संरक्षण बल: Difference between revisions
(Created page with "{{Short description|Force in which the work done in moving an object depends only on its displacement}} {{Classical mechanics}} भौतिक विज्ञान म...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Force in which the work done in moving an object depends only on its displacement}} | {{Short description|Force in which the work done in moving an object depends only on its displacement}} | ||
{{Classical mechanics}} | {{Classical mechanics}} | ||
[[ भौतिक विज्ञान ]] में, एक संरक्षी बल एक ऐसा बल है जिसके गुण के अनुसार किसी कण को दो बिंदुओं के बीच ले जाने में किया गया कुल [[ कार्य (भौतिकी) ]] लिए गए पथ से स्वतंत्र होता है।<ref>[http://hyperphysics.phy-astr.gsu.edu/hbase/pegrav.html#cfor HyperPhysics - Conservative force]</ref> समतुल्य रूप से, यदि कोई कण एक | [[ भौतिक विज्ञान | भौतिक विज्ञान]] में, एक संरक्षी बल एक ऐसा बल है जिसके गुण के अनुसार किसी कण को दो बिंदुओं के बीच ले जाने में किया गया कुल [[ कार्य (भौतिकी) |कार्य (भौतिकी)]] लिए गए पथ से स्वतंत्र होता है।<ref>[http://hyperphysics.phy-astr.gsu.edu/hbase/pegrav.html#cfor HyperPhysics - Conservative force]</ref> समतुल्य रूप से, यदि कोई कण एक संवृत कुंडली में संचारण करता है, तो एक संरक्षी बल द्वारा किया गया कुल कार्य ([[ विस्थापन (ज्यामिति) | विस्थापन (ज्यामिति)]] द्वारा गुणा पथ के साथ काम करने वाले बल का योग) शून्य है।<ref name=Hand>{{cite book |title=Analytical Mechanics |author =Louis N. Hand, Janet D. Finch |page=41 |isbn=0-521-57572-9 |publisher=Cambridge University Press |year=1998 }}</ref> | ||
गुरुत्वाकर्षण संरक्षी बल का उदाहरण है, जबकि [[ घर्षण बल ]] असंरक्षी बल का उदाहरण है। | एक संरक्षी बल केवल वस्तु की स्थिति पर निर्भर करता है। यदि कोई बल संरक्षी है, तो किसी भी बिंदु पर[[ स्केलर क्षमता | विभव]] के लिए संख्यात्मक मान निर्दिष्ट करना संभव है और इसके विपरीत, जब कोई वस्तु एक स्थान से दूसरे स्थान पर जाती है,तो बल वस्तु की [[संभावित ऊर्जा|विभव ऊर्जा]] को उस राशि से परिवर्तित कर देता है जो पथ पर निर्भर नहीं करती है। यांत्रिक ऊर्जा और ऊर्जा के समग्र संरक्षण में योगदान दिया। यदि बल संरक्षी नहीं है, तो अदिश विभव को परिभाषित करना संभव नहीं है, क्योंकि अलग-अलग पथ लेने से प्रारंभ और अंत बिंदुओं के बीच परस्पर विरोधी विभावन्तर हो सकते हैं। | ||
गुरुत्वाकर्षण संरक्षी बल का उदाहरण है, जबकि [[ घर्षण बल |घर्षण बल]] असंरक्षी बल का उदाहरण है। | |||
संरक्षी बलों के अन्य उदाहरण : हुक का नियम, दो विद्युत आवेशों के बीच नमनीय स्प्रिंग [[विद्युतस्थैतिक बल|विद्युत-स्थैतिक बल]], और दो चुंबकीय ध्रुवों के बीच [[ चुंबकीय बल |चुंबकीय बल]] हैं। अंतिम दो बलों को केंद्रीय बल कहा जाता है क्योंकि वे दो आवेशित/चुंबकीय पिंडों के केंद्रों को मिलाने वाली रेखा के साथ कार्य करते हैं। एक केंद्रीय बल संरक्षी होता है यदि और केवल यदि यह गोलाकार रूप से सममित हो।<ref>{{cite book|last1=Taylor|first1=John R.|title=Classical Mechanics|date=2005|publisher=Univ. Science Books|location=Sausalito, Calif.|isbn=1-891389-22-X|pages=133–138}}</ref> | |||
== अनौपचारिक परिभाषा == | == अनौपचारिक परिभाषा == | ||
अनौपचारिक रूप से, एक | अनौपचारिक रूप से, एक संरक्षी बल को एक बल के रूप में माना जा सकता है जो यांत्रिक ऊर्जा को संरक्षित करता है। मान लीजिए कि एक कण बिंदु A पर प्रारंभ होता है, और उस पर एक बल F कार्य करता है। फिर कण अन्य बलों द्वारा चारों ओर ले जाया जाता है, और अंत में फिर से A पर समाप्त होता है। हालांकि कण अभी भी गतिमान हो सकता है, उस पल में जब वह फिर से बिंदु A से गुजरता है, तो उसने एक संवृत पथ की संचारण की है। यदि इस बिंदु पर F द्वारा किया गया सही कार्य 0 है, तो F संवृत पथ परीक्षण प्राधान्य करता है। कोई भी बल जो सभी विभव संवृत पथों के लिए संवृत पथ परीक्षण प्राधान्य करता है, उसे संरक्षी बल के रूप में वर्गीकृत किया जाता है। | ||
[[ गुरुत्वाकर्षण बल ]], हुक का नियम, चुंबकीय बल (कुछ परिभाषाओं के अनुसार, नीचे देखें) और [[ विद्युत बल ]] (कम से कम एक समय | [[ गुरुत्वाकर्षण बल | गुरुत्वाकर्षण बल]], हुक का नियम, चुंबकीय बल (कुछ परिभाषाओं के अनुसार, नीचे देखें) और [[ विद्युत बल |विद्युत बल]] (कम से कम एक समय से स्वतंत्र चुंबकीय क्षेत्र में, विवरण के लिए फैराडे का प्रेरण का नियम देखें) संरक्षी बलों के उदाहरण हैं, जबकि घर्षण और वायु कर्षण गैर-संरक्षी सामर्थ्यों के उत्कृष्ट उदाहरण हैं। | ||
गैर- | गैर-संरक्षी बलों के लिए, यांत्रिक ऊर्जा जो नष्ट हो जाती है (संरक्षित नहीं) को ऊर्जा के संरक्षण के द्वारा कहीं और जाना पड़ता है। सामान्य रूप से ऊर्जा[[ गर्मी | ऊष्मा]] में परिवर्तित हो जाती है, उदाहरण के लिए घर्षण से उत्पन्न ऊष्मा अतिरिक्त घर्षण भी प्रायः कुछ [[ ध्वनि |ध्वनि]] ऊर्जा उत्पन्न करता है। एक चलती हुई नाव पर पानी का खिंचाव नाव की यांत्रिक ऊर्जा को न केवल ऊष्मा और ध्वनि ऊर्जा में परिवर्तित करता है, बल्कि इसके जलरेखा (भौतिकी) के किनारों पर तरंग ऊर्जा को भी परिवर्तित करता है। ऊष्मप्रवैगिकी के दूसरे नियम के कारण ये और अन्य ऊर्जा नुकसान अपरिवर्तनीय हैं। | ||
== पथ स्वतंत्रता == | == पथ स्वतंत्रता == | ||
[[Image:Conservative Force Gravity Example.svg|right|300px]] | [[Image:Conservative Force Gravity Example.svg|right|300px]]संवृत पथ परीक्षण का एक सीधा परिणाम यह है कि किसी दो बिंदुओं के बीच गतिमान कण पर संरक्षी बल द्वारा किया गया कार्य कण द्वारा लिए गए पथ पर निर्भर नहीं करता है। | ||
इसे दाईं ओर की आकृति में दिखाया गया है: किसी वस्तु पर गुरुत्वाकर्षण बल द्वारा किया गया कार्य केवल उसकी ऊंचाई में परिवर्तन पर निर्भर करता है क्योंकि गुरुत्वाकर्षण बल संरक्षी होता है। एक संरक्षी बल द्वारा किया गया कार्य उस प्रक्रिया के | इसे दाईं ओर की आकृति में दिखाया गया है: किसी वस्तु पर गुरुत्वाकर्षण बल द्वारा किया गया कार्य केवल उसकी ऊंचाई में परिवर्तन पर निर्भर करता है क्योंकि गुरुत्वाकर्षण बल संरक्षी होता है। एक संरक्षी बल द्वारा किया गया कार्य उस प्रक्रिया के समय विभव ऊर्जा में परिवर्तन के ऋणात्मक के बराबर होता है। प्रमाण के लिए, दो पथ 1 और 2 की कल्पना करें, दोनों बिंदु A से बिंदु B तक जा रहे हैं। कण के लिए ऊर्जा की भिन्नता, पथ 1 को A से B तक ले जाना और फिर पथ 2 को B से A तक ले जाना, 0 है; इस प्रकार, कार्य पथ 1 और 2 में समान है, अर्थात, कार्य अनुसरण किए गए पथ से स्वतंत्र है, जब तक वह A से B तक जाता है। | ||
उदाहरण के लिए, यदि कोई बच्चा घर्षण रहित स्लाइड को नीचे की ओर | उदाहरण के लिए, यदि कोई बच्चा घर्षण रहित स्लाइड को नीचे की ओर फिसलता है, तो फिसलने के प्रारंभ होने से अंत तक बच्चे पर गुरुत्वाकर्षण बल द्वारा किया गया कार्य स्लाइड के आकार से स्वतंत्र होता है; यह केवल बच्चे के ऊर्ध्वाधर विस्थापन पर निर्भर करता है। | ||
== गणितीय विवरण == | == गणितीय विवरण == | ||
एक [[ बल क्षेत्र (भौतिकी) ]] एफ, अंतरिक्ष में हर जगह परिभाषित (या अंतरिक्ष की एक सरल-जुड़े मात्रा के | एक [[ बल क्षेत्र (भौतिकी) |बल क्षेत्र (भौतिकी)]] एफ, अंतरिक्ष में हर जगह परिभाषित (या अंतरिक्ष की एक सरल-जुड़े मात्रा के अंदर), एक संरक्षी बल या [[ रूढ़िवादी वेक्टर क्षेत्र |संरक्षी वेक्टर क्षेत्र]] कहा जाता है, अगर यह इन तीन समकक्ष शर्तों में से किसी को पूरा करता है: | ||
# | # F का [[ कर्ल (गणित) |कर्ल (गणित)]] शून्य वेक्टर है: <math display="block">\vec{\nabla} \times \vec{F} = \vec{0}. </math> जहां दो आयामों में यह कम हो जाता है: <math display="block"> \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = 0 </math> | ||
# शून्य शुद्ध कार्य (भौतिकी) ( | # शून्य शुद्ध कार्य (भौतिकी) (W) बल द्वारा किया जाता है जब एक कण को एक ही स्थान पर प्रारंभ और समाप्त होने वाले प्रक्षेपवक्र के माध्यम से ले जाया जाता है: <math display="block">W \equiv \oint_C \vec{F} \cdot \mathrm{d}\vec r = 0.</math> | ||
# बल को एक | # बल को एक विभव ऊर्जा <math>\Phi</math> के नकारात्मक [[ ढाल |प्रवणता]] के रूप में लिखा जा सकता है, : <math display="block">\vec{F} = -\vec{\nabla} \Phi. </math> | ||
{{math proof| title = | {{math proof| title = प्रमाणित है कि ''F'' एक बल क्षेत्र है जब ये तीन स्थितियां समकक्ष हैं | ||
|proof= {{Main| | |proof= {{Main|संरक्षी वेक्टर क्षेत्र }} | ||
{{glossary}} | {{glossary}} | ||
{{term|1 | {{term|1 तात्पर्य 2}}{{defn| | ||
मान लीजिए C कोई सरल बंद पथ है (अर्थात्, एक पथ जो एक ही बिंदु पर प्रारंभ और समाप्त होता है और जिसका कोई स्व-प्रतिच्छेदन नहीं है), और एक सतह S पर विचार करें जिसकी C सीमा है। फिर स्टोक्स का प्रमेय कहता है | |||
<math display="block"> \int_S \left(\vec{\nabla} \times \vec{F}\right) \cdot \mathrm{d}\vec{a} = \oint_C \vec{F} \cdot \mathrm{d}\vec{r} </math> | <math display="block"> \int_S \left(\vec{\nabla} \times \vec{F}\right) \cdot \mathrm{d}\vec{a} = \oint_C \vec{F} \cdot \mathrm{d}\vec{r} </math> | ||
यदि F का कर्ल शून्य है तो बाईं ओर शून्य है - इसलिए कथन 2 सत्य है। | |||
}} | }} | ||
{{term|2 | {{term|2 तात्पर्य 3}}{{defn| | ||
मान लें कि कथन 2 धारण करता है। मान लीजिए c मूल से एक बिंदु तक एक साधारण वक्र है <math>x</math> और एक फलन को परिभाषित करें | |||
<math display="block">\Phi(x) = -\int_c \vec{F} \cdot \mathrm{d}\vec{r}.</math> | <math display="block">\Phi(x) = -\int_c \vec{F} \cdot \mathrm{d}\vec{r}.</math> | ||
तथ्य यह है कि यह फलन अच्छी तरह से परिभाषित है (C की विकल्प से स्वतंत्र) कथन 2 से अनुसरण करता है। वैसे भी, गणना के मौलिक प्रमेय से, यह इस प्रकार है <math display="block">\vec{F} = -\vec{\nabla} \Phi.</math> | |||
अतः कथन 2 का तात्पर्य कथन 3 से है (पूर्ण प्रमाण देखें)। | |||
}} | }} | ||
{{term|3 | {{term|3 तात्पर्य 1}}{{defn| | ||
अंत में, मान लीजिए कि तीसरा कथन सत्य है। एक प्रसिद्ध वेक्टर गणना की पहचान है कि किसी भी फलन के प्रवणता का कर्ल 0 है। (प्रमाण देखें।) इसलिए, यदि तीसरा कथन सत्य है, तो पहला कथन भी सत्य होना चाहिए। इससे पता चलता है कि कथन 1 का अर्थ 2, 2 का अर्थ 3, और 3 का अर्थ 1 है। इसलिए, तीनों समकक्ष हैं, Q.E.D. (1 और 3 की समानता को हेल्महोल्ट्ज़ प्रमेय के (एक स्वरूप) के रूप में भी जाना जाता है।) | |||
( | |||
}} | }} | ||
{{glossary end}} | {{glossary end}} | ||
}} | }} | ||
कई बल (विशेष रूप से वे जो वेग पर निर्भर करते हैं) बल क्षेत्र (भौतिकी) नहीं हैं। इन | संरक्षी बल शब्द इस तथ्य से आता है कि जब एक संरक्षी बल सम्मिलित होता है, तो यह यांत्रिक ऊर्जा का संरक्षण करता है। सबसे परिचित संरक्षी बल हैं [[ गुरुत्वाकर्षण |गुरुत्वाकर्षण]],, विद्युत बल (समय से स्वतंत्र चुंबकीय क्षेत्र में, फैराडे का नियम देखें) और हुक का नियम है। | ||
कई बल (विशेष रूप से वे जो वेग पर निर्भर करते हैं) बल क्षेत्र (भौतिकी) नहीं हैं। इन स्थितियो में, उपरोक्त तीनों शर्तें गणितीय रूप से समतुल्य नहीं हैं। उदाहरण के लिए, चुंबकीय बल स्थिति 2 को संतुष्ट करता है (चूंकि आवेशित कण पर चुंबकीय क्षेत्र द्वारा किया गया कार्य सदैव शून्य होता है), लेकिन स्थिति 3 को संतुष्ट नहीं करता है, और स्थिति 1 भी परिभाषित नहीं है (बल एक सदिश क्षेत्र नहीं है, इसलिए कोई इसके कर्ल का मूल्यांकन नहीं कर सकता)। तदानुसार, कुछ लेखक चुंबकीय बल को संरक्षी के रूप में वर्गीकृत करते हैं,<ref name="srivastava1997mechanics">For example, {{Cite book|title=Mechanics|author=P. K. Srivastava | url=https://books.google.com/books?id=yCw_Hq53ipsC|year=2004|publisher=New Age International Pub. (P) Limited|access-date=2018-11-20 |isbn=9788122411126|page=94}}: "In general, a force which depends explicitly upon the velocity of the particle is not conservative. However, the magnetic force (q'''v'''×'''B''') can be included among conservative forces in the sense that it acts perpendicular to velocity and hence work done is always zero". [https://books.google.com/books?id=yCw_Hq53ipsC Web link]</ref> जबकि अन्य नहीं करते।<ref>For example, ''The Magnetic Universe: Geophysical and Astrophysical Dynamo Theory'', Rüdiger and Hollerbach, page 178, [https://books.google.com/books?id=GO1QwZtIYdAC Web link]</ref> चुंबकीय बल एक असामान्य स्थिति है; अधिकांश वेग-निर्भर बल, जैसे कि घर्षण, तीन स्थितियों में से किसी को भी संतुष्ट नहीं करते हैं, और इसलिए स्पष्ट रूप से गैर-संरक्षी हैं। | |||
== गैर- | == गैर-संरक्षी बल == | ||
कुल ऊर्जा के संरक्षण के बावजूद, गैर- | कुल ऊर्जा के संरक्षण के बावजूद, गैर-संरक्षी बल उत्कृष्ट भौतिकी में स्वतंत्रता की उपेक्षित परिमाण (भौतिकी और रसायन विज्ञान) या समय-निर्भर विभव से उत्पन्न हो सकते हैं।<ref>Friedhelm Kuypers. Klassische Mechanik. WILEY-VCH 2005. Page 9.</ref> कई गैर-संरक्षी सामर्थ्यों को छोटे पैमाने की संरक्षी सामर्थ्यों के असूक्ष्म प्रभाव के रूप में माना जा सकता है।<ref name="Tom">Tom W. B. Kibble, Frank H. Berkshire. Classical mechanics. (5th ed). Imperial College Press 2004 {{ISBN|1860944248}}</ref> उदाहरण के लिए, व्यक्तिगत अणुओं की गति पर विचार करके ऊर्जा के संरक्षण का उल्लंघन किए बिना घर्षण का संशोधन किया जा सकता है; हालाँकि, इसका तात्पर्य है कि प्रत्येक अणु की गति को सांख्यिकीय विधियों के माध्यम से नियंत्रण के अतिरिक्त उस पर विचार किया जाना चाहिए। असूक्ष्म प्रणालियों के लिए गैर-संरक्षी सन्निकटन स्वतंत्रता की लाखों परिमाण की तुलना में कहीं अधिक आसान है। | ||
गैर- | गैर-संरक्षी सामर्थ्यों के उदाहरण घर्षण और गैर-नमनीय सामग्री [[ तनाव (यांत्रिकी) |तनाव (यांत्रिकी)]] हैं। घर्षण में कुछ ऊर्जा को निकायों के बड़े पैमाने पर गति से उनके आंतरिक भाग में छोटे पैमाने पर स्थानांतरित करने का प्रभाव होता है, और इसलिए बड़े पैमाने पर गैर-संरक्षी दिखाई देता है।<ref name="Tom" />[[ सामान्य सापेक्षता | सामान्य सापेक्षता]] गैर-संरक्षी है,जैसा कि बुध की कक्षा की विषम पुरस्सरण में देखा गया है।{{citation needed|date=May 2021}} हालाँकि, सामान्य सापेक्षता एक तनाव-ऊर्जा-संवेग स्यूडोटेन्सर का संरक्षण करती है। | ||
== यह भी देखें == | == यह भी देखें == | ||
* | * संरक्षी वेक्टर क्षेत्र | ||
* [[ रूढ़िवादी प्रणाली ]] | * [[ रूढ़िवादी प्रणाली | संरक्षी प्रणाली]] | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 17:18, 26 January 2023
Part of a series on |
चिरसम्मत यांत्रिकी |
---|
भौतिक विज्ञान में, एक संरक्षी बल एक ऐसा बल है जिसके गुण के अनुसार किसी कण को दो बिंदुओं के बीच ले जाने में किया गया कुल कार्य (भौतिकी) लिए गए पथ से स्वतंत्र होता है।[1] समतुल्य रूप से, यदि कोई कण एक संवृत कुंडली में संचारण करता है, तो एक संरक्षी बल द्वारा किया गया कुल कार्य ( विस्थापन (ज्यामिति) द्वारा गुणा पथ के साथ काम करने वाले बल का योग) शून्य है।[2]
एक संरक्षी बल केवल वस्तु की स्थिति पर निर्भर करता है। यदि कोई बल संरक्षी है, तो किसी भी बिंदु पर विभव के लिए संख्यात्मक मान निर्दिष्ट करना संभव है और इसके विपरीत, जब कोई वस्तु एक स्थान से दूसरे स्थान पर जाती है,तो बल वस्तु की विभव ऊर्जा को उस राशि से परिवर्तित कर देता है जो पथ पर निर्भर नहीं करती है। यांत्रिक ऊर्जा और ऊर्जा के समग्र संरक्षण में योगदान दिया। यदि बल संरक्षी नहीं है, तो अदिश विभव को परिभाषित करना संभव नहीं है, क्योंकि अलग-अलग पथ लेने से प्रारंभ और अंत बिंदुओं के बीच परस्पर विरोधी विभावन्तर हो सकते हैं।
गुरुत्वाकर्षण संरक्षी बल का उदाहरण है, जबकि घर्षण बल असंरक्षी बल का उदाहरण है।
संरक्षी बलों के अन्य उदाहरण : हुक का नियम, दो विद्युत आवेशों के बीच नमनीय स्प्रिंग विद्युत-स्थैतिक बल, और दो चुंबकीय ध्रुवों के बीच चुंबकीय बल हैं। अंतिम दो बलों को केंद्रीय बल कहा जाता है क्योंकि वे दो आवेशित/चुंबकीय पिंडों के केंद्रों को मिलाने वाली रेखा के साथ कार्य करते हैं। एक केंद्रीय बल संरक्षी होता है यदि और केवल यदि यह गोलाकार रूप से सममित हो।[3]
अनौपचारिक परिभाषा
अनौपचारिक रूप से, एक संरक्षी बल को एक बल के रूप में माना जा सकता है जो यांत्रिक ऊर्जा को संरक्षित करता है। मान लीजिए कि एक कण बिंदु A पर प्रारंभ होता है, और उस पर एक बल F कार्य करता है। फिर कण अन्य बलों द्वारा चारों ओर ले जाया जाता है, और अंत में फिर से A पर समाप्त होता है। हालांकि कण अभी भी गतिमान हो सकता है, उस पल में जब वह फिर से बिंदु A से गुजरता है, तो उसने एक संवृत पथ की संचारण की है। यदि इस बिंदु पर F द्वारा किया गया सही कार्य 0 है, तो F संवृत पथ परीक्षण प्राधान्य करता है। कोई भी बल जो सभी विभव संवृत पथों के लिए संवृत पथ परीक्षण प्राधान्य करता है, उसे संरक्षी बल के रूप में वर्गीकृत किया जाता है।
गुरुत्वाकर्षण बल, हुक का नियम, चुंबकीय बल (कुछ परिभाषाओं के अनुसार, नीचे देखें) और विद्युत बल (कम से कम एक समय से स्वतंत्र चुंबकीय क्षेत्र में, विवरण के लिए फैराडे का प्रेरण का नियम देखें) संरक्षी बलों के उदाहरण हैं, जबकि घर्षण और वायु कर्षण गैर-संरक्षी सामर्थ्यों के उत्कृष्ट उदाहरण हैं।
गैर-संरक्षी बलों के लिए, यांत्रिक ऊर्जा जो नष्ट हो जाती है (संरक्षित नहीं) को ऊर्जा के संरक्षण के द्वारा कहीं और जाना पड़ता है। सामान्य रूप से ऊर्जा ऊष्मा में परिवर्तित हो जाती है, उदाहरण के लिए घर्षण से उत्पन्न ऊष्मा अतिरिक्त घर्षण भी प्रायः कुछ ध्वनि ऊर्जा उत्पन्न करता है। एक चलती हुई नाव पर पानी का खिंचाव नाव की यांत्रिक ऊर्जा को न केवल ऊष्मा और ध्वनि ऊर्जा में परिवर्तित करता है, बल्कि इसके जलरेखा (भौतिकी) के किनारों पर तरंग ऊर्जा को भी परिवर्तित करता है। ऊष्मप्रवैगिकी के दूसरे नियम के कारण ये और अन्य ऊर्जा नुकसान अपरिवर्तनीय हैं।
पथ स्वतंत्रता
संवृत पथ परीक्षण का एक सीधा परिणाम यह है कि किसी दो बिंदुओं के बीच गतिमान कण पर संरक्षी बल द्वारा किया गया कार्य कण द्वारा लिए गए पथ पर निर्भर नहीं करता है।
इसे दाईं ओर की आकृति में दिखाया गया है: किसी वस्तु पर गुरुत्वाकर्षण बल द्वारा किया गया कार्य केवल उसकी ऊंचाई में परिवर्तन पर निर्भर करता है क्योंकि गुरुत्वाकर्षण बल संरक्षी होता है। एक संरक्षी बल द्वारा किया गया कार्य उस प्रक्रिया के समय विभव ऊर्जा में परिवर्तन के ऋणात्मक के बराबर होता है। प्रमाण के लिए, दो पथ 1 और 2 की कल्पना करें, दोनों बिंदु A से बिंदु B तक जा रहे हैं। कण के लिए ऊर्जा की भिन्नता, पथ 1 को A से B तक ले जाना और फिर पथ 2 को B से A तक ले जाना, 0 है; इस प्रकार, कार्य पथ 1 और 2 में समान है, अर्थात, कार्य अनुसरण किए गए पथ से स्वतंत्र है, जब तक वह A से B तक जाता है।
उदाहरण के लिए, यदि कोई बच्चा घर्षण रहित स्लाइड को नीचे की ओर फिसलता है, तो फिसलने के प्रारंभ होने से अंत तक बच्चे पर गुरुत्वाकर्षण बल द्वारा किया गया कार्य स्लाइड के आकार से स्वतंत्र होता है; यह केवल बच्चे के ऊर्ध्वाधर विस्थापन पर निर्भर करता है।
गणितीय विवरण
एक बल क्षेत्र (भौतिकी) एफ, अंतरिक्ष में हर जगह परिभाषित (या अंतरिक्ष की एक सरल-जुड़े मात्रा के अंदर), एक संरक्षी बल या संरक्षी वेक्टर क्षेत्र कहा जाता है, अगर यह इन तीन समकक्ष शर्तों में से किसी को पूरा करता है:
- F का कर्ल (गणित) शून्य वेक्टर है: जहां दो आयामों में यह कम हो जाता है:
- शून्य शुद्ध कार्य (भौतिकी) (W) बल द्वारा किया जाता है जब एक कण को एक ही स्थान पर प्रारंभ और समाप्त होने वाले प्रक्षेपवक्र के माध्यम से ले जाया जाता है:
- बल को एक विभव ऊर्जा के नकारात्मक प्रवणता के रूप में लिखा जा सकता है, :
- 1 तात्पर्य 2
-
मान लीजिए C कोई सरल बंद पथ है (अर्थात्, एक पथ जो एक ही बिंदु पर प्रारंभ और समाप्त होता है और जिसका कोई स्व-प्रतिच्छेदन नहीं है), और एक सतह S पर विचार करें जिसकी C सीमा है। फिर स्टोक्स का प्रमेय कहता है
यदि F का कर्ल शून्य है तो बाईं ओर शून्य है - इसलिए कथन 2 सत्य है।
- 2 तात्पर्य 3
-
मान लें कि कथन 2 धारण करता है। मान लीजिए c मूल से एक बिंदु तक एक साधारण वक्र है और एक फलन को परिभाषित करें
तथ्य यह है कि यह फलन अच्छी तरह से परिभाषित है (C की विकल्प से स्वतंत्र) कथन 2 से अनुसरण करता है। वैसे भी, गणना के मौलिक प्रमेय से, यह इस प्रकार हैअतः कथन 2 का तात्पर्य कथन 3 से है (पूर्ण प्रमाण देखें)।
- 3 तात्पर्य 1
- अंत में, मान लीजिए कि तीसरा कथन सत्य है। एक प्रसिद्ध वेक्टर गणना की पहचान है कि किसी भी फलन के प्रवणता का कर्ल 0 है। (प्रमाण देखें।) इसलिए, यदि तीसरा कथन सत्य है, तो पहला कथन भी सत्य होना चाहिए। इससे पता चलता है कि कथन 1 का अर्थ 2, 2 का अर्थ 3, और 3 का अर्थ 1 है। इसलिए, तीनों समकक्ष हैं, Q.E.D. (1 और 3 की समानता को हेल्महोल्ट्ज़ प्रमेय के (एक स्वरूप) के रूप में भी जाना जाता है।)
संरक्षी बल शब्द इस तथ्य से आता है कि जब एक संरक्षी बल सम्मिलित होता है, तो यह यांत्रिक ऊर्जा का संरक्षण करता है। सबसे परिचित संरक्षी बल हैं गुरुत्वाकर्षण,, विद्युत बल (समय से स्वतंत्र चुंबकीय क्षेत्र में, फैराडे का नियम देखें) और हुक का नियम है।
कई बल (विशेष रूप से वे जो वेग पर निर्भर करते हैं) बल क्षेत्र (भौतिकी) नहीं हैं। इन स्थितियो में, उपरोक्त तीनों शर्तें गणितीय रूप से समतुल्य नहीं हैं। उदाहरण के लिए, चुंबकीय बल स्थिति 2 को संतुष्ट करता है (चूंकि आवेशित कण पर चुंबकीय क्षेत्र द्वारा किया गया कार्य सदैव शून्य होता है), लेकिन स्थिति 3 को संतुष्ट नहीं करता है, और स्थिति 1 भी परिभाषित नहीं है (बल एक सदिश क्षेत्र नहीं है, इसलिए कोई इसके कर्ल का मूल्यांकन नहीं कर सकता)। तदानुसार, कुछ लेखक चुंबकीय बल को संरक्षी के रूप में वर्गीकृत करते हैं,[4] जबकि अन्य नहीं करते।[5] चुंबकीय बल एक असामान्य स्थिति है; अधिकांश वेग-निर्भर बल, जैसे कि घर्षण, तीन स्थितियों में से किसी को भी संतुष्ट नहीं करते हैं, और इसलिए स्पष्ट रूप से गैर-संरक्षी हैं।
गैर-संरक्षी बल
कुल ऊर्जा के संरक्षण के बावजूद, गैर-संरक्षी बल उत्कृष्ट भौतिकी में स्वतंत्रता की उपेक्षित परिमाण (भौतिकी और रसायन विज्ञान) या समय-निर्भर विभव से उत्पन्न हो सकते हैं।[6] कई गैर-संरक्षी सामर्थ्यों को छोटे पैमाने की संरक्षी सामर्थ्यों के असूक्ष्म प्रभाव के रूप में माना जा सकता है।[7] उदाहरण के लिए, व्यक्तिगत अणुओं की गति पर विचार करके ऊर्जा के संरक्षण का उल्लंघन किए बिना घर्षण का संशोधन किया जा सकता है; हालाँकि, इसका तात्पर्य है कि प्रत्येक अणु की गति को सांख्यिकीय विधियों के माध्यम से नियंत्रण के अतिरिक्त उस पर विचार किया जाना चाहिए। असूक्ष्म प्रणालियों के लिए गैर-संरक्षी सन्निकटन स्वतंत्रता की लाखों परिमाण की तुलना में कहीं अधिक आसान है।
गैर-संरक्षी सामर्थ्यों के उदाहरण घर्षण और गैर-नमनीय सामग्री तनाव (यांत्रिकी) हैं। घर्षण में कुछ ऊर्जा को निकायों के बड़े पैमाने पर गति से उनके आंतरिक भाग में छोटे पैमाने पर स्थानांतरित करने का प्रभाव होता है, और इसलिए बड़े पैमाने पर गैर-संरक्षी दिखाई देता है।[7] सामान्य सापेक्षता गैर-संरक्षी है,जैसा कि बुध की कक्षा की विषम पुरस्सरण में देखा गया है।[citation needed] हालाँकि, सामान्य सापेक्षता एक तनाव-ऊर्जा-संवेग स्यूडोटेन्सर का संरक्षण करती है।
यह भी देखें
- संरक्षी वेक्टर क्षेत्र
- संरक्षी प्रणाली
संदर्भ
- ↑ HyperPhysics - Conservative force
- ↑ Louis N. Hand, Janet D. Finch (1998). Analytical Mechanics. Cambridge University Press. p. 41. ISBN 0-521-57572-9.
- ↑ Taylor, John R. (2005). Classical Mechanics. Sausalito, Calif.: Univ. Science Books. pp. 133–138. ISBN 1-891389-22-X.
- ↑ For example, P. K. Srivastava (2004). Mechanics. New Age International Pub. (P) Limited. p. 94. ISBN 9788122411126. Retrieved 2018-11-20.: "In general, a force which depends explicitly upon the velocity of the particle is not conservative. However, the magnetic force (qv×B) can be included among conservative forces in the sense that it acts perpendicular to velocity and hence work done is always zero". Web link
- ↑ For example, The Magnetic Universe: Geophysical and Astrophysical Dynamo Theory, Rüdiger and Hollerbach, page 178, Web link
- ↑ Friedhelm Kuypers. Klassische Mechanik. WILEY-VCH 2005. Page 9.
- ↑ 7.0 7.1 Tom W. B. Kibble, Frank H. Berkshire. Classical mechanics. (5th ed). Imperial College Press 2004 ISBN 1860944248