रैखिक लोच: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
{{Continuum mechanics|solid}}
{{Continuum mechanics|solid}}


रैखिक लोच गणितीय मॉडल है कि कैसे निर्धारित लोडिंग स्थितियों के कारण ठोस वस्तुएं [[विरूपण (भौतिकी)]] और आंतरिक रूप से [[तनाव (यांत्रिकी)]] बन जाती हैं। यह अधिक सामान्य [[परिमित तनाव सिद्धांत]] और सातत्य यांत्रिकी की शाखा का सरलीकरण है।
'''रैखिक लोच''' गणितीय मॉडल है कि कैसे निर्धारित लोडिंग स्थितियों के कारण ठोस वस्तुएं [[विरूपण (भौतिकी)]] और आंतरिक रूप से [[तनाव (यांत्रिकी)]] बन जाती हैं। यह अधिक सामान्य [[परिमित तनाव सिद्धांत]] और सातत्य यांत्रिकी की शाखा का सरलीकरण है।


रेखीय लोच की मौलिक रेखीयकरण धारणाएं हैं: अतिसूक्ष्म तनाव सिद्धांत या छोटे विरूपण (या तनाव) और तनाव और तनाव के घटकों के बीच रैखिक संबंध। इसके अतिरिक्त रैखिक लोच केवल तनाव वाले राज्यों के लिए मान्य है जो यील्ड (इंजीनियरिंग) का उत्पादन नहीं करते हैं।
रेखीय लोच की मौलिक रेखीयकरण धारणाएं हैं: अतिसूक्ष्म तनाव सिद्धांत या छोटे विरूपण (या तनाव) और तनाव और तनाव के घटकों के बीच रैखिक संबंध होता हैं। इसके अतिरिक्त रैखिक लोच केवल तनाव वाले राज्यों के लिए मान्य है जो यील्ड (इंजीनियरिंग) का उत्पादन नहीं करते हैं।


ये धारणाएँ कई इंजीनियरिंग सामग्री और इंजीनियरिंग डिज़ाइन परिदृश्यों के लिए उचित हैं। रैखिक लोच इसलिए [[संरचनात्मक विश्लेषण]] और इंजीनियरिंग डिजाइन में बड़े पैमाने पर उपयोग किया जाता है, अधिकांशतः परिमित तत्व विश्लेषण की सहायता से।
ये धारणाएँ कई इंजीनियरिंग सामग्री और इंजीनियरिंग डिज़ाइन परिदृश्यों के लिए उचित हैं। अधिकांशतः परिमित तत्व विश्लेषण की सहायता से रैखिक लोच इसलिए [[संरचनात्मक विश्लेषण]] और इंजीनियरिंग डिजाइन में बड़े पैमाने पर उपयोग किया जाता है।


== गणितीय सूत्रीकरण ==
== गणितीय सूत्रीकरण ==


एक रैखिक लोचदार [[सीमा मूल्य समस्या]] को नियंत्रित करने वाले समीकरण संवेग के संरक्षण के लिए तीन [[टेन्सर]] आंशिक अंतर समीकरणों और छह अति सूक्ष्म तनाव-[[विस्थापन क्षेत्र (यांत्रिकी)]] संबंधों पर आधारित हैं। अवकल समीकरणों की प्रणाली रैखिक समीकरण बीजगणितीय संघटक समीकरणों के सेट द्वारा पूरी की जाती है।
रैखिक लोचदार [[सीमा मूल्य समस्या]] को नियंत्रित करने वाले समीकरण संवेग के संरक्षण के लिए तीन [[टेन्सर]] आंशिक अंतर समीकरणों और छह अति सूक्ष्म तनाव-[[विस्थापन क्षेत्र (यांत्रिकी)]] संबंधों पर आधारित हैं। अवकल समीकरणों की प्रणाली रैखिक समीकरण बीजगणितीय संघटक समीकरणों के सेट द्वारा पूरी की जाती है।


=== डायरेक्ट टेंसर फॉर्म ===
=== डायरेक्ट टेंसर फॉर्म ===
प्रत्यक्ष टेंसर रूप में जो समन्वय प्रणाली की पसंद से स्वतंत्र है, ये शासकीय समीकरण हैं:<ref name=Slau>Slaughter, W. S., (2002), ''The linearized theory of elasticity'', Birkhauser.</ref>
प्रत्यक्ष टेंसर रूप में जो समन्वय प्रणाली की पसंद से स्वतंत्र है, उक्त समीकरण इस प्रकार प्रदर्शित किया जाता हैं:<ref name=Slau>Slaughter, W. S., (2002), ''The linearized theory of elasticity'', Birkhauser.</ref>
* संवेग#किसी निकाय के लिए रेखीय संवेग, जो न्यूटन के गति के नियमों की अभिव्यक्ति है#न्यूटन का दूसरा नियम|न्यूटन का दूसरा नियम: <math display="block">\boldsymbol{\nabla} \cdot \boldsymbol{\sigma} + \mathbf{F} = \rho \ddot{\mathbf{u}} </math>
* संवेग किसी निकाय के लिए रेखीय संवेग, जो न्यूटन के गति के नियमों की अभिव्यक्ति है, न्यूटन का दूसरा नियम के अनुसार: <math display="block">\boldsymbol{\nabla} \cdot \boldsymbol{\sigma} + \mathbf{F} = \rho \ddot{\mathbf{u}} </math>
* इनफिनिटिमल स्ट्रेन थ्योरी|स्ट्रेन-विस्थापन समीकरण: <math display="block">\boldsymbol{\varepsilon} = \tfrac{1}{2} \left[\boldsymbol{\nabla}\mathbf{u} + (\boldsymbol{\nabla}\mathbf{u})^\mathrm{T}\right]</math>
* इनफिनिटिमल स्ट्रेन सिद्धांत या स्ट्रेन-विस्थापन समीकरण: <math display="block">\boldsymbol{\varepsilon} = \tfrac{1}{2} \left[\boldsymbol{\nabla}\mathbf{u} + (\boldsymbol{\nabla}\mathbf{u})^\mathrm{T}\right]</math>
* संवैधानिक समीकरण। लोचदार सामग्री के लिए, हुक का नियम भौतिक व्यवहार का प्रतिनिधित्व करता है और अज्ञात तनावों और तनावों से संबंधित है। हुक के नियम का सामान्य समीकरण है <math display="block"> \boldsymbol{\sigma} = \mathsf{C}:\boldsymbol{\varepsilon},</math>
* संवैधानिक समीकरण को लोचदार सामग्री के लिए, हुक के नियम द्वारा इसके भौतिक स्थिति का प्रतिनिधित्व करता है और अज्ञात तनावों से संबंधित रहता है। हुक के नियम का सामान्य समीकरण है इस प्रकार हैं- <math display="block"> \boldsymbol{\sigma} = \mathsf{C}:\boldsymbol{\varepsilon},</math>
जहाँ <math>\boldsymbol{\sigma}</math> [[कॉची तनाव टेन्सर]] है, <math>\boldsymbol{\varepsilon}</math> अतिसूक्ष्म तनाव टेंसर है, <math>\mathbf{u}</math> [[विस्थापन (वेक्टर)]] है, <math>\mathsf{C}</math> चौथा क्रम कठोरता टेन्सर है, <math>\mathbf{F}</math> प्रति इकाई आयतन शरीर बल है, <math>\rho</math> द्रव्यमान घनत्व है, <math>\boldsymbol{\nabla}</math> [[नाबला ऑपरेटर]] का प्रतिनिधित्व करता है, <math>(\bullet)^\mathrm{T}</math> स्थानान्तरण का प्रतिनिधित्व करता है, <math>\ddot{(\bullet)}</math> समय के संबंध में दूसरी व्युत्पत्ति का प्रतिनिधित्व करता है, और <math>\mathsf{A}:\mathsf{B} = A_{ij}B_{ij}</math> दो दूसरे क्रम के टेंसरों का आंतरिक उत्पाद है (दोहराए गए सूचकांकों पर योग निहित है)।
जहाँ <math>\boldsymbol{\sigma}</math> [[कॉची तनाव टेन्सर]] है, <math>\boldsymbol{\varepsilon}</math> अतिसूक्ष्म तनाव टेंसर है, <math>\mathbf{u}</math> [[विस्थापन (वेक्टर)]] है, <math>\mathsf{C}</math> चौथा क्रम कठोरता टेन्सर कहलाता हैं, यहाँ पर <math>\mathbf{F}</math> प्रति इकाई आयतन भौतिक बल है, <math>\rho</math> द्रव्यमान घनत्व है, <math>\boldsymbol{\nabla}</math> [[नाबला ऑपरेटर]] का प्रतिनिधित्व करता है, <math>(\bullet)^\mathrm{T}</math> स्थानान्तरण का प्रतिनिधित्व करता है, <math>\ddot{(\bullet)}</math> समय के संबंध में दूसरी व्युत्पत्ति का प्रतिनिधित्व करता है, और <math>\mathsf{A}:\mathsf{B} = A_{ij}B_{ij}</math> दो दूसरे क्रम के टेंसरों का आंतरिक उत्पाद है जो विशेषकर दोहराए गए सूचकांकों पर योग को निहित रखता है)।


=== कार्तीय समन्वय रूप ===
=== कार्तीय समन्वय रूप ===
एक आयताकार कार्टेशियन समन्वय प्रणाली के संबंध में घटकों के संदर्भ में व्यक्त, रैखिक लोच के शासकीय समीकरण हैं:<ref name=Slau/>
आयताकार कार्टेशियन समन्वय प्रणाली के संबंध में घटकों के संदर्भ में व्यक्त होने वाले रैखिक लोच के लिए स्थिति समीकरण को इस प्रकार प्रदर्शित करते हैं:<ref name=Slau/>


* कॉची संवेग समीकरण: <math display="block"> \sigma_{ji,j} + F_i = \rho \partial_{tt} u_i</math> जहां <math>{(\bullet)}_{,j}</math> सबस्क्रिप्ट के लिए आशुलिपि है <math>\partial{(\bullet)} / \partial x_j</math> और <math>\partial_{tt}</math> दर्शाता है <math>\partial^2 / \partial t^2</math>, <math> \sigma_{ij} = \sigma_{ji}</math> कॉची स्ट्रेस (भौतिकी) टेंसर है, <math> F_i</math> शरीर बल घनत्व है, <math> \rho</math> द्रव्यमान घनत्व है, और <math> u_i</math> विस्थापन है।  ये रेखीय समीकरणों की 3 प्रणाली हैं 6 स्वतंत्र अज्ञात (तनाव) के साथ स्वतंत्रता समीकरण। इंजीनियरिंग संकेतन में, वे हैं: <math display="block">\begin{align}
* कॉची संवेग समीकरण: <math display="block"> \sigma_{ji,j} + F_i = \rho \partial_{tt} u_i</math> जहां <math>{(\bullet)}_{,j}</math> सबस्क्रिप्ट के लिए आशुलिपि है <math>\partial{(\bullet)} / \partial x_j</math> और <math>\partial_{tt}</math> दर्शाता है <math>\partial^2 / \partial t^2</math>, <math> \sigma_{ij} = \sigma_{ji}</math> कॉची स्ट्रेस (भौतिकी) टेंसर है, <math> F_i</math> भौतिक बल घनत्व है, <math> \rho</math> द्रव्यमान घनत्व है, और <math> u_i</math> विस्थापन है।  ये रेखीय समीकरणों की 3 प्रणाली हैं 6 स्वतंत्र अज्ञात (तनाव) के साथ स्वतंत्रता समीकरण द्वारा इंजीनियरिंग संकेतन के रूप में इस प्रकार प्रदर्शित करते हैं: <math display="block">\begin{align}
\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + F_x = \rho \frac{\partial^2 u_x}{\partial t^2} \\
\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + F_x = \rho \frac{\partial^2 u_x}{\partial t^2} \\
\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} + F_y = \rho \frac{\partial^2 u_y}{\partial t^2} \\
\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} + F_y = \rho \frac{\partial^2 u_y}{\partial t^2} \\
\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_z}{\partial z} + F_z = \rho \frac{\partial^2 u_z}{\partial t^2}
\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_z}{\partial z} + F_z = \rho \frac{\partial^2 u_z}{\partial t^2}
\end{align}</math>
\end{align}</math>
* विरूपण (यांत्रिकी)#तनाव|तनाव-विस्थापन समीकरण: <math display="block">\varepsilon_{ij} =\frac{1}{2} (u_{j,i} + u_{i,j})</math> जहाँ <math> \varepsilon_{ij}=\varepsilon_{ji}\,\!</math> तनाव है। ये 9 स्वतंत्र अज्ञात (स्ट्रेन और विस्थापन) के साथ तनाव और विस्थापन से संबंधित 6 स्वतंत्र समीकरण हैं।  इंजीनियरिंग संकेतन में, वे हैं: <math display="block">\begin{align}
* विरूपण (यांत्रिकी) तनाव या तनाव विस्थापन समीकरण: <math display="block">\varepsilon_{ij} =\frac{1}{2} (u_{j,i} + u_{i,j})</math> जहाँ <math> \varepsilon_{ij}=\varepsilon_{ji}\,\!</math> तनाव है। ये 9 स्वतंत्र अज्ञात (स्ट्रेन और विस्थापन) के साथ तनाव और विस्थापन से संबंधित 6 स्वतंत्र समीकरण हैं।  इंजीनियरिंग संकेतन में ये इस प्रकार हैं: <math display="block">\begin{align}
\epsilon_x=\frac{\partial u_x}{\partial x} \\
\epsilon_x=\frac{\partial u_x}{\partial x} \\
\epsilon_y=\frac{\partial u_y}{\partial y} \\
\epsilon_y=\frac{\partial u_y}{\partial y} \\
Line 38: Line 38:
\gamma_{zx}=\frac{\partial u_z}{\partial x}+\frac{\partial u_x}{\partial z}
\gamma_{zx}=\frac{\partial u_z}{\partial x}+\frac{\partial u_x}{\partial z}
\end{align}</math>
\end{align}</math>
* संवैधानिक समीकरण। हुक के नियम का समीकरण है: <math display="block"> \sigma_{ij} = C_{ijkl} \, \varepsilon_{kl} </math> जहाँ <math>C_{ijkl}</math> कठोरता टेंसर है। ये तनाव और विकृति से संबंधित 6 स्वतंत्र समीकरण हैं। तनाव और तनाव टेंसरों की समरूपता की आवश्यकता से कई लोचदार स्थिरांक की समानता हो जाती है, जिससे विभिन्न तत्वों की संख्या 21 हो जाती है<ref>{{cite journal |last1=Belen'kii |last2= Salaev|date= 1988|title= परत क्रिस्टल में विरूपण प्रभाव|journal= Uspekhi Fizicheskikh Nauk|volume= 155|issue= 5|pages= 89–127|doi= 10.3367/UFNr.0155.198805c.0089}}</ref> <math> C_{ijkl} = C_{klij} = C_{jikl} = C_{ijlk}</math>.
* संवैधानिक समीकरण या हुक के नियम का समीकरण है: <math display="block"> \sigma_{ij} = C_{ijkl} \, \varepsilon_{kl} </math> जहाँ <math>C_{ijkl}</math> कठोरता टेंसर है। ये तनाव और विकृति से संबंधित 6 स्वतंत्र समीकरण हैं। तनाव और तनाव टेंसरों की समरूपता की आवश्यकता से कई लोचदार स्थिरांक की समानता हो जाती है, जिससे विभिन्न तत्वों की संख्या 21 हो जाती है<ref>{{cite journal |last1=Belen'kii |last2= Salaev|date= 1988|title= परत क्रिस्टल में विरूपण प्रभाव|journal= Uspekhi Fizicheskikh Nauk|volume= 155|issue= 5|pages= 89–127|doi= 10.3367/UFNr.0155.198805c.0089}}</ref> इसे <math> C_{ijkl} = C_{klij} = C_{jikl} = C_{ijlk}</math> द्वारा प्रदर्शित करते हैं।


एक आइसोटोपिक-सजातीय मीडिया के लिए इलास्टोस्टेटिक सीमा मूल्य समस्या 15 स्वतंत्र समीकरणों और समान संख्या में अज्ञात (3 संतुलन समीकरण, 6 तनाव-विस्थापन समीकरण, और 6 संवैधानिक समीकरण) की प्रणाली है। सीमा शर्तों को निर्दिष्ट करते हुए, सीमा मूल्य समस्या पूरी तरह परिभाषित है। प्रणाली को हल करने के लिए सीमा मान समस्या की सीमा स्थितियों के अनुसार दो दृष्टिकोण अपनाए जा सकते हैं: विस्थापन सूत्रीकरण, और तनाव सूत्रीकरण।
आइसोटोपिक सजातीय मीडिया के लिए इलास्टोस्टेटिक सीमा के मान से होने वाली समस्या के लिए 15 स्वतंत्र समीकरणों और समान संख्या में अज्ञात (3 संतुलन समीकरण, 6 तनाव-विस्थापन समीकरण, और 6 संवैधानिक समीकरण) की प्रणाली बनाई जाती है। इस प्रकार सीमा शर्तों को निर्दिष्ट करते हुए सीमा मूल्य समस्या को पूर्ण रूप से परिभाषित किया जा सकता हैं। प्रणाली को हल करने के लिए सीमा मान समस्या की सीमा स्थितियों के अनुसार दो दृष्टिकोण विस्थापन सूत्रीकरण, और तनाव सूत्रीकरण अपनाए जाते हैं।


===बेलनाकार निर्देशांक रूप===
===बेलनाकार निर्देशांक रूप===
बेलनाकार निर्देशांक में (<math>r,\theta,z</math>) गति के समीकरण हैं<ref name=Slau/>
बेलनाकार निर्देशांक में (<math>r,\theta,z</math>) गति के समीकरण हैं<ref name=Slau/><math display="block">\begin{align}
<math display="block">\begin{align}
   & \frac{\partial \sigma_{rr}}{\partial r} + \frac{1}{r}\frac{\partial \sigma_{r\theta}}{\partial \theta} + \frac{\partial \sigma_{rz}}{\partial z} + \cfrac{1}{r}(\sigma_{rr}-\sigma_{\theta\theta}) + F_r = \rho~\frac{\partial^2 u_r}{\partial t^2} \\
   & \frac{\partial \sigma_{rr}}{\partial r} + \frac{1}{r}\frac{\partial \sigma_{r\theta}}{\partial \theta} + \frac{\partial \sigma_{rz}}{\partial z} + \cfrac{1}{r}(\sigma_{rr}-\sigma_{\theta\theta}) + F_r = \rho~\frac{\partial^2 u_r}{\partial t^2} \\
   & \frac{\partial \sigma_{r\theta}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{\theta\theta}}{\partial \theta} + \frac{\partial \sigma_{\theta z}}{\partial z} + \frac{2}{r}\sigma_{r\theta} + F_\theta = \rho~\frac{\partial^2 u_\theta}{\partial t^2} \\
   & \frac{\partial \sigma_{r\theta}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{\theta\theta}}{\partial \theta} + \frac{\partial \sigma_{\theta z}}{\partial z} + \frac{2}{r}\sigma_{r\theta} + F_\theta = \rho~\frac{\partial^2 u_\theta}{\partial t^2} \\
   & \frac{\partial \sigma_{rz}}{\partial r} + \frac{1}{r}\frac{\partial \sigma_{\theta z}}{\partial \theta} + \frac{\partial \sigma_{zz}}{\partial z} + \frac{1}{r} \sigma_{rz} + F_z = \rho~\frac{\partial^2 u_z}{\partial t^2}
   & \frac{\partial \sigma_{rz}}{\partial r} + \frac{1}{r}\frac{\partial \sigma_{\theta z}}{\partial \theta} + \frac{\partial \sigma_{zz}}{\partial z} + \frac{1}{r} \sigma_{rz} + F_z = \rho~\frac{\partial^2 u_z}{\partial t^2}
\end{align}</math>
\end{align}</math>तनाव-विस्थापन संबंध हैं<math display="block">\begin{align}
तनाव-विस्थापन संबंध हैं
<math display="block">\begin{align}
   \varepsilon_{rr} & = \frac{\partial u_r}{\partial r} ~;~~
   \varepsilon_{rr} & = \frac{\partial u_r}{\partial r} ~;~~
   \varepsilon_{\theta\theta}  = \frac{1}{r} \left(\cfrac{\partial u_\theta}{\partial \theta} + u_r\right) ~;~~
   \varepsilon_{\theta\theta}  = \frac{1}{r} \left(\cfrac{\partial u_\theta}{\partial \theta} + u_r\right) ~;~~
Line 58: Line 55:
   \varepsilon_{zr} = \cfrac{1}{2} \left(\cfrac{\partial u_r}{\partial z} + \cfrac{\partial u_z}{\partial r}\right)  
   \varepsilon_{zr} = \cfrac{1}{2} \left(\cfrac{\partial u_r}{\partial z} + \cfrac{\partial u_z}{\partial r}\right)  
\end{align}</math>
\end{align}</math>
और संवैधानिक संबंध कार्टेशियन निर्देशांक के समान हैं, सिवाय इसके कि सूचकांक <math>1</math>,<math>2</math>,<math>3</math> अब के लिए खड़े हो जाओ <math>r</math>,<math>\theta</math>,<math>z</math>, क्रमश।
 
 
और संवैधानिक संबंध कार्टेशियन निर्देशांक के समान हैं, इसके अतिरिक्त इसका सूचकांक <math>1</math>,<math>2</math>,<math>3</math> इस स्थिति के लिए क्रमशः <math>r</math>,<math>\theta</math>,<math>z</math>, इस प्रकार हैं।


=== गोलाकार निर्देशांक रूप ===
=== गोलाकार निर्देशांक रूप ===
Line 79: Line 78:


== (ए) आइसोट्रोपिक (इन) सजातीय मीडिया ==
== (ए) आइसोट्रोपिक (इन) सजातीय मीडिया ==
हूक के नियम आइसोट्रोपिक सामग्री मीडिया में, कठोरता टेन्सर तनावों (परिणामस्वरूप आंतरिक तनावों) और उपभेदों (परिणामस्वरूप विकृतियों) के बीच संबंध देता है। आइसोटोपिक माध्यम के लिए, कठोरता टेंसर की कोई पसंदीदा दिशा नहीं होती है: लागू बल समान विस्थापन (बल की दिशा के सापेक्ष) देगा, चाहे जिस दिशा में बल लगाया गया हो। आइसोटोपिक स्थिति में, कठोरता टेंसर लिखा जा सकता है:{{citation needed|date=June 2012}} <math display="block"> C_{ijkl}
हूक के नियम आइसोट्रोपिक सामग्री मीडिया में, कठोरता टेन्सर तनावों (परिणामस्वरूप आंतरिक तनावों) और उपभेदों (परिणामस्वरूप विकृतियों) के बीच संबंध देता है। आइसोटोपिक माध्यम के लिए, कठोरता टेंसर की कोई पसंदीदा दिशा नहीं होती है: लागू बल समान विस्थापन (बल की दिशा के सापेक्ष) देगा, चाहे जिस दिशा में बल लगाया जाता हैं। आइसोटोपिक स्थिति में, कठोरता टेंसर लिखा जाता है:{{citation needed|date=June 2012}} <math display="block"> C_{ijkl}
=  K \, \delta_{ij}\, \delta_{kl}
=  K \, \delta_{ij}\, \delta_{kl}
+ \mu\, (\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk}- \tfrac{2}{3}\, \delta_{ij}\,\delta_{kl})
+ \mu\, (\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk}- \tfrac{2}{3}\, \delta_{ij}\,\delta_{kl})
</math> जहाँ <math>\delta_{ij}</math> [[क्रोनकर डेल्टा]] है, K थोक मापांक (या असंपीड़्यता) है, और <math>\mu</math> कतरनी मापांक (या कठोरता) है, दो लोचदार मापांक। यदि माध्यम विषम है, तो आइसोट्रोपिक मॉडल समझदार है यदि या तो माध्यम टुकड़े-टुकड़े-स्थिर या कमजोर रूप से विषम है; दृढ़ता से अमानवीय चिकने मॉडल में, अनिसोट्रॉपी का हिसाब देना पड़ता है। यदि माध्यम [[सजातीय (रसायन विज्ञान)]] है, तो [[लोचदार मोडुली]] माध्यम में स्थिति से स्वतंत्र होगी। संवैधानिक समीकरण अब इस रूप में लिखा जा सकता है:
</math> जहाँ <math>\delta_{ij}</math> [[क्रोनकर डेल्टा]] है, K थोक मापांक (या असंपीड़्यता) है, और <math>\mu</math> कतरनी मापांक (या कठोरता) है, जिसके लिए दो लोचदार मापांक निर्धारित किये जाते हैं। यदि माध्यम विषम होता हैं, तो आइसोट्रोपिक मॉडल का उपयोग किया जाता है इसके अतिरिक्त इसके माध्यम के लिए टुकड़े-टुकड़े पर स्थिर या कमजोर रूप से विषम स्थिति को दृढ़ता से अमानवीय चिकने मॉडल में, अनिसोट्रॉपी का हिसाब देना पड़ता है। यदि माध्यम [[सजातीय (रसायन विज्ञान)]] है, तो [[लोचदार मोडुली]] माध्यम में स्थिति से स्वतंत्र होगी तो संवैधानिक समीकरण को इस रूप में लिखा जा सकता है:<math display="block"> \sigma_{ij} = K \delta_{ij} \varepsilon_{kk} + 2\mu \left(\varepsilon_{ij} - \tfrac{1}{3} \delta_{ij} \varepsilon_{kk}\right).</math>यह अभिव्यक्ति तनाव को बाईं ओर अदिश भाग में अलग करती है जो अदिश दबाव से जुड़ा हो सकता है, और दाईं ओर ट्रेसलेस भाग जो कतरनी बलों से जुड़ा हो सकता है। सरल अभिव्यक्ति है:<ref name="aki">{{cite book |title= मात्रात्मक भूकंप विज्ञान|last1=Aki|first1=Keiiti |last2=Richards|first2= Paul G. | author-link1=Keiiti Aki |author2-link=Paul G. richards |year=2002 | edition= 2| publisher=University Science Books |location=Sausalito, California}}</ref><ref>Continuum Mechanics for Engineers 2001 Mase, Eq. 5.12-2</ref><math display="block"> \sigma_{ij} = \lambda \delta_{ij} \varepsilon_{kk}+2\mu\varepsilon_{ij}</math>जहां λ लैम पैरामीटर लैम का पहला पैरामीटर है। चूँकि संवैधानिक समीकरण केवल रेखीय समीकरणों का समूह है, तनाव को तनाव के कार्य के रूप में व्यक्त किया जा सकता है:<ref name="sommerfeld">{{cite book |title= विकृत निकायों के यांत्रिकी|last=Sommerfeld|first=Arnold |author-link=Arnold Sommerfeld|year=1964 |publisher=Academic Press |location=New York}}</ref><math display="block">\varepsilon_{ij} = \frac{1}{9K} \delta_{ij} \sigma_{kk} + \frac{1}{2\mu} \left(\sigma_{ij} - \tfrac{1}{3} \delta_{ij} \sigma_{kk}\right)</math>जो फिर से, बाईं ओर अदिश भाग और दाईं ओर ट्रेसलेस कतरनी भाग है। इसके लिए समीकरण इस प्रकार हैं:<math display="block">\varepsilon_{ij}
<math display="block"> \sigma_{ij} = K \delta_{ij} \varepsilon_{kk} + 2\mu \left(\varepsilon_{ij} - \tfrac{1}{3} \delta_{ij} \varepsilon_{kk}\right).</math>
= \frac{1}{2\mu}\sigma_{ij} - \frac{\nu}{E} \delta_{ij}\sigma_{kk} = \frac{1}{E} [(1+\nu) \sigma_{ij}-\nu\delta_{ij}\sigma_{kk}]</math>जहाँ <math>\nu</math> पोइसन का अनुपात है और <math>E</math> यंग का मापांक है।
यह अभिव्यक्ति तनाव को बाईं ओर अदिश भाग में अलग करती है जो अदिश दबाव से जुड़ा हो सकता है, और दाईं ओर ट्रेसलेस भाग जो कतरनी बलों से जुड़ा हो सकता है। सरल अभिव्यक्ति है:<ref name="aki">{{cite book |title= मात्रात्मक भूकंप विज्ञान|last1=Aki|first1=Keiiti |last2=Richards|first2= Paul G. | author-link1=Keiiti Aki |author2-link=Paul G. richards |year=2002 | edition= 2| publisher=University Science Books |location=Sausalito, California}}</ref><ref>Continuum Mechanics for Engineers 2001 Mase, Eq. 5.12-2</ref>
<math display="block"> \sigma_{ij} = \lambda \delta_{ij} \varepsilon_{kk}+2\mu\varepsilon_{ij}</math>
जहां λ लैम पैरामीटर है | लैम का पहला पैरामीटर। चूँकि संवैधानिक समीकरण केवल रेखीय समीकरणों का समूह है, तनाव को तनाव के कार्य के रूप में व्यक्त किया जा सकता है:<ref name=sommerfeld>{{cite book |title= विकृत निकायों के यांत्रिकी|last=Sommerfeld|first=Arnold |author-link=Arnold Sommerfeld|year=1964 |publisher=Academic Press |location=New York}}</ref>
<math display="block">\varepsilon_{ij} = \frac{1}{9K} \delta_{ij} \sigma_{kk} + \frac{1}{2\mu} \left(\sigma_{ij} - \tfrac{1}{3} \delta_{ij} \sigma_{kk}\right)</math>
जो फिर से, बाईं ओर अदिश भाग और दाईं ओर ट्रेसलेस कतरनी भाग है। अधिक केवल:
<math display="block">\varepsilon_{ij}
= \frac{1}{2\mu}\sigma_{ij} - \frac{\nu}{E} \delta_{ij}\sigma_{kk} = \frac{1}{E} [(1+\nu) \sigma_{ij}-\nu\delta_{ij}\sigma_{kk}]</math>
जहाँ <math>\nu</math> पोइसन का अनुपात है और <math>E</math> यंग का मापांक है।


=== इलास्टोस्टैटिक्स ===
=== इलास्टोस्टैटिक्स ===
इलास्टोस्टैटिक्स संतुलन की शर्तों के अनुसार रैखिक लोच का अध्ययन है, जिसमें लोचदार शरीर पर सभी बलों का योग शून्य होता है, और विस्थापन समय का कार्य नहीं होता है। प्रणाली के लिए गति # रैखिक गति तब होती है <math display="block"> \sigma_{ji,j} + F_i = 0.</math>
इलास्टोस्टैटिक्स संतुलन की शर्तों के अनुसार रैखिक लोच का अध्ययन है, जिसमें लोचदार भौतिक पर सभी बलों का योग शून्य होता है, और विस्थापन समय का कार्य नहीं होता है। इस प्रकार इस प्रणाली के लिए रैखिक गति का मान कुछ इस प्रकार होता हैं-<math display="block"> \sigma_{ji,j} + F_i = 0.</math>इंजीनियरिंग संकेतन में (कतरनी तनाव के रूप में टाऊ के साथ),  
इंजीनियरिंग संकेतन में (कतरनी तनाव के रूप में ताऊ के साथ),
* <math>\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + F_x = 0</math>
* <math>\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + F_x = 0</math>
*<math>\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} + F_y = 0</math>
*<math>\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} + F_y = 0</math>
*<math>\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_z}{\partial z} + F_z = 0</math>
*<math>\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_z}{\partial z} + F_z = 0</math>
यह खंड केवल आइसोट्रोपिक सजातीय स्थिति पर चर्चा करेगा।
यह खंड केवल आइसोट्रोपिक सजातीय की स्थिति पर आधारित हैं।


==== विस्थापन सूत्रीकरण ====
==== विस्थापन सूत्रीकरण ====
इस स्थिति में, सीमा में हर जगह विस्थापन निर्धारित हैं। इस दृष्टिकोण में, तनाव और तनाव को सूत्रीकरण से समाप्त कर दिया जाता है, विस्थापन को अज्ञात के रूप में शासकीय समीकरणों में हल करने के लिए छोड़ दिया जाता है।
इस स्थिति में, सीमा में हर जगह विस्थापन निर्धारित हैं। इस दृष्टिकोण में, तनाव और तनाव को सूत्रीकरण से समाप्त कर दिया जाता है, विस्थापन को अज्ञात के रूप में इस स्थिति के लिए समीकरणों में हल करने के लिए छोड़ दिया जाता है।
सबसे पहले, तनाव-विस्थापन समीकरणों को संवैधानिक समीकरणों (हुक के नियम) में प्रतिस्थापित किया जाता है, अज्ञात के रूप में उपभेदों को हटा दिया जाता है:
इस प्रकार सबसे पहले, तनाव-विस्थापन समीकरणों को संवैधानिक समीकरणों (हुक के नियम) में प्रतिस्थापित किया जाता है, अज्ञात के रूप में उपभेदों को हटा दिया जाता है:<math display="block">\sigma_{ij} = \lambda \delta_{ij} \varepsilon_{kk}+2\mu\varepsilon_{ij}
<math display="block">\sigma_{ij} = \lambda \delta_{ij} \varepsilon_{kk}+2\mu\varepsilon_{ij}
= \lambda\delta_{ij}u_{k,k}+\mu\left(u_{i,j}+u_{j,i}\right).
= \lambda\delta_{ij}u_{k,k}+\mu\left(u_{i,j}+u_{j,i}\right).
</math>
</math>विभेद करना (मान लेना <math>\lambda</math> और <math>\mu</math> स्थानिक रूप से समान हैं) उपज:<math display="block">\sigma_{ij,j} = \lambda u_{k,ki}+\mu\left(u_{i,jj}+u_{j,ij}\right).</math>संतुलन समीकरण पैदावार में प्रतिस्थापन:<math display="block">\lambda u_{k,ki}+\mu\left(u_{i,jj} + u_{j,ij}\right) + F_i = 0</math>या (डबल (डमी) (= सारांश) सूचकांक k,k को j,j द्वारा प्रतिस्थापित करना और सूचकांकों को इंटरचेंज करना, ij से, ji के बाद, दूसरे डेरिवेटिव की समरूपता के आधार पर श्वार्ज प्रमेय द्वारा किया जाता हैं।)<math display="block">\mu u_{i,jj} + (\mu+\lambda) u_{j,ji} + F_i = 0</math>जहाँ <math>\lambda</math> और <math>\mu</math> लमे पैरामीटर हैं।
विभेद करना (मान लेना <math>\lambda</math> और <math>\mu</math> स्थानिक रूप से समान हैं) उपज:
<math display="block">\sigma_{ij,j} = \lambda u_{k,ki}+\mu\left(u_{i,jj}+u_{j,ij}\right).</math>
संतुलन समीकरण पैदावार में प्रतिस्थापन:
<math display="block">\lambda u_{k,ki}+\mu\left(u_{i,jj} + u_{j,ij}\right) + F_i = 0</math>
या (डबल (डमी) (= सारांश) सूचकांक k,k को j,j द्वारा प्रतिस्थापित करना और सूचकांकों को इंटरचेंज करना, ij से, ji के बाद, दूसरे डेरिवेटिव की समरूपता के आधार पर|Schwarz' प्रमेय)
<math display="block">\mu u_{i,jj} + (\mu+\lambda) u_{j,ji} + F_i = 0</math>
जहाँ <math>\lambda</math> और <math>\mu</math> लमे पैरामीटर हैं।
इस तरह, केवल अज्ञात ही विस्थापन रह जाता है, इसलिए इस फॉर्मूलेशन का नाम है। इस तरह से प्राप्त नियामक समीकरणों को इलास्टोस्टैटिक समीकरण कहा जाता है, जो नीचे दिए गए 'नेवियर-कॉची समीकरण' का विशेष स्थिति है।
इस तरह, केवल अज्ञात ही विस्थापन रह जाता है, इसलिए इस फॉर्मूलेशन का नाम है। इस तरह से प्राप्त नियामक समीकरणों को इलास्टोस्टैटिक समीकरण कहा जाता है, जो नीचे दिए गए 'नेवियर-कॉची समीकरण' का विशेष स्थिति है।


Line 137: Line 119:
}}
}}


एक बार विस्थापन क्षेत्र की गणना हो जाने के बाद, विस्थापन को तनाव के समाधान के लिए तनाव-विस्थापन समीकरणों में प्रतिस्थापित किया जा सकता है, जो बाद में तनावों को हल करने के लिए संवैधानिक समीकरणों में उपयोग किया जाता है।
एक बार विस्थापन क्षेत्र की गणना हो जाने के पश्चात विस्थापन को तनाव के समाधान के लिए तनाव-विस्थापन समीकरणों में प्रतिस्थापित किया जाता है, जो बाद में तनावों को हल करने के लिए संवैधानिक समीकरणों में उपयोग किया जाता है।


===== बिहारमोनिक समीकरण =====
===== बिहारमोनिक समीकरण =====
इलास्टोस्टैटिक समीकरण लिखा जा सकता है:
इलास्टोस्टैटिक समीकरण लिखा जा सकता है:
<math display="block">(\alpha^2-\beta^2) u_{j,ij} + \beta^2 u_{i,mm} = -F_i.</math>
<math display="block">(\alpha^2-\beta^2) u_{j,ij} + \beta^2 u_{i,mm} = -F_i.</math>
इलास्टोस्टेटिक समीकरण के दोनों पक्षों के [[विचलन]] को लेते हुए और यह मानते हुए कि शरीर बलों में शून्य विचलन (डोमेन में सजातीय) है (<math>F_{i,i}=0\,\!</math>) अपने पास
इलास्टोस्टेटिक समीकरण के दोनों पक्षों के [[विचलन]] को लेते हुए और यह मानते हुए कि भौतिक बलों में शून्य विचलन (डोमेन में सजातीय) है (<math>F_{i,i}=0\,\!</math>) अपने पास
<math display="block">(\alpha^2-\beta^2) u_{j,iij} + \beta^2u_{i,imm} = 0.</math>
<math display="block">(\alpha^2-\beta^2) u_{j,iij} + \beta^2u_{i,imm} = 0.</math>
यह देखते हुए कि सारांशित सूचकांकों का मिलान नहीं होना चाहिए, और यह कि आंशिक डेरिवेटिव कम्यूट करते हैं, दो अंतर शब्द समान दिखाई देते हैं और हमारे पास: <math display="block">\alpha^2 u_{j,iij} = 0</math> जिससे हम यह निष्कर्ष निकालते हैं कि: <math display="block">u_{j,iij} = 0.</math>
यह देखते हुए कि सारांशित सूचकांकों का मिलान नहीं होना चाहिए, और यह कि आंशिक डेरिवेटिव कम्यूट करते हैं, दो अंतर शब्द समान दिखाई देते हैं और हमारे पास: <math display="block">\alpha^2 u_{j,iij} = 0</math> जिससे हम यह निष्कर्ष निकालते हैं कि: <math display="block">u_{j,iij} = 0.</math>
Line 168: Line 150:
इस समीकरण में उपभेदों को तब संवैधानिक समीकरणों का उपयोग करते हुए तनावों के रूप में व्यक्त किया जाता है, जो तनाव टेंसर पर संबंधित बाधाओं को उत्पन्न करता है। तनाव टेंसर पर इन बाधाओं को बेल्ट्रामी-मिशेल अनुकूलता के समीकरण के रूप में जाना जाता है:
इस समीकरण में उपभेदों को तब संवैधानिक समीकरणों का उपयोग करते हुए तनावों के रूप में व्यक्त किया जाता है, जो तनाव टेंसर पर संबंधित बाधाओं को उत्पन्न करता है। तनाव टेंसर पर इन बाधाओं को बेल्ट्रामी-मिशेल अनुकूलता के समीकरण के रूप में जाना जाता है:
<math display="block">\sigma_{ij,kk} + \frac{1}{1+\nu}\sigma_{kk,ij} + F_{i,j} + F_{j,i} + \frac{\nu}{1-\nu}\delta_{i,j} F_{k,k} = 0.</math>
<math display="block">\sigma_{ij,kk} + \frac{1}{1+\nu}\sigma_{kk,ij} + F_{i,j} + F_{j,i} + \frac{\nu}{1-\nu}\delta_{i,j} F_{k,k} = 0.</math>
विशेष स्थिति में जहां शरीर बल सजातीय होता है, उपरोक्त समीकरण कम हो जाते हैं<ref name="tribonet">{{Cite news| url=http://www.tribonet.org/wiki/elastic-deformation/ |title=लोचदार विकृति|last=tribonet|date=2017-02-16 | newspaper=Tribology |access-date=2017-02-16 | language=en-US}}</ref>
विशेष स्थिति में जहां भौतिक बल सजातीय होता है, उपरोक्त समीकरण कम हो जाते हैं<ref name="tribonet">{{Cite news| url=http://www.tribonet.org/wiki/elastic-deformation/ |title=लोचदार विकृति|last=tribonet|date=2017-02-16 | newspaper=Tribology |access-date=2017-02-16 | language=en-US}}</ref>
<math display="block"> (1+\nu)\sigma_{ij,kk}+\sigma_{kk,ij}=0.</math>
<math display="block"> (1+\nu)\sigma_{ij,kk}+\sigma_{kk,ij}=0.</math>
इस स्थिति में अनुकूलता के लिए आवश्यक, किन्तु अपर्याप्त शर्त है <math>\boldsymbol{\nabla}^4\boldsymbol{\sigma} = \boldsymbol{0}</math> या <math>\sigma_{ij,kk\ell\ell} = 0</math>.<ref name=Slau/>
इस स्थिति में अनुकूलता के लिए आवश्यक, किन्तु अपर्याप्त शर्त है <math>\boldsymbol{\nabla}^4\boldsymbol{\sigma} = \boldsymbol{0}</math> या <math>\sigma_{ij,kk\ell\ell} = 0</math>.<ref name=Slau/>

Revision as of 23:39, 28 February 2023

रैखिक लोच गणितीय मॉडल है कि कैसे निर्धारित लोडिंग स्थितियों के कारण ठोस वस्तुएं विरूपण (भौतिकी) और आंतरिक रूप से तनाव (यांत्रिकी) बन जाती हैं। यह अधिक सामान्य परिमित तनाव सिद्धांत और सातत्य यांत्रिकी की शाखा का सरलीकरण है।

रेखीय लोच की मौलिक रेखीयकरण धारणाएं हैं: अतिसूक्ष्म तनाव सिद्धांत या छोटे विरूपण (या तनाव) और तनाव और तनाव के घटकों के बीच रैखिक संबंध होता हैं। इसके अतिरिक्त रैखिक लोच केवल तनाव वाले राज्यों के लिए मान्य है जो यील्ड (इंजीनियरिंग) का उत्पादन नहीं करते हैं।

ये धारणाएँ कई इंजीनियरिंग सामग्री और इंजीनियरिंग डिज़ाइन परिदृश्यों के लिए उचित हैं। अधिकांशतः परिमित तत्व विश्लेषण की सहायता से रैखिक लोच इसलिए संरचनात्मक विश्लेषण और इंजीनियरिंग डिजाइन में बड़े पैमाने पर उपयोग किया जाता है।

गणितीय सूत्रीकरण

रैखिक लोचदार सीमा मूल्य समस्या को नियंत्रित करने वाले समीकरण संवेग के संरक्षण के लिए तीन टेन्सर आंशिक अंतर समीकरणों और छह अति सूक्ष्म तनाव-विस्थापन क्षेत्र (यांत्रिकी) संबंधों पर आधारित हैं। अवकल समीकरणों की प्रणाली रैखिक समीकरण बीजगणितीय संघटक समीकरणों के सेट द्वारा पूरी की जाती है।

डायरेक्ट टेंसर फॉर्म

प्रत्यक्ष टेंसर रूप में जो समन्वय प्रणाली की पसंद से स्वतंत्र है, उक्त समीकरण इस प्रकार प्रदर्शित किया जाता हैं:[1]

  • संवेग किसी निकाय के लिए रेखीय संवेग, जो न्यूटन के गति के नियमों की अभिव्यक्ति है, न्यूटन का दूसरा नियम के अनुसार:
  • इनफिनिटिमल स्ट्रेन सिद्धांत या स्ट्रेन-विस्थापन समीकरण:
  • संवैधानिक समीकरण को लोचदार सामग्री के लिए, हुक के नियम द्वारा इसके भौतिक स्थिति का प्रतिनिधित्व करता है और अज्ञात तनावों से संबंधित रहता है। हुक के नियम का सामान्य समीकरण है इस प्रकार हैं-

जहाँ कॉची तनाव टेन्सर है, अतिसूक्ष्म तनाव टेंसर है, विस्थापन (वेक्टर) है, चौथा क्रम कठोरता टेन्सर कहलाता हैं, यहाँ पर प्रति इकाई आयतन भौतिक बल है, द्रव्यमान घनत्व है, नाबला ऑपरेटर का प्रतिनिधित्व करता है, स्थानान्तरण का प्रतिनिधित्व करता है, समय के संबंध में दूसरी व्युत्पत्ति का प्रतिनिधित्व करता है, और दो दूसरे क्रम के टेंसरों का आंतरिक उत्पाद है जो विशेषकर दोहराए गए सूचकांकों पर योग को निहित रखता है)।

कार्तीय समन्वय रूप

आयताकार कार्टेशियन समन्वय प्रणाली के संबंध में घटकों के संदर्भ में व्यक्त होने वाले रैखिक लोच के लिए स्थिति समीकरण को इस प्रकार प्रदर्शित करते हैं:[1]

  • कॉची संवेग समीकरण:
    जहां सबस्क्रिप्ट के लिए आशुलिपि है और दर्शाता है , कॉची स्ट्रेस (भौतिकी) टेंसर है, भौतिक बल घनत्व है, द्रव्यमान घनत्व है, और विस्थापन है। ये रेखीय समीकरणों की 3 प्रणाली हैं 6 स्वतंत्र अज्ञात (तनाव) के साथ स्वतंत्रता समीकरण द्वारा इंजीनियरिंग संकेतन के रूप में इस प्रकार प्रदर्शित करते हैं:
  • विरूपण (यांत्रिकी) तनाव या तनाव विस्थापन समीकरण:
    जहाँ तनाव है। ये 9 स्वतंत्र अज्ञात (स्ट्रेन और विस्थापन) के साथ तनाव और विस्थापन से संबंधित 6 स्वतंत्र समीकरण हैं। इंजीनियरिंग संकेतन में ये इस प्रकार हैं:
  • संवैधानिक समीकरण या हुक के नियम का समीकरण है:
    जहाँ कठोरता टेंसर है। ये तनाव और विकृति से संबंधित 6 स्वतंत्र समीकरण हैं। तनाव और तनाव टेंसरों की समरूपता की आवश्यकता से कई लोचदार स्थिरांक की समानता हो जाती है, जिससे विभिन्न तत्वों की संख्या 21 हो जाती है[2] इसे द्वारा प्रदर्शित करते हैं।

आइसोटोपिक सजातीय मीडिया के लिए इलास्टोस्टेटिक सीमा के मान से होने वाली समस्या के लिए 15 स्वतंत्र समीकरणों और समान संख्या में अज्ञात (3 संतुलन समीकरण, 6 तनाव-विस्थापन समीकरण, और 6 संवैधानिक समीकरण) की प्रणाली बनाई जाती है। इस प्रकार सीमा शर्तों को निर्दिष्ट करते हुए सीमा मूल्य समस्या को पूर्ण रूप से परिभाषित किया जा सकता हैं। प्रणाली को हल करने के लिए सीमा मान समस्या की सीमा स्थितियों के अनुसार दो दृष्टिकोण विस्थापन सूत्रीकरण, और तनाव सूत्रीकरण अपनाए जाते हैं।

बेलनाकार निर्देशांक रूप

बेलनाकार निर्देशांक में () गति के समीकरण हैं[1]

तनाव-विस्थापन संबंध हैं


और संवैधानिक संबंध कार्टेशियन निर्देशांक के समान हैं, इसके अतिरिक्त इसका सूचकांक ,, इस स्थिति के लिए क्रमशः ,,, इस प्रकार हैं।

गोलाकार निर्देशांक रूप

गोलाकार निर्देशांक में () गति के समीकरण हैं[1]

गोलाकार निर्देशांक (r, θ, φ) जैसा कि सामान्यतः भौतिकी में उपयोग किया जाता है: रेडियल दूरी r, ध्रुवीय कोण θ (थीटा), और अज़ीमुथल कोण φ (phi)। प्रतीक ρ (रो) अधिकांशतः आर के अतिरिक्त प्रयोग किया जाता है।

गोलाकार निर्देशांक में तनाव टेन्सर है


(ए) आइसोट्रोपिक (इन) सजातीय मीडिया

हूक के नियम आइसोट्रोपिक सामग्री मीडिया में, कठोरता टेन्सर तनावों (परिणामस्वरूप आंतरिक तनावों) और उपभेदों (परिणामस्वरूप विकृतियों) के बीच संबंध देता है। आइसोटोपिक माध्यम के लिए, कठोरता टेंसर की कोई पसंदीदा दिशा नहीं होती है: लागू बल समान विस्थापन (बल की दिशा के सापेक्ष) देगा, चाहे जिस दिशा में बल लगाया जाता हैं। आइसोटोपिक स्थिति में, कठोरता टेंसर लिखा जाता है:[citation needed]

जहाँ क्रोनकर डेल्टा है, K थोक मापांक (या असंपीड़्यता) है, और कतरनी मापांक (या कठोरता) है, जिसके लिए दो लोचदार मापांक निर्धारित किये जाते हैं। यदि माध्यम विषम होता हैं, तो आइसोट्रोपिक मॉडल का उपयोग किया जाता है इसके अतिरिक्त इसके माध्यम के लिए टुकड़े-टुकड़े पर स्थिर या कमजोर रूप से विषम स्थिति को दृढ़ता से अमानवीय चिकने मॉडल में, अनिसोट्रॉपी का हिसाब देना पड़ता है। यदि माध्यम सजातीय (रसायन विज्ञान) है, तो लोचदार मोडुली माध्यम में स्थिति से स्वतंत्र होगी तो संवैधानिक समीकरण को इस रूप में लिखा जा सकता है:
यह अभिव्यक्ति तनाव को बाईं ओर अदिश भाग में अलग करती है जो अदिश दबाव से जुड़ा हो सकता है, और दाईं ओर ट्रेसलेस भाग जो कतरनी बलों से जुड़ा हो सकता है। सरल अभिव्यक्ति है:[3][4]
जहां λ लैम पैरामीटर लैम का पहला पैरामीटर है। चूँकि संवैधानिक समीकरण केवल रेखीय समीकरणों का समूह है, तनाव को तनाव के कार्य के रूप में व्यक्त किया जा सकता है:[5]
जो फिर से, बाईं ओर अदिश भाग और दाईं ओर ट्रेसलेस कतरनी भाग है। इसके लिए समीकरण इस प्रकार हैं:
जहाँ पोइसन का अनुपात है और यंग का मापांक है।

इलास्टोस्टैटिक्स

इलास्टोस्टैटिक्स संतुलन की शर्तों के अनुसार रैखिक लोच का अध्ययन है, जिसमें लोचदार भौतिक पर सभी बलों का योग शून्य होता है, और विस्थापन समय का कार्य नहीं होता है। इस प्रकार इस प्रणाली के लिए रैखिक गति का मान कुछ इस प्रकार होता हैं-

इंजीनियरिंग संकेतन में (कतरनी तनाव के रूप में टाऊ के साथ),

यह खंड केवल आइसोट्रोपिक सजातीय की स्थिति पर आधारित हैं।

विस्थापन सूत्रीकरण

इस स्थिति में, सीमा में हर जगह विस्थापन निर्धारित हैं। इस दृष्टिकोण में, तनाव और तनाव को सूत्रीकरण से समाप्त कर दिया जाता है, विस्थापन को अज्ञात के रूप में इस स्थिति के लिए समीकरणों में हल करने के लिए छोड़ दिया जाता है। इस प्रकार सबसे पहले, तनाव-विस्थापन समीकरणों को संवैधानिक समीकरणों (हुक के नियम) में प्रतिस्थापित किया जाता है, अज्ञात के रूप में उपभेदों को हटा दिया जाता है:

विभेद करना (मान लेना और स्थानिक रूप से समान हैं) उपज:
संतुलन समीकरण पैदावार में प्रतिस्थापन:
या (डबल (डमी) (= सारांश) सूचकांक k,k को j,j द्वारा प्रतिस्थापित करना और सूचकांकों को इंटरचेंज करना, ij से, ji के बाद, दूसरे डेरिवेटिव की समरूपता के आधार पर श्वार्ज प्रमेय द्वारा किया जाता हैं।)
जहाँ और लमे पैरामीटर हैं। इस तरह, केवल अज्ञात ही विस्थापन रह जाता है, इसलिए इस फॉर्मूलेशन का नाम है। इस तरह से प्राप्त नियामक समीकरणों को इलास्टोस्टैटिक समीकरण कहा जाता है, जो नीचे दिए गए 'नेवियर-कॉची समीकरण' का विशेष स्थिति है।

Derivation of Navier–Cauchy equations in Engineering notation

सबसे पहले -दिशा पर विचार किया जाएगा। तनाव-विस्थापन समीकरणों को संतुलन समीकरण में प्रतिस्थापित करना -दिशा हमारे पास है

फिर इन समीकरणों को संतुलन समीकरण में प्रतिस्थापित करना -दिशा हमारे पास है

इस धारणा का उपयोग करना कि और स्थिर हैं हम पुनर्व्यवस्थित और प्राप्त कर सकते हैं:

इसके लिए भी यही प्रक्रिया अपना रहे हैं -दिशा और -दिशा हमारे पास है

ये अंतिम 3 समीकरण नेवियर-कॉची समीकरण हैं, जिन्हें सदिश संकेतन के रूप में भी व्यक्त किया जा सकता है

एक बार विस्थापन क्षेत्र की गणना हो जाने के पश्चात विस्थापन को तनाव के समाधान के लिए तनाव-विस्थापन समीकरणों में प्रतिस्थापित किया जाता है, जो बाद में तनावों को हल करने के लिए संवैधानिक समीकरणों में उपयोग किया जाता है।

बिहारमोनिक समीकरण

इलास्टोस्टैटिक समीकरण लिखा जा सकता है:

इलास्टोस्टेटिक समीकरण के दोनों पक्षों के विचलन को लेते हुए और यह मानते हुए कि भौतिक बलों में शून्य विचलन (डोमेन में सजातीय) है () अपने पास
यह देखते हुए कि सारांशित सूचकांकों का मिलान नहीं होना चाहिए, और यह कि आंशिक डेरिवेटिव कम्यूट करते हैं, दो अंतर शब्द समान दिखाई देते हैं और हमारे पास:
जिससे हम यह निष्कर्ष निकालते हैं कि:
इलास्टोस्टैटिक समीकरण के दोनों पक्षों के लाप्लासियन को लेना, और इसके अतिरिक्त मान लेना , अपने पास
अपसरण समीकरण से, बाईं ओर का पहला पद शून्य है (ध्यान दें: फिर से, सारांशित सूचकांकों का मिलान नहीं होना चाहिए) और हमारे पास है:
जिससे हम यह निष्कर्ष निकालते हैं कि:
या, समन्वय मुक्त संकेतन में जो कि सिर्फ बिहारमोनिक समीकरण है .

तनाव सूत्रीकरण

इस स्थिति में, सतही सीमा पर हर जगह सतही कर्षण निर्धारित हैं। इस दृष्टिकोण में, तनावों और विस्थापनों को समाप्त कर दिया जाता है जिससे तनावों को अज्ञात के रूप में शासकीय समीकरणों में हल किया जा सकता है। बार तनाव क्षेत्र मिल जाने के बाद, तब संरचनात्मक समीकरणों का उपयोग करके उपभेदों को पाया जाता है।

स्ट्रेस टेन्सर के छह स्वतंत्र घटक हैं जिन्हें निर्धारित करने की आवश्यकता है, फिर भी विस्थापन सूत्रीकरण में, विस्थापन वेक्टर के केवल तीन घटक हैं जिन्हें निर्धारित करने की आवश्यकता है। इसका मतलब यह है कि स्वतंत्रता की डिग्री की संख्या को तीन तक कम करने के लिए कुछ बाधाएं हैं जिन्हें तनाव टेंसर पर रखा जाना चाहिए। संवैधानिक समीकरणों का उपयोग करते हुए, इन बाधाओं को सीधे संबंधित बाधाओं से प्राप्त किया जाता है, जो तनाव टेंसर के लिए धारण करना चाहिए, जिसमें छह स्वतंत्र घटक भी होते हैं। विस्थापन सदिश क्षेत्र के कार्य के रूप में तनाव टेन्सर पर बाधाएं सीधे तनाव टेंसर की परिभाषा से व्युत्पन्न होती हैं, जिसका अर्थ है कि ये बाधाएं कोई नई अवधारणा या जानकारी प्रस्तुत नहीं करती हैं। यह तनाव टेंसर पर बाधाएं हैं जिन्हें सबसे आसानी से समझा जा सकता है। यदि लोचदार माध्यम को अप्रतिबंधित अवस्था में असीम घनों के सेट के रूप में देखा जाता है, तो माध्यम के तनावग्रस्त होने के बाद, मनमाना तनाव टेंसर को ऐसी स्थिति उत्पन्न करनी चाहिए जिसमें विकृत घन अभी भी अतिव्यापी बिना साथ फिट होते हैं। दूसरे शब्दों में, किसी दिए गए तनाव के लिए, निरंतर सदिश क्षेत्र (विस्थापन) सम्मिलित होना चाहिए जिससे उस तनाव टेंसर को प्राप्त किया जा सके। तनाव टेंसर पर बाधाएं जो यह सुनिश्चित करने के लिए आवश्यक हैं कि यह स्थिति संत वेनेंट द्वारा खोजा गया था, और उन्हें संत-वेनेंट की अनुकूलता की स्थिति कहा जाता है। ये 81 समीकरण हैं, जिनमें से 6 स्वतंत्र गैर-तुच्छ समीकरण हैं, जो विभिन्न तनाव घटकों से संबंधित हैं। इन्हें इंडेक्स नोटेशन में इस प्रकार व्यक्त किया जाता है:

इंजीनियरिंग संकेतन में, वे हैं: