दबाव का केंद्र (द्रव यांत्रिकी): Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Point at which the resultant force of a pressure field acts on a body}} | {{Short description|Point at which the resultant force of a pressure field acts on a body}} | ||
{{for| | {{for|स्थलीय गति में दबाव का केंद्र|दबाव का केंद्र (स्थलीय गति)}} | ||
[[द्रव यांत्रिकी]] में, [[दबाव]] का केंद्र वह बिंदु होता है जहां दबाव क्षेत्र का कुल योग शरीर पर कार्य करता है, जिससे बल उस बिंदु के माध्यम से कार्य करता है। दबाव के केंद्र में कार्य करने वाला कुल बल [[यूक्लिडियन वेक्टर]] शरीर की सतह पर दबाव [[वेक्टर क्षेत्र]] का सतही अभिन्न अंग है। परिणामी बल और दबाव स्थान का केंद्र मूल दबाव क्षेत्र के रूप में शरीर पर एक समान बल और क्षण (भौतिकी) उत्पन्न करता है। | [[द्रव यांत्रिकी]] में, [[दबाव]] का केंद्र वह बिंदु होता है जहां दबाव क्षेत्र का कुल योग शरीर पर कार्य करता है, जिससे बल उस बिंदु के माध्यम से कार्य करता है। दबाव के केंद्र में कार्य करने वाला कुल बल [[यूक्लिडियन वेक्टर]] शरीर की सतह पर दबाव [[वेक्टर क्षेत्र]] का सतही अभिन्न अंग है। परिणामी बल और दबाव स्थान का केंद्र मूल दबाव क्षेत्र के रूप में शरीर पर एक समान बल और क्षण (भौतिकी) उत्पन्न करता है। | ||
दबाव क्षेत्र [[हीड्रास्टाटिक्स]] और द्रव गतिकी द्रव यांत्रिकी दोनों में होते हैं। दबाव के केंद्र की विशिष्टता, संदर्भ बिंदु जिससे दबाव के केंद्र को संदर्भित किया जाता है, और संबंधित बल वेक्टर किसी भी बिंदु के बारे में उत्पन्न होने वाले क्षण को संदर्भ बिंदु से वांछित नए बिंदु तक अनुवाद द्वारा गणना करने की अनुमति देता है। दबाव के केंद्र का शरीर पर स्थित होना | दबाव क्षेत्र [[हीड्रास्टाटिक्स]] और द्रव गतिकी द्रव यांत्रिकी दोनों में होते हैं। दबाव के केंद्र की विशिष्टता, संदर्भ बिंदु जिससे दबाव के केंद्र को संदर्भित किया जाता है, और संबंधित बल वेक्टर किसी भी बिंदु के बारे में उत्पन्न होने वाले क्षण को संदर्भ बिंदु से वांछित नए बिंदु तक अनुवाद द्वारा गणना करने की अनुमति देता है। दबाव के केंद्र का शरीर पर स्थित होना सामान्य बात है, किंतु शरीर पर इतने परिमाण का क्षण लगा सके कि दबाव का केंद्र शरीर के बाहर स्थित हो।<ref name=":0">Flightwise Volume 2 Aircraft Stability and Control, Christopher Carpenter 1997, {{ISBN|1 85310 870 7}}, p.75</ref> | ||
'''दबाव के केंद्र का शरीर पर स्थित होना आम बात है, | '''दबाव के केंद्र का शरीर पर स्थित होना आम बात है, किंतु द्रव प्रवाह में दबाव क्षेत्र के लिए यह संभव है कि वह इस प्रकार के परिमाण के शरीर पर एक क्षण लगा सके कि दबाव का केंद्र शरीर के बाहर स्थित हो।<ref name=":0" />दबाव क्षेत्र [[हीड्रास्टाटिक्स]] और द्रव गतिकी द्रव यांत्रिकी दोनों में होते हैं। दबाव के केंद्र की विशिष्टता, संदर्भ बिंदु जिससे दबाव के केंद्र को संदर्भित किया जाता है, और संबंधित बल वेक्टर किसी''' | ||
== हाइड्रोस्टैटिक उदाहरण (बांध) == | == हाइड्रोस्टैटिक उदाहरण (बांध) == | ||
चूंकि एक बांध पर जल के बल [[हीड्रास्टाटिक]] बल होते हैं, वे गहराई के साथ रैखिक रूप से भिन्न होते हैं। बांध पर कुल बल | चूंकि एक बांध पर जल के बल [[हीड्रास्टाटिक]] बल होते हैं, वे गहराई के साथ रैखिक रूप से भिन्न होते हैं। बांध पर कुल बल उस समय गहराई के कार्य के रूप में बांध की चौड़ाई से गुणा किए गए दबाव का अभिन्न अंग है। दबाव का केंद्र त्रिकोणीय आकार के दबाव क्षेत्र के [[केन्द्रक]] पर स्थित होता है <math>\tfrac{2}{3}</math> पानी की रेखा के ऊपर से। किसी बिंदु के बारे में बांध पर हाइड्रोस्टैटिक बल और टिपिंग क्षण की गणना ब्याज के बिंदु के सापेक्ष कुल बल और दबाव स्थान के केंद्र से की जा सकती है। | ||
== [[सेलबोट]] के लिए ऐतिहासिक उपयोग == | == [[सेलबोट]] के लिए ऐतिहासिक उपयोग == | ||
सेलबोट डिज़ाइन में दबाव के केंद्र का उपयोग पाल पर स्थिति का प्रतिनिधित्व करने के लिए किया जाता है जहां [[वायुगतिकीय बल]] केंद्रित होता है। | सेलबोट डिज़ाइन में दबाव के केंद्र का उपयोग पाल पर स्थिति का प्रतिनिधित्व करने के लिए किया जाता है जहां [[वायुगतिकीय बल]] केंद्रित होता है। | ||
पाल पर दबाव के वायुगतिकीय केंद्र का संबंध पतवार पर दबाव के हाइड्रोडायनामिक केंद्र (पार्श्व प्रतिरोध के केंद्र के रूप में संदर्भित) से हवा में नाव के व्यवहार को निर्धारित करता है। इस व्यवहार को हेल्म के रूप में जाना जाता है और यह या तो मौसम हेल्म या ली हेल्म है। कुछ नाविकों द्वारा थोड़ी मात्रा में मौसम की पतवार को एक वांछनीय स्थिति माना जाता है, दोनों पतवार की भावना के दृष्टिकोण से, और नाव की प्रवृत्ति तेज झोंकों में हवा की ओर थोड़ा सिर करने के लिए, कुछ | पाल पर दबाव के वायुगतिकीय केंद्र का संबंध पतवार पर दबाव के हाइड्रोडायनामिक केंद्र (पार्श्व प्रतिरोध के केंद्र के रूप में संदर्भित) से हवा में नाव के व्यवहार को निर्धारित करता है। इस व्यवहार को "हेल्म" के रूप में जाना जाता है और यह या तो मौसम संबंधी हेल्म या ली हेल्म है। कुछ नाविकों द्वारा थोड़ी मात्रा में मौसम की पतवार को एक वांछनीय स्थिति माना जाता है, दोनों पतवार की भावना के दृष्टिकोण से, और नाव की प्रवृत्ति तेज झोंकों में हवा की ओर थोड़ा सिर करने के लिए, कुछ स्तर तक आत्म-पंख पाल। अन्य नाविक असहमत हैं और एक तटस्थ पतवार पसंद करते हैं। | ||
पतवार का मूल कारण, चाहे वह मौसम हो या ली, पाल योजना के दबाव के केंद्र का संबंध पतवार के पार्श्व प्रतिरोध के केंद्र से है। यदि दबाव का केंद्र पार्श्व प्रतिरोध के केंद्र के पीछे है, एक [[मौसम पतवार]], पोत की प्रवृत्ति हवा में बदलना चाहती है। | पतवार का मूल कारण, चाहे वह मौसम हो या ली, पाल योजना के दबाव के केंद्र का संबंध पतवार के पार्श्व प्रतिरोध के केंद्र से है। यदि दबाव का केंद्र पार्श्व प्रतिरोध के केंद्र के पीछे है, एक [[मौसम पतवार]], पोत की प्रवृत्ति हवा में बदलना चाहती है। | ||
यदि स्थिति उलट जाती है, तो पतवार के पार्श्व प्रतिरोध के केंद्र के आगे दबाव के केंद्र के साथ, एक ली | यदि स्थिति उलट जाती है, तो पतवार के पार्श्व प्रतिरोध के केंद्र के आगे दबाव के केंद्र के साथ, एक "ली" पतवार का परिणाम होगा, जिसे सामान्यतः अवांछनीय माना जाता है, यदि खतरनाक नहीं है। दोनों में से किसी भी पतवार का बहुत अधिक होना अच्छा नहीं है, क्योंकि यह हेल्समैन को इसका मुकाबला करने के लिए विक्षेपित पतवार को पकड़ने के लिए मजबूर करता है, इस प्रकार तटस्थ या न्यूनतम पतवार वाले जहाज के अनुभव से परे अतिरिक्त ड्रैग को प्रेरित करता है।<ref>Marchaj, C.A. (1985). Sailing Theory and Practice, Revised edition. Putnam. {{ISBN|978-0-396-08428-0}}</ref> | ||
== विमान वायुगतिकी == | == विमान वायुगतिकी == | ||
न केवल नौकायन में | एक स्थिर विन्यास न केवल नौकायन में बल्कि विमान डिजाइन में भी वांछनीय है। इसलिए विमान डिजाइन ने दबाव के केंद्र शब्द को उधार लिया। और एक पाल के प्रकार, एक कठोर गैर-सममित [[airfoil|एयरफॉइल]] न केवल लिफ्ट उत्पन्न करता है, बल्कि एक क्षण (भौतिकी) भी उत्पन्न करता है। | ||
एक विमान के दबाव का केंद्र वह बिंदु है जहां सभी वायुगतिकीय दबाव क्षेत्र को बिना किसी क्षण के एक बल वेक्टर द्वारा दर्शाया जा सकता है।<ref>Clancy, L.J., ''Aerodynamics'', Section 5.3</ref><ref>Anderson, John D., ''Aircraft Performance and Design'', Section 2.3</ref> इसी | |||
एक विमान के दबाव का केंद्र वह बिंदु है जहां सभी वायुगतिकीय दबाव क्षेत्र को बिना किसी क्षण के एक बल वेक्टर द्वारा दर्शाया जा सकता है।<ref>Clancy, L.J., ''Aerodynamics'', Section 5.3</ref><ref>Anderson, John D., ''Aircraft Performance and Design'', Section 2.3</ref> इसी प्रकार का एक विचार [[वायुगतिकीय केंद्र]] है जो एक एयरफॉइल पर बिंदु है जहां वायुगतिकीय बलों द्वारा उत्पन्न [[पिचिंग पल|पिचिंग क्षण]] आक्रमण के कोण के साथ स्थिर होता है।<ref name="selkirk">{{cite web | |||
| last = Preston | | last = Preston | ||
| first = Ray | | first = Ray | ||
Line 29: | Line 30: | ||
| accessdate = 2006-04-01 | | accessdate = 2006-04-01 | ||
|archiveurl = https://web.archive.org/web/20060221163122/http://selair.selkirk.bc.ca/aerodynamics1/Stability/Page7.html <!-- Bot retrieved archive --> |archivedate = 2006-02-21}}</ref><ref>Clancy, L.J., ''Aerodynamics'', Section 5.10</ref><ref>Anderson, John D., ''Aircraft Performance and Design'', Section 2.5</ref> | |archiveurl = https://web.archive.org/web/20060221163122/http://selair.selkirk.bc.ca/aerodynamics1/Stability/Page7.html <!-- Bot retrieved archive --> |archivedate = 2006-02-21}}</ref><ref>Clancy, L.J., ''Aerodynamics'', Section 5.10</ref><ref>Anderson, John D., ''Aircraft Performance and Design'', Section 2.5</ref> | ||
सभी उड़ान मशीनों की अनुदैर्ध्य स्थैतिक स्थिरता के विश्लेषण में वायुगतिकीय केंद्र महत्वपूर्ण भूमिका निभाता है। यह वांछनीय है कि जब एक विमान के पिच कोण और | |||
सभी उड़ान मशीनों की अनुदैर्ध्य स्थैतिक स्थिरता के विश्लेषण में वायुगतिकीय केंद्र महत्वपूर्ण भूमिका निभाता है। यह वांछनीय है कि जब एक विमान के पिच कोण और आक्रमण के कोण को परेशान किया जाता है (उदाहरण के लिए, पवन कतरनी/ऊर्ध्वाधर झोंका) कि विमान अपने मूल ट्रिम किए गए पिच कोण पर लौटता है और नियंत्रण को बदलने वाले [[ऑटो-पायलट]] के बिना आक्रमण का कोण सतह विक्षेपण। एक पायलट या ऑटोपायलट से इनपुट के बिना, एक विमान के लिए अपने ट्रिम किए गए रवैये की ओर लौटने के लिए, इसमें सकारात्मक अनुदैर्ध्य स्थैतिक स्थिरता होनी चाहिए।<ref>Clancy, L.J., ''Aerodynamics'', Sections 16.1 and 16.2</ref> | |||
== मिसाइल वायुगतिकी == | == मिसाइल वायुगतिकी == | ||
मिसाइलों में आमतौर पर युद्धाभ्यास का पसंदीदा विमान या दिशा नहीं होती है और इस प्रकार सममित एयरफॉइल्स होते हैं। चूंकि सममित एयरफॉइल के लिए दबाव का केंद्र | मिसाइलों में आमतौर पर युद्धाभ्यास का पसंदीदा विमान या दिशा नहीं होती है और इस प्रकार सममित एयरफॉइल्स होते हैं। चूंकि सममित एयरफॉइल के लिए दबाव का केंद्र आक्रमण के छोटे कोण के लिए अपेक्षाकृत स्थिर है, मिसाइल इंजीनियर आमतौर पर स्थिरता और नियंत्रण विश्लेषण के लिए पूरे वाहन के दबाव के पूर्ण केंद्र की बात करते हैं। मिसाइल विश्लेषण में, आक्रमण के ट्रिम कोण के आक्रमण के कोण में बदलाव के कारण दबाव के केंद्र को आमतौर पर अतिरिक्त दबाव क्षेत्र के केंद्र के रूप में परिभाषित किया जाता है।<ref>Moore, F.G., Approximate Methods for Weapon Aerodynamics, AIAA Progress in Astronatuics and Aeronautics, Volume 186 | ||
</ref> | </ref> | ||
अनिर्देशित रॉकेटों के लिए ट्रिम स्थिति आमतौर पर | अनिर्देशित रॉकेटों के लिए ट्रिम स्थिति आमतौर पर आक्रमण का शून्य कोण है और दबाव के केंद्र को पूरे वाहन पर परिणामी प्रवाह क्षेत्र के दबाव के केंद्र के रूप में परिभाषित किया जाता है, जिसके परिणामस्वरूप आक्रमण का एक बहुत छोटा कोण होता है (अर्थात, दबाव का केंद्र) सीमा है क्योंकि आक्रमण का कोण शून्य हो जाता है)। मिसाइलों में सकारात्मक स्थिरता के लिए, ऊपर दिए गए परिभाषित दबाव का कुल वाहन केंद्र गुरुत्वाकर्षण के केंद्र की तुलना में वाहन की नाक से आगे होना चाहिए। आक्रमण के निचले कोणों पर मिसाइलों में, दबाव के केंद्र में नाक, पंख और पंख का योगदान होता है। दबाव के केंद्र के स्थान से गुणा किए गए प्रत्येक घटक के आक्रमण के कोण के संबंध में सामान्यीकृत [[सामान्य बल]] गुणांक व्युत्पन्न का उपयोग दबाव के कुल केंद्र का प्रतिनिधित्व करने वाले एक केन्द्रक की गणना करने के लिए किया जा सकता है। अतिरिक्त प्रवाह क्षेत्र के दबाव का केंद्र गुरुत्वाकर्षण के केंद्र के पीछे है और अतिरिक्त बल आक्रमण के अतिरिक्त कोण की दिशा में इंगित करता है; यह एक क्षणउत्पन्न करता है जो वाहन को ट्रिम स्थिति में वापस धकेलता है। | ||
निर्देशित मिसाइलों में जहां | निर्देशित मिसाइलों में जहां आक्रमण के विभिन्न कोणों में वाहनों को ट्रिम करने के लिए पंखों को स्थानांतरित किया जा सकता है, दबाव का केंद्र अविक्षेपित फिन स्थिति के लिए आक्रमण के उस कोण पर प्रवाह क्षेत्र के दबाव का केंद्र होता है। यह आक्रमण के कोण में किसी भी छोटे परिवर्तन के दबाव का केंद्र है (जैसा कि ऊपर परिभाषित किया गया है)। एक बार फिर सकारात्मक स्थिर स्थिरता के लिए, दबाव के केंद्र की इस परिभाषा के लिए आवश्यक है कि दबाव का केंद्र गुरुत्वाकर्षण के केंद्र की तुलना में नाक से आगे हो। यह सुनिश्चित करता है कि आक्रमण के बढ़े हुए कोण के परिणामस्वरूप कोई भी बढ़ी हुई ताकत मिसाइल को छंटनी की स्थिति में वापस लाने के लिए बढ़े हुए रिस्टोरिंग क्षण में परिणाम देती है। मिसाइल विश्लेषण में, सकारात्मक स्थैतिक मार्जिन का अर्थ है कि पूरा वाहन ट्रिम स्थिति से आक्रमण के किसी भी कोण के लिए एक पुनर्स्थापना क्षण बनाता है। | ||
== वायुगतिकीय क्षेत्रों के लिए दबाव के केंद्र का संचलन == | == वायुगतिकीय क्षेत्रों के लिए दबाव के केंद्र का संचलन == | ||
एक सममित एयरफॉइल पर दबाव का केंद्र आमतौर पर एयरफोइल के अग्रणी किनारे के पीछे तार की लंबाई के 25% के करीब होता है। (इसे क्वार्टर-कॉर्ड पॉइंट कहा जाता है।) एक सममित एयरफॉइल के लिए, | एक सममित एयरफॉइल पर दबाव का केंद्र आमतौर पर एयरफोइल के अग्रणी किनारे के पीछे तार की लंबाई के 25% के करीब होता है। (इसे क्वार्टर-कॉर्ड पॉइंट कहा जाता है।) एक सममित एयरफॉइल के लिए, आक्रमण के कोण और [[लिफ्ट गुणांक]] परिवर्तन के रूप में, दबाव का केंद्र नहीं चलता है।<ref>Anderson, John D. Jr (1984) ''Fundamentals of Aerodynamics'', Section 4.7, (p.211), McGraw-Hill. ISBN 0-07-001656-9</ref> आक्रमण के स्टालिंग कोण के नीचे आक्रमण के कोणों के लिए यह क्वार्टर-कॉर्ड बिंदु के आसपास रहता है। मिसाइलों की तुलना में विमान के नियंत्रण लक्षण वर्णन में दबाव के केंद्र की भूमिका एक अलग रूप लेती है। | ||
कैम्बर (वायुगतिकी) एयरफॉइल पर दबाव का केंद्र एक निश्चित स्थान पर नहीं होता है।<ref>Clancy, L.J., ''Aerodynamics'', Section 5.6</ref> पारंपरिक रूप से कैम्बर्ड एयरफॉइल के लिए, दबाव का केंद्र अधिकतम लिफ्ट गुणांक ( | कैम्बर (वायुगतिकी) एयरफॉइल पर दबाव का केंद्र एक निश्चित स्थान पर नहीं होता है।<ref>Clancy, L.J., ''Aerodynamics'', Section 5.6</ref> पारंपरिक रूप से कैम्बर्ड एयरफॉइल के लिए, दबाव का केंद्र अधिकतम लिफ्ट गुणांक (आक्रमण का बड़ा कोण) पर क्वार्टर-कॉर्ड बिंदु से थोड़ा पीछे होता है, किंतु जैसे ही लिफ्ट गुणांक कम होता है (आक्रमण का कोण कम हो जाता है) दबाव का केंद्र पीछे की ओर बढ़ता है।<ref>Clancy, L.J., ''Aerodynamics'', Section 5.11</ref> जब लिफ्ट गुणांक शून्य होता है तो एक एयरफ़ॉइल कोई लिफ्ट उत्पन्न नहीं कर रहा है, किंतु पारंपरिक रूप से कैम्बर्ड एयरफ़ॉइल एक नाक-डाउन पिचिंग क्षण उत्पन्न करता है, इसलिए दबाव के केंद्र का स्थान एयरफ़ॉइल के पीछे एक अनंत दूरी है। | ||
कैम्बर (वायुगतिकीय)#परिभाषा|रिफ्लेक्स-कैम्बर्ड एयरफॉइल के लिए, दबाव का केंद्र अधिकतम लिफ्ट गुणांक ( | कैम्बर (वायुगतिकीय)#परिभाषा|रिफ्लेक्स-कैम्बर्ड एयरफॉइल के लिए, दबाव का केंद्र अधिकतम लिफ्ट गुणांक (आक्रमण का बड़ा कोण) पर क्वार्टर-कॉर्ड बिंदु से थोड़ा आगे होता है, किंतु लिफ्ट गुणांक कम हो जाता है (आक्रमण का कोण कम हो जाता है) दबाव का केंद्र आगे बढ़ता है। जब लिफ्ट गुणांक शून्य होता है तो एक एयरफ़ॉइल कोई लिफ्ट उत्पन्न नहीं कर रहा है, किंतु एक रिफ्लेक्स-कैम्बर्ड एयरफ़ॉइल एक नाक-अप पिचिंग क्षण उत्पन्न करता है, इसलिए दबाव के केंद्र का स्थान एयरफ़ॉइल से एक अनंत दूरी है। रिफ्लेक्स-कैम्बर्ड एयरफॉइल पर दबाव के केंद्र के आंदोलन की इस दिशा में एक स्थिर प्रभाव पड़ता है। | ||
जिस | जिस प्रकार से दबाव का केंद्र लिफ्ट गुणांक परिवर्तन के रूप में चलता है, वह विमान के अनुदैर्ध्य स्थैतिक स्थिरता के गणितीय विश्लेषण में दबाव के केंद्र का उपयोग करना मुश्किल बनाता है। इस कारण से, गणितीय विश्लेषण करते समय वायुगतिकीय केंद्र का उपयोग करना बहुत सरल होता है। वायुगतिकीय केंद्र एक एयरफ़ॉइल पर एक निश्चित स्थान रखता है, आमतौर पर क्वार्टर-कॉर्ड बिंदु के करीब। | ||
अनुदैर्ध्य स्थिरता के लिए वायुगतिकीय केंद्र वैचारिक प्रारंभिक बिंदु है। [[स्टेबलाइजर (विमान)]] अतिरिक्त स्थिरता में योगदान देता है और यह गुरुत्वाकर्षण के केंद्र को वायुगतिकीय केंद्र से थोड़ी दूरी पर बिना विमान के तटस्थ स्थिरता तक पहुंचने की अनुमति देता है। गुरुत्वाकर्षण के केंद्र की स्थिति जिस पर विमान की तटस्थ स्थिरता होती है, उसे [[तटस्थ बिंदु (वैमानिकी)]] कहा जाता है। | अनुदैर्ध्य स्थिरता के लिए वायुगतिकीय केंद्र वैचारिक प्रारंभिक बिंदु है। [[स्टेबलाइजर (विमान)]] अतिरिक्त स्थिरता में योगदान देता है और यह गुरुत्वाकर्षण के केंद्र को वायुगतिकीय केंद्र से थोड़ी दूरी पर बिना विमान के तटस्थ स्थिरता तक पहुंचने की अनुमति देता है। गुरुत्वाकर्षण के केंद्र की स्थिति जिस पर विमान की तटस्थ स्थिरता होती है, उसे [[तटस्थ बिंदु (वैमानिकी)]] कहा जाता है। |
Revision as of 20:08, 4 February 2023
द्रव यांत्रिकी में, दबाव का केंद्र वह बिंदु होता है जहां दबाव क्षेत्र का कुल योग शरीर पर कार्य करता है, जिससे बल उस बिंदु के माध्यम से कार्य करता है। दबाव के केंद्र में कार्य करने वाला कुल बल यूक्लिडियन वेक्टर शरीर की सतह पर दबाव वेक्टर क्षेत्र का सतही अभिन्न अंग है। परिणामी बल और दबाव स्थान का केंद्र मूल दबाव क्षेत्र के रूप में शरीर पर एक समान बल और क्षण (भौतिकी) उत्पन्न करता है।
दबाव क्षेत्र हीड्रास्टाटिक्स और द्रव गतिकी द्रव यांत्रिकी दोनों में होते हैं। दबाव के केंद्र की विशिष्टता, संदर्भ बिंदु जिससे दबाव के केंद्र को संदर्भित किया जाता है, और संबंधित बल वेक्टर किसी भी बिंदु के बारे में उत्पन्न होने वाले क्षण को संदर्भ बिंदु से वांछित नए बिंदु तक अनुवाद द्वारा गणना करने की अनुमति देता है। दबाव के केंद्र का शरीर पर स्थित होना सामान्य बात है, किंतु शरीर पर इतने परिमाण का क्षण लगा सके कि दबाव का केंद्र शरीर के बाहर स्थित हो।[1]
दबाव के केंद्र का शरीर पर स्थित होना आम बात है, किंतु द्रव प्रवाह में दबाव क्षेत्र के लिए यह संभव है कि वह इस प्रकार के परिमाण के शरीर पर एक क्षण लगा सके कि दबाव का केंद्र शरीर के बाहर स्थित हो।[1]दबाव क्षेत्र हीड्रास्टाटिक्स और द्रव गतिकी द्रव यांत्रिकी दोनों में होते हैं। दबाव के केंद्र की विशिष्टता, संदर्भ बिंदु जिससे दबाव के केंद्र को संदर्भित किया जाता है, और संबंधित बल वेक्टर किसी
हाइड्रोस्टैटिक उदाहरण (बांध)
चूंकि एक बांध पर जल के बल हीड्रास्टाटिक बल होते हैं, वे गहराई के साथ रैखिक रूप से भिन्न होते हैं। बांध पर कुल बल उस समय गहराई के कार्य के रूप में बांध की चौड़ाई से गुणा किए गए दबाव का अभिन्न अंग है। दबाव का केंद्र त्रिकोणीय आकार के दबाव क्षेत्र के केन्द्रक पर स्थित होता है पानी की रेखा के ऊपर से। किसी बिंदु के बारे में बांध पर हाइड्रोस्टैटिक बल और टिपिंग क्षण की गणना ब्याज के बिंदु के सापेक्ष कुल बल और दबाव स्थान के केंद्र से की जा सकती है।
सेलबोट के लिए ऐतिहासिक उपयोग
सेलबोट डिज़ाइन में दबाव के केंद्र का उपयोग पाल पर स्थिति का प्रतिनिधित्व करने के लिए किया जाता है जहां वायुगतिकीय बल केंद्रित होता है।
पाल पर दबाव के वायुगतिकीय केंद्र का संबंध पतवार पर दबाव के हाइड्रोडायनामिक केंद्र (पार्श्व प्रतिरोध के केंद्र के रूप में संदर्भित) से हवा में नाव के व्यवहार को निर्धारित करता है। इस व्यवहार को "हेल्म" के रूप में जाना जाता है और यह या तो मौसम संबंधी हेल्म या ली हेल्म है। कुछ नाविकों द्वारा थोड़ी मात्रा में मौसम की पतवार को एक वांछनीय स्थिति माना जाता है, दोनों पतवार की भावना के दृष्टिकोण से, और नाव की प्रवृत्ति तेज झोंकों में हवा की ओर थोड़ा सिर करने के लिए, कुछ स्तर तक आत्म-पंख पाल। अन्य नाविक असहमत हैं और एक तटस्थ पतवार पसंद करते हैं।
पतवार का मूल कारण, चाहे वह मौसम हो या ली, पाल योजना के दबाव के केंद्र का संबंध पतवार के पार्श्व प्रतिरोध के केंद्र से है। यदि दबाव का केंद्र पार्श्व प्रतिरोध के केंद्र के पीछे है, एक मौसम पतवार, पोत की प्रवृत्ति हवा में बदलना चाहती है।
यदि स्थिति उलट जाती है, तो पतवार के पार्श्व प्रतिरोध के केंद्र के आगे दबाव के केंद्र के साथ, एक "ली" पतवार का परिणाम होगा, जिसे सामान्यतः अवांछनीय माना जाता है, यदि खतरनाक नहीं है। दोनों में से किसी भी पतवार का बहुत अधिक होना अच्छा नहीं है, क्योंकि यह हेल्समैन को इसका मुकाबला करने के लिए विक्षेपित पतवार को पकड़ने के लिए मजबूर करता है, इस प्रकार तटस्थ या न्यूनतम पतवार वाले जहाज के अनुभव से परे अतिरिक्त ड्रैग को प्रेरित करता है।[2]
विमान वायुगतिकी
एक स्थिर विन्यास न केवल नौकायन में बल्कि विमान डिजाइन में भी वांछनीय है। इसलिए विमान डिजाइन ने दबाव के केंद्र शब्द को उधार लिया। और एक पाल के प्रकार, एक कठोर गैर-सममित एयरफॉइल न केवल लिफ्ट उत्पन्न करता है, बल्कि एक क्षण (भौतिकी) भी उत्पन्न करता है।
एक विमान के दबाव का केंद्र वह बिंदु है जहां सभी वायुगतिकीय दबाव क्षेत्र को बिना किसी क्षण के एक बल वेक्टर द्वारा दर्शाया जा सकता है।[3][4] इसी प्रकार का एक विचार वायुगतिकीय केंद्र है जो एक एयरफॉइल पर बिंदु है जहां वायुगतिकीय बलों द्वारा उत्पन्न पिचिंग क्षण आक्रमण के कोण के साथ स्थिर होता है।[5][6][7]
सभी उड़ान मशीनों की अनुदैर्ध्य स्थैतिक स्थिरता के विश्लेषण में वायुगतिकीय केंद्र महत्वपूर्ण भूमिका निभाता है। यह वांछनीय है कि जब एक विमान के पिच कोण और आक्रमण के कोण को परेशान किया जाता है (उदाहरण के लिए, पवन कतरनी/ऊर्ध्वाधर झोंका) कि विमान अपने मूल ट्रिम किए गए पिच कोण पर लौटता है और नियंत्रण को बदलने वाले ऑटो-पायलट के बिना आक्रमण का कोण सतह विक्षेपण। एक पायलट या ऑटोपायलट से इनपुट के बिना, एक विमान के लिए अपने ट्रिम किए गए रवैये की ओर लौटने के लिए, इसमें सकारात्मक अनुदैर्ध्य स्थैतिक स्थिरता होनी चाहिए।[8]
मिसाइल वायुगतिकी
मिसाइलों में आमतौर पर युद्धाभ्यास का पसंदीदा विमान या दिशा नहीं होती है और इस प्रकार सममित एयरफॉइल्स होते हैं। चूंकि सममित एयरफॉइल के लिए दबाव का केंद्र आक्रमण के छोटे कोण के लिए अपेक्षाकृत स्थिर है, मिसाइल इंजीनियर आमतौर पर स्थिरता और नियंत्रण विश्लेषण के लिए पूरे वाहन के दबाव के पूर्ण केंद्र की बात करते हैं। मिसाइल विश्लेषण में, आक्रमण के ट्रिम कोण के आक्रमण के कोण में बदलाव के कारण दबाव के केंद्र को आमतौर पर अतिरिक्त दबाव क्षेत्र के केंद्र के रूप में परिभाषित किया जाता है।[9] अनिर्देशित रॉकेटों के लिए ट्रिम स्थिति आमतौर पर आक्रमण का शून्य कोण है और दबाव के केंद्र को पूरे वाहन पर परिणामी प्रवाह क्षेत्र के दबाव के केंद्र के रूप में परिभाषित किया जाता है, जिसके परिणामस्वरूप आक्रमण का एक बहुत छोटा कोण होता है (अर्थात, दबाव का केंद्र) सीमा है क्योंकि आक्रमण का कोण शून्य हो जाता है)। मिसाइलों में सकारात्मक स्थिरता के लिए, ऊपर दिए गए परिभाषित दबाव का कुल वाहन केंद्र गुरुत्वाकर्षण के केंद्र की तुलना में वाहन की नाक से आगे होना चाहिए। आक्रमण के निचले कोणों पर मिसाइलों में, दबाव के केंद्र में नाक, पंख और पंख का योगदान होता है। दबाव के केंद्र के स्थान से गुणा किए गए प्रत्येक घटक के आक्रमण के कोण के संबंध में सामान्यीकृत सामान्य बल गुणांक व्युत्पन्न का उपयोग दबाव के कुल केंद्र का प्रतिनिधित्व करने वाले एक केन्द्रक की गणना करने के लिए किया जा सकता है। अतिरिक्त प्रवाह क्षेत्र के दबाव का केंद्र गुरुत्वाकर्षण के केंद्र के पीछे है और अतिरिक्त बल आक्रमण के अतिरिक्त कोण की दिशा में इंगित करता है; यह एक क्षणउत्पन्न करता है जो वाहन को ट्रिम स्थिति में वापस धकेलता है।
निर्देशित मिसाइलों में जहां आक्रमण के विभिन्न कोणों में वाहनों को ट्रिम करने के लिए पंखों को स्थानांतरित किया जा सकता है, दबाव का केंद्र अविक्षेपित फिन स्थिति के लिए आक्रमण के उस कोण पर प्रवाह क्षेत्र के दबाव का केंद्र होता है। यह आक्रमण के कोण में किसी भी छोटे परिवर्तन के दबाव का केंद्र है (जैसा कि ऊपर परिभाषित किया गया है)। एक बार फिर सकारात्मक स्थिर स्थिरता के लिए, दबाव के केंद्र की इस परिभाषा के लिए आवश्यक है कि दबाव का केंद्र गुरुत्वाकर्षण के केंद्र की तुलना में नाक से आगे हो। यह सुनिश्चित करता है कि आक्रमण के बढ़े हुए कोण के परिणामस्वरूप कोई भी बढ़ी हुई ताकत मिसाइल को छंटनी की स्थिति में वापस लाने के लिए बढ़े हुए रिस्टोरिंग क्षण में परिणाम देती है। मिसाइल विश्लेषण में, सकारात्मक स्थैतिक मार्जिन का अर्थ है कि पूरा वाहन ट्रिम स्थिति से आक्रमण के किसी भी कोण के लिए एक पुनर्स्थापना क्षण बनाता है।
वायुगतिकीय क्षेत्रों के लिए दबाव के केंद्र का संचलन
एक सममित एयरफॉइल पर दबाव का केंद्र आमतौर पर एयरफोइल के अग्रणी किनारे के पीछे तार की लंबाई के 25% के करीब होता है। (इसे क्वार्टर-कॉर्ड पॉइंट कहा जाता है।) एक सममित एयरफॉइल के लिए, आक्रमण के कोण और लिफ्ट गुणांक परिवर्तन के रूप में, दबाव का केंद्र नहीं चलता है।[10] आक्रमण के स्टालिंग कोण के नीचे आक्रमण के कोणों के लिए यह क्वार्टर-कॉर्ड बिंदु के आसपास रहता है। मिसाइलों की तुलना में विमान के नियंत्रण लक्षण वर्णन में दबाव के केंद्र की भूमिका एक अलग रूप लेती है।
कैम्बर (वायुगतिकी) एयरफॉइल पर दबाव का केंद्र एक निश्चित स्थान पर नहीं होता है।[11] पारंपरिक रूप से कैम्बर्ड एयरफॉइल के लिए, दबाव का केंद्र अधिकतम लिफ्ट गुणांक (आक्रमण का बड़ा कोण) पर क्वार्टर-कॉर्ड बिंदु से थोड़ा पीछे होता है, किंतु जैसे ही लिफ्ट गुणांक कम होता है (आक्रमण का कोण कम हो जाता है) दबाव का केंद्र पीछे की ओर बढ़ता है।[12] जब लिफ्ट गुणांक शून्य होता है तो एक एयरफ़ॉइल कोई लिफ्ट उत्पन्न नहीं कर रहा है, किंतु पारंपरिक रूप से कैम्बर्ड एयरफ़ॉइल एक नाक-डाउन पिचिंग क्षण उत्पन्न करता है, इसलिए दबाव के केंद्र का स्थान एयरफ़ॉइल के पीछे एक अनंत दूरी है।
कैम्बर (वायुगतिकीय)#परिभाषा|रिफ्लेक्स-कैम्बर्ड एयरफॉइल के लिए, दबाव का केंद्र अधिकतम लिफ्ट गुणांक (आक्रमण का बड़ा कोण) पर क्वार्टर-कॉर्ड बिंदु से थोड़ा आगे होता है, किंतु लिफ्ट गुणांक कम हो जाता है (आक्रमण का कोण कम हो जाता है) दबाव का केंद्र आगे बढ़ता है। जब लिफ्ट गुणांक शून्य होता है तो एक एयरफ़ॉइल कोई लिफ्ट उत्पन्न नहीं कर रहा है, किंतु एक रिफ्लेक्स-कैम्बर्ड एयरफ़ॉइल एक नाक-अप पिचिंग क्षण उत्पन्न करता है, इसलिए दबाव के केंद्र का स्थान एयरफ़ॉइल से एक अनंत दूरी है। रिफ्लेक्स-कैम्बर्ड एयरफॉइल पर दबाव के केंद्र के आंदोलन की इस दिशा में एक स्थिर प्रभाव पड़ता है।
जिस प्रकार से दबाव का केंद्र लिफ्ट गुणांक परिवर्तन के रूप में चलता है, वह विमान के अनुदैर्ध्य स्थैतिक स्थिरता के गणितीय विश्लेषण में दबाव के केंद्र का उपयोग करना मुश्किल बनाता है। इस कारण से, गणितीय विश्लेषण करते समय वायुगतिकीय केंद्र का उपयोग करना बहुत सरल होता है। वायुगतिकीय केंद्र एक एयरफ़ॉइल पर एक निश्चित स्थान रखता है, आमतौर पर क्वार्टर-कॉर्ड बिंदु के करीब।
अनुदैर्ध्य स्थिरता के लिए वायुगतिकीय केंद्र वैचारिक प्रारंभिक बिंदु है। स्टेबलाइजर (विमान) अतिरिक्त स्थिरता में योगदान देता है और यह गुरुत्वाकर्षण के केंद्र को वायुगतिकीय केंद्र से थोड़ी दूरी पर बिना विमान के तटस्थ स्थिरता तक पहुंचने की अनुमति देता है। गुरुत्वाकर्षण के केंद्र की स्थिति जिस पर विमान की तटस्थ स्थिरता होती है, उसे तटस्थ बिंदु (वैमानिकी) कहा जाता है।
यह भी देखें
- वायुगतिकीय केंद्र
- वायुगतिकीय बल
- हवाई भविष्यवाणी
- पार्श्व प्रतिरोध का केंद्र
- अनुदैर्ध्य स्थिर स्थिरता
- शून्य क्षण बिंदु
टिप्पणियाँ
- ↑ 1.0 1.1 Flightwise Volume 2 Aircraft Stability and Control, Christopher Carpenter 1997, ISBN 1 85310 870 7, p.75
- ↑ Marchaj, C.A. (1985). Sailing Theory and Practice, Revised edition. Putnam. ISBN 978-0-396-08428-0
- ↑ Clancy, L.J., Aerodynamics, Section 5.3
- ↑ Anderson, John D., Aircraft Performance and Design, Section 2.3
- ↑ Preston, Ray (2006). "Aerodynamic Center". Aerodynamics Text. Selkirk College. Archived from the original on 2006-02-21. Retrieved 2006-04-01.
- ↑ Clancy, L.J., Aerodynamics, Section 5.10
- ↑ Anderson, John D., Aircraft Performance and Design, Section 2.5
- ↑ Clancy, L.J., Aerodynamics, Sections 16.1 and 16.2
- ↑ Moore, F.G., Approximate Methods for Weapon Aerodynamics, AIAA Progress in Astronatuics and Aeronautics, Volume 186
- ↑ Anderson, John D. Jr (1984) Fundamentals of Aerodynamics, Section 4.7, (p.211), McGraw-Hill. ISBN 0-07-001656-9
- ↑ Clancy, L.J., Aerodynamics, Section 5.6
- ↑ Clancy, L.J., Aerodynamics, Section 5.11
संदर्भ
- Hurt, Hugh H., Jr. (January 1965). Aerodynamics for Naval Aviators. Washington, D.C.: Naval Air Systems Command, United States Navy. pp. 16–21. NAVWEPS 00-80T-80.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - Smith, Hubert (1992). The Illustrated Guide to Aerodynamics (2nd ed.). New York: TAB Books. pp. 24–27. ISBN 0-8306-3901-2.
- Anderson, John D. (1999), Aircraft Performance and Design, McGraw-Hill. ISBN 0-07-116010-8
- Clancy, L.J. (1975), Aerodynamics, Pitman Publishing Limited, London. ISBN 0-273-01120-0