρ dφ dθ की व्याख्या गोलाकार अंतर आयतन अवयव के आयतन के रूप में कर सकते हैं। आयताकार विभेदक आयतन अवयव के आयतन के विपरीत, यह विभेदक आयतन अवयव का आयतन स्थिर नहीं है, और निर्देशांक (ρ और φ) के साथ बदलता रहता है। इसका उपयोग दो समन्वय प्रणालियों के बीच पूर्णांको को बदलने के लिए किया जा सकता है,
उदाहरण 4
फलन F : R3 → R4 का घटक
के साथ जैकोबियन आव्यूह
- है।
इस उदाहरण से पता चलता है कि जेकोबियन आव्यूह को वर्ग आव्यूह होने की आवश्यकता नहीं है।
उदाहरण 5
फलन F : R3 → R3 का अवयव
के साथ जेकोबियन निर्धारक
- है।
इससे हम देखते हैं कि F उन बिंदुओं के पास अभिविन्यास को प्रतिलोम कर देता है जहां x1 और x2 एक ही चिन्ह है, फलन स्थानीय रूप से हर जगह व्युत्क्रमणीय होता है सिवाय निकट बिंदुओं के जहां x1 = 0 या x2 = 0। सहज रूप से, अगर कोई बिंदु (1, 2, 3) के चारों ओर एक छोटी वस्तु से शुरू करता है और उस वस्तु पर F लागू करता है, तो उसे परिणामी वस्तु लगभग 40 × 1 × 2 = 80 गुना मूल एक के आयतन के साथ मिलेगी, जिसमें अभिविन्यास उत्क्रमित हो जाएगा।
अन्य उपयोग
प्रतिगमन और न्यूनतम वर्ग अन्वायोजन
जेकोबियन सांख्यिकीय प्रतिगमन और वक्र अन्वायोजन में एक रैखिक अभिकल्प आव्यूह के रूप में कार्य करता है, जिसके लिए गैर रेखीय न्यूनतम वर्ग देखें।
गतिकीय प्रणाली
विधि की एक गतिकीय प्रणाली पर विचार करें, जहां विकास प्राचल (समय ) के संबंध में (घटक-वार) का अवकलज है, और अवकलनीय है। यदि , तो एक स्थिर बिंदु है (जिसे स्थिर अवस्था भी कहा जाता है)। हार्टमैन-ग्रोबमैन प्रमेय के अनुसार, एक स्थिर बिंदु के निकट प्रणाली का व्यवहार के आइगेनवैल्यू से संबंधित है, जो स्थिर बिंदु पर का जैकोबियन है।[7] विशेष रूप से, यदि आइगेनवैल्यू में सभी वास्तविक भाग हैं जो नकारात्मक हैं, तो प्रणाली स्थिर बिंदु के पास स्थिर है, यदि किसी आइगेनवैल्यू का वास्तविक भाग सकारात्मक होता है, तो बिंदु अस्थिर होता है। यदि आइगेनमानों का सबसे बड़ा वास्तविक भाग शून्य है, तो जेकोबियन आव्यूह स्थिरता के मूल्यांकन की अनुमति नहीं देता है।[8]
न्यूटन की विधि
युग्मित अरेखीय समीकरणों की एक वर्ग प्रणाली को न्यूटन की विधि द्वारा पुनरावृत्त रूप से हल किया जा सकता है। यह विधि समीकरणों की प्रणाली के जैकोबियन आव्यूह का उपयोग करती है।
यह भी देखें
टिप्पणियाँ
- ↑ Differentiability at x implies, but is not implied by, the existence of all first-order partial derivatives at x, and hence is a stronger condition.
संदर्भ
- ↑ "जैकबियन - ऑक्सफोर्ड डिक्शनरी द्वारा अंग्रेजी में जैकोबियन की परिभाषा". Oxford Dictionaries - English. Archived from the original on 1 December 2017. Retrieved 2 May 2018.
- ↑ "jacobian की परिभाषा". Dictionary.com. Archived from the original on 1 December 2017. Retrieved 2 May 2018.
- ↑ Team, Forvo. "याकूब उच्चारण: याकूब में हिन्दी का उच्चारण कैसे करें". forvo.com. Retrieved 2 May 2018.
- ↑ W., Weisstein, Eric. "याकूब". mathworld.wolfram.com. Archived from the original on 3 November 2017. Retrieved 2 May 2018.
{{cite web}}
: CS1 maint: multiple names: authors list (link) - ↑ Smith? RJ (2015). "जैकबियन की खुशियाँ". Chalkdust. 2: 10–17.
- ↑ Joel Hass, Christopher Heil, and Maurice Weir. Thomas' Calculus Early Transcendentals, 14e. Pearson, 2018, p. 959.
- ↑ Arrowsmith, D. K.; Place, C. M. (1992). "The Linearization Theorem". डायनेमिक सिस्टम: डिफरेंशियल इक्वेशन, मैप्स और अराजक व्यवहार. London: Chapman & Hall. pp. 77–81. ISBN 0-412-39080-9.
- ↑ Hirsch, Morris; Smale, Stephen (1974). विभेदक समीकरण, गतिशील प्रणाली और रैखिक बीजगणित. ISBN 0-12-349550-4.
आगे की पढाई
- Gandolfo, Giancarlo (1996). "Comparative Statics and the Correspondence Principle". Economic Dynamics (Third ed.). Berlin: Springer. pp. 305–330. ISBN 3-540-60988-1.
- Protter, Murray H.; Morrey, Charles B. Jr. (1985). "Transformations and Jacobians". Intermediate Calculus (Second ed.). New York: Springer. pp. 412–420. ISBN 0-387-96058-9.
बाहरी कड़ियाँ
- "Jacobian", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Mathworld A more technical explanation of Jacobians