बीजगणितीय "K"-सिद्धांत: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 14: Line 14:
=== ग्रोथेंडिक ग्रुप के<sub>0</sub> ===
=== ग्रोथेंडिक ग्रुप के<sub>0</sub> ===


19वीं शताब्दी में, [[बर्नहार्ड रीमैन]] और उनके छात्र [[गुस्ताव रोच]] ने वह साबित किया जिसे अब रीमैन-रोच प्रमेय के रूप में जाना जाता है। यदि X  रीमैन सतह है, तो X पर [[मेरोमॉर्फिक फ़ंक्शन]] और मेरोमोर्फिक [[ विभेदक रूप ]] के सेट वेक्टर रिक्त स्थान बनाते हैं। X पर  [[लाइन बंडल]] इन सदिश स्थानों के उप-स्थानों को निर्धारित करता है, और यदि X प्रक्षेपी है, तो ये उप-स्थान परिमित आयामी हैं। रीमैन-रोच प्रमेय कहता है कि इन उप-स्थानों के बीच आयामों में अंतर लाइन बंडल की डिग्री (मुड़ने का उपाय) के साथ-साथ ्स के जीनस को घटाकर  के बराबर है। 20 वीं शताब्दी के मध्य में, रीमैन-रोच प्रमेय था [[फ्रेडरिक हिर्जेब्रुक]] द्वारा सभी बीजगणितीय विविधता के लिए सामान्यीकृत। हिर्ज़ब्रुक के निर्माण में, हिर्ज़ब्रुच-रिमैन-रोच प्रमेय, प्रमेय [[यूलर विशेषता]]ओं के बारे में  बयान बन गया:  बीजगणितीय विविधता पर  [[वेक्टर बंडल]] की यूलर विशेषता (जो कि इसके कोहोलॉजी समूहों के आयामों का वैकल्पिक योग है) यूलर विशेषता के बराबर है तुच्छ बंडल प्लस वेक्टर बंडल के विशिष्ट वर्गों से आने वाला  सुधार कारक। यह  सामान्यीकरण है क्योंकि प्रक्षेपी रीमैन सतह पर, लाइन बंडल की यूलर विशेषता पहले बताए गए आयामों में अंतर के बराबर होती है, तुच्छ बंडल की यूलर विशेषता जीनस से  माइनस है, और केवल गैर-तुच्छ [[विशेषता वर्ग]] डिग्री है।
19वीं शताब्दी में, [[बर्नहार्ड रीमैन]] और उनके छात्र [[गुस्ताव रोच]] ने वह साबित किया जिसे अब रीमैन-रोच प्रमेय के रूप में जाना जाता है। यदि X  रीमैन सतह है, तो X पर [[मेरोमॉर्फिक फ़ंक्शन]] और मेरोमोर्फिक [[ विभेदक रूप ]] के सेट वेक्टर रिक्त स्थान बनाते हैं। X पर  [[लाइन बंडल]] इन सदिश स्थानों के उप-स्थानों को निर्धारित करता है, और यदि X प्रक्षेपी है, तो ये उप-स्थान परिमित आयामी हैं। रीमैन-रोच प्रमेय कहता है कि इन उप-स्थानों के बीच आयामों में अंतर लाइन बंडल की डिग्री (घुमावदारता का एक उपाय) के साथ-साथ X के जीनस से एक ऋण के बराबर है। 20 वीं शताब्दी के मध्य में, रीमैन-रोच प्रमेय था [[फ्रेडरिक हिर्जेब्रुक]] द्वारा सभी बीजगणितीय विविधता के लिए सामान्यीकृत। हिर्ज़ब्रुक के निर्माण में, हिर्ज़ब्रुच-रिमैन-रोच प्रमेय, प्रमेय [[यूलर विशेषता]]ओं के बारे में  बयान बन गया:  बीजगणितीय विविधता पर  [[वेक्टर बंडल]] की यूलर विशेषता (जो कि इसके कोहोलॉजी समूहों के आयामों का वैकल्पिक योग है) यूलर विशेषता के बराबर है तुच्छ बंडल प्लस वेक्टर बंडल के विशिष्ट वर्गों से आने वाला  सुधार कारक। यह  सामान्यीकरण है क्योंकि प्रक्षेपी रीमैन सतह पर, लाइन बंडल की यूलर विशेषता पहले बताए गए आयामों में अंतर के बराबर होती है, तुच्छ बंडल की यूलर विशेषता जीनस से  माइनस है, और केवल गैर-तुच्छ [[विशेषता वर्ग]] डिग्री है।


के-थ्योरी का विषय 1957 में अलेक्जेंडर ग्रोथेंडिक के निर्माण से अपना नाम लेता है, जो ग्रोथेंडिक-रीमैन-रोच प्रमेय में दिखाई दिया, हिरजेब्रुक के प्रमेय का उनका सामान्यीकरण।<ref>Grothendieck 1957, Borel–Serre 1958</ref> बता दें कि X  चिकनी बीजगणितीय किस्म है। ्स पर प्रत्येक वेक्टर बंडल के लिए, ग्रोथेंडिक  अपरिवर्तनीय, इसकी कक्षा को जोड़ता है। X पर सभी वर्गों के समुच्चय को जर्मन क्लास से K(X) कहा जाता था। परिभाषा के अनुसार, के (्स) ्स पर वेक्टर बंडलों के आइसोमोर्फिज्म वर्गों पर मुक्त एबेलियन समूह का भागफल है, और इसलिए यह  एबेलियन समूह है। यदि सदिश बंडल V के अनुरूप आधार तत्व को [V] निरूपित किया जाता है, तो सदिश बंडलों के प्रत्येक छोटे सटीक अनुक्रम के लिए:
के-थ्योरी का विषय 1957 में अलेक्जेंडर ग्रोथेंडिक के निर्माण से अपना नाम लेता है, जो ग्रोथेंडिक-रीमैन-रोच प्रमेय में दिखाई दिया, हिरजेब्रुक के प्रमेय का उनका सामान्यीकरण।<ref>Grothendieck 1957, Borel–Serre 1958</ref> बता दें कि X  चिकनी बीजगणितीय किस्म है। X पर प्रत्येक वेक्टर बंडल के लिए, ग्रोथेंडिक  अपरिवर्तनीय, इसकी कक्षा को जोड़ता है। X पर सभी वर्गों के समुच्चय को जर्मन क्लास से K(X) कहा जाता था। परिभाषा के अनुसार, K(X) X पर वेक्टर बंडलों के आइसोमोर्फिज्म वर्गों पर मुक्त एबेलियन समूह का भागफल है, और इसलिए यह  एबेलियन समूह है। यदि सदिश बंडल V के अनुरूप आधार तत्व को [V] निरूपित किया जाता है, तो सदिश बंडलों के प्रत्येक छोटे त्रुटिहीनसटीक अनुक्रम के लिए:
:<math>0 \to V' \to V \to V'' \to 0,</math>
:<math>0 \to V' \to V \to V'' \to 0,</math>
ग्रोथेंडिक ने संबंध लगाया {{nowrap|1=[''V''] = [''V′''] + [''V″'']}}. ये जनरेटर और संबंध K(X) को परिभाषित करते हैं, और उनका अर्थ है कि यह सदिश बंडलों को  तरह से सटीक अनुक्रमों के साथ संगत करने के लिए इनवेरिएंट को असाइन करने का सार्वभौमिक तरीका है।
ग्रोथेंडिक ने संबंध लगाया {{nowrap|1=[''V''] = [''V′''] + [''V″'']}}. ये जनरेटर और संबंध K(X) को परिभाषित करते हैं, और उनका अर्थ है कि यह सदिश बंडलों को  तरह से त्रुटिहीनसटीक अनुक्रमों के साथ संगत करने के लिए इनवेरिएंट को असाइन करने का सार्वभौमिक तरीका है।


ग्रोथेंडिक ने परिप्रेक्ष्य लिया कि रीमैन-रोच प्रमेय विविधता के आकारिकी के बारे में  बयान है, स्वयं विविधता के बारे में नहीं। उन्होंने साबित किया कि K(X) से X के चाउ समूहों के लिए चेरन चरित्र और X के [[टोड वर्ग]] से आने वाले  समरूपता है। इसके अतिरिक्त, उन्होंने साबित किया कि  उचित रूपवाद {{nowrap|''f'' : ''X'' → ''Y''}}  चिकनी किस्म के लिए Y  समरूपता निर्धारित करता है {{nowrap|''f*'' : ''K''(''X'') → ''K''(''Y'')}} पुशफॉरवर्ड कहा जाता है। यह ्स पर  सदिश बंडल से वाई के चाउ समूह में  तत्व का निर्धारण करने के दो तरीके देता है: ्स से शुरू होकर, कोई पहले के-सिद्धांत में पुशफॉरवर्ड की गणना कर सकता है और फिर वाई के चेर्न चरित्र और टोड वर्ग को लागू कर सकता है, या कोई भी कर सकता है पहले ्स के चेर्न कैरेक्टर और टॉड क्लास को लागू करें और फिर चाउ समूहों के लिए पुशफॉरवर्ड की गणना करें। ग्रोथेंडिक-रीमैन-रोच प्रमेय कहता है कि ये समान हैं। जब Y  बिंदु होता है, तो वेक्टर बंडल  वेक्टर स्पेस होता है, वेक्टर स्पेस का वर्ग इसका आयाम होता है, और ग्रोथेंडिक-रीमैन-रोच प्रमेय हिरजेब्रुक के प्रमेय के विशेषज्ञ होते हैं।
ग्रोथेंडिक ने परिप्रेक्ष्य लिया कि रीमैन-रोच प्रमेय विविधता के आकारिकी के बारे में  बयान है, स्वयं विविधता के बारे में नहीं। उन्होंने साबित किया कि K(X) से X के चाउ समूहों के लिए चेरन चरित्र और X के [[टोड वर्ग]] से आने वाले  समरूपता है। इसके अतिरिक्त, उन्होंने साबित किया कि  उचित रूपवाद {{nowrap|''f'' : ''X'' → ''Y''}}  चिकनी किस्म के लिए Y  समरूपता निर्धारित करता है {{nowrap|''f*'' : ''K''(''X'') → ''K''(''Y'')}} पुशफॉरवर्ड कहा जाता है। यह ्स पर  सदिश बंडल से वाई के चाउ समूह में  तत्व का निर्धारण करने के दो तरीके देता है: ्स से शुरू होकर, कोई पहले के-सिद्धांत में पुशफॉरवर्ड की गणना कर सकता है और फिर वाई के चेर्न चरित्र और टोड वर्ग को लागू कर सकता है, या कोई भी कर सकता है पहले ्स के चेर्न कैरेक्टर और टॉड क्लास को लागू करें और फिर चाउ समूहों के लिए पुशफॉरवर्ड की गणना करें। ग्रोथेंडिक-रीमैन-रोच प्रमेय कहता है कि ये समान हैं। जब Y  बिंदु होता है, तो वेक्टर बंडल  वेक्टर स्पेस होता है, वेक्टर स्पेस का वर्ग इसका आयाम होता है, और ग्रोथेंडिक-रीमैन-रोच प्रमेय हिरजेब्रुक के प्रमेय के विशेषज्ञ होते हैं।
Line 28: Line 28:
K से निकटता से संबंधित  समूह<sub>1</sub> ग्रुप रिंग्स के लिए पहले J.H.C द्वारा पेश किया गया था। व्हाइटहेड। हेनरी पोंकारे ने त्रिभुज के संदर्भ में बेट्टी संख्या को कई गुना परिभाषित करने का प्रयास किया था। हालाँकि, उनके तरीकों में  गंभीर अंतर था: पोंकारे यह साबित नहीं कर सके कि कई गुना के दो त्रिभुज हमेशा  ही बेट्टी संख्याएँ देते हैं। यह स्पष्ट रूप से सच था कि त्रिभुज को उप-विभाजित करके बेट्टी संख्याएँ अपरिवर्तित थीं, और इसलिए यह स्पष्ट था कि कोई भी दो त्रिभुज जो  सामान्य उपखंड साझा करते थे, उनकी बेट्टी संख्याएँ समान थीं। जो ज्ञात नहीं था वह यह था कि किन्हीं दो त्रिकोणों ने  सामान्य उपखंड को स्वीकार किया। यह परिकल्पना  अनुमान बन गई जिसे हाउप्टवर्मुटुंग (मोटे तौर पर [[मुख्य अनुमान]]) के रूप में जाना जाता है। तथ्य यह है कि त्रिभुज उपखंड के नेतृत्व में स्थिर थे, जे.एच.सी. व्हाइटहेड ने [[सरल होमोटॉपी प्रकार]] की धारणा का परिचय दिया।<ref>Whitehead 1939, Whitehead 1941, Whitehead 1950</ref>  साधारण होमोटॉपी समतुल्यता को  साधारण कॉम्प्लेक्स या [[ कोशिका परिसर ]] में सरलता या कोशिकाओं को जोड़ने के संदर्भ में परिभाषित किया गया है ताकि प्रत्येक अतिरिक्त सिम्प्लेक्स या सेल विरूपण पुराने स्थान के  उपखंड में वापस आ जाए। इस परिभाषा के लिए प्रेरणा का  हिस्सा यह है कि त्रिभुज का  उपखंड मूल त्रिभुज के समतुल्य सरल होमोटोपी है, और इसलिए दो त्रिभुज जो  सामान्य उपखंड साझा करते हैं, वे साधारण होमोटॉपी समकक्ष होने चाहिए। व्हाइटहेड ने मरोड़ नामक  अपरिवर्तनीय को प्रस्तुत करके सिद्ध किया कि सरल होमोटोपी तुल्यता होमोटोपी तुल्यता की तुलना में  महीन अपरिवर्तनीय है। होमोटॉपी समतुल्यता का मरोड़  समूह में मान लेता है जिसे अब व्हाइटहेड समूह कहा जाता है और Wh(π) को निरूपित किया जाता है, जहां π दो परिसरों का मूलभूत समूह है। व्हाइटहेड ने गैर-तुच्छ मरोड़ के उदाहरण पाए और इस तरह साबित किया कि कुछ होमोटोपी समकक्ष सरल नहीं थे। व्हाइटहेड समूह को बाद में K का भागफल पाया गया<sub>1</sub>(Z''π''), जहां Z''π'' ''π'' का इंटीग्रल [[ समूह की अंगूठी ]] है। बाद में [[जॉन मिल्नोर]] ने हाउप्टवर्मुटुंग का खंडन करने के लिए व्हाइटहेड टॉर्सियन से संबंधित  अपरिवर्तनीय [[Reidemeister मरोड़]] का इस्तेमाल किया।
K से निकटता से संबंधित  समूह<sub>1</sub> ग्रुप रिंग्स के लिए पहले J.H.C द्वारा पेश किया गया था। व्हाइटहेड। हेनरी पोंकारे ने त्रिभुज के संदर्भ में बेट्टी संख्या को कई गुना परिभाषित करने का प्रयास किया था। हालाँकि, उनके तरीकों में  गंभीर अंतर था: पोंकारे यह साबित नहीं कर सके कि कई गुना के दो त्रिभुज हमेशा  ही बेट्टी संख्याएँ देते हैं। यह स्पष्ट रूप से सच था कि त्रिभुज को उप-विभाजित करके बेट्टी संख्याएँ अपरिवर्तित थीं, और इसलिए यह स्पष्ट था कि कोई भी दो त्रिभुज जो  सामान्य उपखंड साझा करते थे, उनकी बेट्टी संख्याएँ समान थीं। जो ज्ञात नहीं था वह यह था कि किन्हीं दो त्रिकोणों ने  सामान्य उपखंड को स्वीकार किया। यह परिकल्पना  अनुमान बन गई जिसे हाउप्टवर्मुटुंग (मोटे तौर पर [[मुख्य अनुमान]]) के रूप में जाना जाता है। तथ्य यह है कि त्रिभुज उपखंड के नेतृत्व में स्थिर थे, जे.एच.सी. व्हाइटहेड ने [[सरल होमोटॉपी प्रकार]] की धारणा का परिचय दिया।<ref>Whitehead 1939, Whitehead 1941, Whitehead 1950</ref>  साधारण होमोटॉपी समतुल्यता को  साधारण कॉम्प्लेक्स या [[ कोशिका परिसर ]] में सरलता या कोशिकाओं को जोड़ने के संदर्भ में परिभाषित किया गया है ताकि प्रत्येक अतिरिक्त सिम्प्लेक्स या सेल विरूपण पुराने स्थान के  उपखंड में वापस आ जाए। इस परिभाषा के लिए प्रेरणा का  हिस्सा यह है कि त्रिभुज का  उपखंड मूल त्रिभुज के समतुल्य सरल होमोटोपी है, और इसलिए दो त्रिभुज जो  सामान्य उपखंड साझा करते हैं, वे साधारण होमोटॉपी समकक्ष होने चाहिए। व्हाइटहेड ने मरोड़ नामक  अपरिवर्तनीय को प्रस्तुत करके सिद्ध किया कि सरल होमोटोपी तुल्यता होमोटोपी तुल्यता की तुलना में  महीन अपरिवर्तनीय है। होमोटॉपी समतुल्यता का मरोड़  समूह में मान लेता है जिसे अब व्हाइटहेड समूह कहा जाता है और Wh(π) को निरूपित किया जाता है, जहां π दो परिसरों का मूलभूत समूह है। व्हाइटहेड ने गैर-तुच्छ मरोड़ के उदाहरण पाए और इस तरह साबित किया कि कुछ होमोटोपी समकक्ष सरल नहीं थे। व्हाइटहेड समूह को बाद में K का भागफल पाया गया<sub>1</sub>(Z''π''), जहां Z''π'' ''π'' का इंटीग्रल [[ समूह की अंगूठी ]] है। बाद में [[जॉन मिल्नोर]] ने हाउप्टवर्मुटुंग का खंडन करने के लिए व्हाइटहेड टॉर्सियन से संबंधित  अपरिवर्तनीय [[Reidemeister मरोड़]] का इस्तेमाल किया।


''के'' की पहली पर्याप्त परिभाषा<sub>1</sub>  अंगूठी का निर्माण [[हाइमन बास]] और [[स्टीफन शैनुअल]] द्वारा किया गया था।<ref>Bass–Schanuel 1962</ref> टोपोलॉजिकल के-थ्योरी में, के<sub>1</sub> अंतरिक्ष के [[निलंबन (टोपोलॉजी)]] पर वेक्टर बंडलों का उपयोग करके परिभाषित किया गया है। ऐसे सभी वेक्टर बंडल [[ जकड़न निर्माण ]] से आते हैं, जहां स्पेस के दो हिस्सों पर दो तुच्छ वेक्टर बंडल स्पेस की  सामान्य पट्टी के साथ चिपके होते हैं। यह ग्लूइंग डेटा सामान्य रेखीय समूह का उपयोग करके व्यक्त किया जाता है, लेकिन प्राथमिक मेट्रिसेस (प्राथमिक पंक्ति या स्तंभ संचालन के अनुरूप मैट्रिसेस) से आने वाले उस समूह के तत्व समकक्ष ग्लूइंग को परिभाषित करते हैं। इससे प्रेरित होकर, के.एस. की बास-शैनुअल परिभाषा<sub>1</sub>  वलय का R है {{nowrap|''GL''(''R'') / ''E''(''R'')}}, जहां जीएल (आर) अनंत सामान्य रैखिक समूह है (सभी जीएल का संघ<sub>''n''</sub>(आर)) और ई (आर) प्राथमिक मैट्रिसेस का उपसमूह है। उन्होंने K की परिभाषा भी प्रदान की<sub>0</sub> अंगूठियों की  समरूपता और साबित किया कि K<sub>0</sub> और के<sub>1</sub> रिश्तेदार होमोलॉजी सटीक अनुक्रम के समान सटीक अनुक्रम में  साथ फिट हो सकते हैं।
''के'' की पहली पर्याप्त परिभाषा<sub>1</sub>  अंगूठी का निर्माण [[हाइमन बास]] और [[स्टीफन शैनुअल]] द्वारा किया गया था।<ref>Bass–Schanuel 1962</ref> टोपोलॉजिकल के-थ्योरी में, के<sub>1</sub> अंतरिक्ष के [[निलंबन (टोपोलॉजी)]] पर वेक्टर बंडलों का उपयोग करके परिभाषित किया गया है। ऐसे सभी वेक्टर बंडल [[ जकड़न निर्माण ]] से आते हैं, जहां स्पेस के दो हिस्सों पर दो तुच्छ वेक्टर बंडल स्पेस की  सामान्य पट्टी के साथ चिपके होते हैं। यह ग्लूइंग डेटा सामान्य रेखीय समूह का उपयोग करके व्यक्त किया जाता है, लेकिन प्राथमिक मेट्रिसेस (प्राथमिक पंक्ति या स्तंभ संचालन के अनुरूप मैट्रिसेस) से आने वाले उस समूह के तत्व समकक्ष ग्लूइंग को परिभाषित करते हैं। इससे प्रेरित होकर, के.एस. की बास-शैनुअल परिभाषा<sub>1</sub>  वलय का R है {{nowrap|''GL''(''R'') / ''E''(''R'')}}, जहां जीएल (आर) अनंत सामान्य रैखिक समूह है (सभी जीएल का संघ<sub>''n''</sub>(आर)) और ई (आर) प्राथमिक मैट्रिसेस का उपसमूह है। उन्होंने K की परिभाषा भी प्रदान की<sub>0</sub> अंगूठियों की  समरूपता और साबित किया कि K<sub>0</sub> और के<sub>1</sub> रिश्तेदार होमोलॉजी त्रुटिहीनसटीक अनुक्रम के समान त्रुटिहीनसटीक अनुक्रम में  साथ फिट हो सकते हैं।


इस अवधि से के-सिद्धांत में कार्य बास की पुस्तक बीजगणितीय के-सिद्धांत में समाप्त हुआ।<ref>Bass 1968</ref> तत्कालीन ज्ञात परिणामों की  सुसंगत व्याख्या प्रदान करने के अलावा, बास ने प्रमेयों के कई बयानों में सुधार किया। विशेष रूप से ध्यान देने योग्य बात यह है कि बास, मूर्ति के साथ अपने पहले के काम पर निर्माण कर रहे हैं,<ref>Bass–Murthy 1967</ref> बीजीय K-सिद्धांत के मौलिक प्रमेय के रूप में जाना जाने वाला पहला प्रमाण प्रदान किया। यह ''K'' से संबंधित चार-टर्म सटीक अनुक्रम है<sub>0</sub>  रिंग R से K<sub>1</sub> R का, बहुपद वलय R[t], और स्थानीयकरण R[t, t<sup>-1</sup>]। बास ने माना कि इस प्रमेय ने K का विवरण प्रदान किया है<sub>0</sub> पूरी तरह से के<sub>1</sub>. इस विवरण को पुनरावर्ती रूप से लागू करके, उन्होंने नकारात्मक K-समूह K का उत्पादन किया<sub>&minus;n</sub>(आर)। स्वतंत्र कार्य में, [[मैक्स करौबी]] ने कुछ श्रेणियों के लिए नकारात्मक के-समूहों की  और परिभाषा दी और साबित किया कि उनकी परिभाषाओं से बास के समान समूह उत्पन्न हुए।<ref>Karoubi 1968</ref>
इस अवधि से के-सिद्धांत में कार्य बास की पुस्तक बीजगणितीय के-सिद्धांत में समाप्त हुआ।<ref>Bass 1968</ref> तत्कालीन ज्ञात परिणामों की  सुसंगत व्याख्या प्रदान करने के अलावा, बास ने प्रमेयों के कई बयानों में सुधार किया। विशेष रूप से ध्यान देने योग्य बात यह है कि बास, मूर्ति के साथ अपने पहले के काम पर निर्माण कर रहे हैं,<ref>Bass–Murthy 1967</ref> बीजीय K-सिद्धांत के मौलिक प्रमेय के रूप में जाना जाने वाला पहला प्रमाण प्रदान किया। यह ''K'' से संबंधित चार-टर्म त्रुटिहीनसटीक अनुक्रम है<sub>0</sub>  रिंग R से K<sub>1</sub> R का, बहुपद वलय R[t], और स्थानीयकरण R[t, t<sup>-1</sup>]। बास ने माना कि इस प्रमेय ने K का विवरण प्रदान किया है<sub>0</sub> पूरी तरह से के<sub>1</sub>. इस विवरण को पुनरावर्ती रूप से लागू करके, उन्होंने नकारात्मक K-समूह K का उत्पादन किया<sub>&minus;n</sub>(आर)। स्वतंत्र कार्य में, [[मैक्स करौबी]] ने कुछ श्रेणियों के लिए नकारात्मक के-समूहों की  और परिभाषा दी और साबित किया कि उनकी परिभाषाओं से बास के समान समूह उत्पन्न हुए।<ref>Karoubi 1968</ref>
विषय में अगला प्रमुख विकास K की परिभाषा के साथ आया<sub>2</sub>. स्टाइनबर्ग ने  क्षेत्र पर शेवेले समूह के [[सार्वभौमिक केंद्रीय विस्तार]] का अध्ययन किया और जनरेटर और संबंधों के संदर्भ में इस समूह की  स्पष्ट प्रस्तुति दी।<ref>Steinberg 1962</ref> समूह ई के मामले में<sub>''n''</sub>(के) प्राथमिक मैट्रिसेस का, सार्वभौमिक केंद्रीय विस्तार अब सेंट लिखा गया है<sub>''n''</sub>(के) और स्टाइनबर्ग समूह कहा जाता है। 1967 के वसंत में, जॉन मिल्नोर ने के<sub>2</sub>(आर) समरूपता का कर्नेल होना {{nowrap|St(''R'') → ''E''(''R'')}}.<ref>Milnor 1971</ref> समूह के<sub>2</sub> K के लिए जाने जाने वाले कुछ सटीक अनुक्रमों को आगे बढ़ाया<sub>1</sub> और के<sub>0</sub>, और इसमें संख्या सिद्धांत के लिए आकर्षक अनुप्रयोग थे। [[हिजिया मात्सुमोतो]] की 1968 की थीसिस<ref>Matsumoto 1969</ref> दिखाया कि  क्षेत्र F के लिए, K<sub>2</sub>(एफ) आइसोमोर्फिक था:
विषय में अगला प्रमुख विकास K की परिभाषा के साथ आया<sub>2</sub>. स्टाइनबर्ग ने  क्षेत्र पर शेवेले समूह के [[सार्वभौमिक केंद्रीय विस्तार]] का अध्ययन किया और जनरेटर और संबंधों के संदर्भ में इस समूह की  स्पष्ट प्रस्तुति दी।<ref>Steinberg 1962</ref> समूह ई के मामले में<sub>''n''</sub>(के) प्राथमिक मैट्रिसेस का, सार्वभौमिक केंद्रीय विस्तार अब सेंट लिखा गया है<sub>''n''</sub>(के) और स्टाइनबर्ग समूह कहा जाता है। 1967 के वसंत में, जॉन मिल्नोर ने के<sub>2</sub>(आर) समरूपता का कर्नेल होना {{nowrap|St(''R'') → ''E''(''R'')}}.<ref>Milnor 1971</ref> समूह के<sub>2</sub> K के लिए जाने जाने वाले कुछ त्रुटिहीनसटीक अनुक्रमों को आगे बढ़ाया<sub>1</sub> और के<sub>0</sub>, और इसमें संख्या सिद्धांत के लिए आकर्षक अनुप्रयोग थे। [[हिजिया मात्सुमोतो]] की 1968 की थीसिस<ref>Matsumoto 1969</ref> दिखाया कि  क्षेत्र F के लिए, K<sub>2</sub>(एफ) आइसोमोर्फिक था:
:<math>F^\times \otimes_{\mathbf{Z}} F^\times / \langle x \otimes (1 - x) \colon x \in F \setminus \{0, 1\} \rangle.</math>
:<math>F^\times \otimes_{\mathbf{Z}} F^\times / \langle x \otimes (1 - x) \colon x \in F \setminus \{0, 1\} \rangle.</math>
यह संबंध हिल्बर्ट प्रतीक से भी संतुष्ट होता है, जो [[स्थानीय क्षेत्र]]ों पर द्विघात समीकरणों की विलेयता को व्यक्त करता है। विशेष रूप से, [[जॉन टेट (गणितज्ञ)]] यह साबित करने में सक्षम थे कि के<sub>2</sub>(क्यू) द्विघात पारस्परिकता के कानून के आसपास अनिवार्य रूप से संरचित है।
यह संबंध हिल्बर्ट प्रतीक से भी संतुष्ट होता है, जो [[स्थानीय क्षेत्र]]ों पर द्विघात समीकरणों की विलेयता को व्यक्त करता है। विशेष रूप से, [[जॉन टेट (गणितज्ञ)]] यह साबित करने में सक्षम थे कि के<sub>2</sub>(क्यू) द्विघात पारस्परिकता के कानून के आसपास अनिवार्य रूप से संरचित है।
Line 44: Line 44:
वर्गीकरण स्थान बीजीएल जुड़ा हुआ है, इसलिए क्विलेन की परिभाषा के के लिए सही मान देने में विफल रही<sub>0</sub>. इसके अतिरिक्त, इसने कोई नकारात्मक K-समूह नहीं दिया। चूंकि के<sub>0</sub>  ज्ञात और स्वीकृत परिभाषा थी, इस कठिनाई को दूर करना संभव था, लेकिन यह तकनीकी रूप से अटपटा बना रहा। संकल्पनात्मक रूप से, समस्या यह थी कि परिभाषा जीएल से निकली थी, जो मौलिक रूप से के का स्रोत था<sub>1</sub>. क्योंकि GL केवल वेक्टर बंडलों को चिपकाने के बारे में जानता है, स्वयं वेक्टर बंडलों के बारे में नहीं, इसलिए उसके लिए K का वर्णन करना असंभव था<sub>0</sub>.
वर्गीकरण स्थान बीजीएल जुड़ा हुआ है, इसलिए क्विलेन की परिभाषा के के लिए सही मान देने में विफल रही<sub>0</sub>. इसके अतिरिक्त, इसने कोई नकारात्मक K-समूह नहीं दिया। चूंकि के<sub>0</sub>  ज्ञात और स्वीकृत परिभाषा थी, इस कठिनाई को दूर करना संभव था, लेकिन यह तकनीकी रूप से अटपटा बना रहा। संकल्पनात्मक रूप से, समस्या यह थी कि परिभाषा जीएल से निकली थी, जो मौलिक रूप से के का स्रोत था<sub>1</sub>. क्योंकि GL केवल वेक्टर बंडलों को चिपकाने के बारे में जानता है, स्वयं वेक्टर बंडलों के बारे में नहीं, इसलिए उसके लिए K का वर्णन करना असंभव था<sub>0</sub>.


क्विलेन के साथ बातचीत से प्रेरित होकर, सहगल ने जल्द ही बीजगणितीय के-सिद्धांत के निर्माण के लिए Γ-ऑब्जेक्ट्स के नाम से  और दृष्टिकोण पेश किया।<ref>Segal 1974</ref> सहगल का दृष्टिकोण K के ग्रोथेंडिक के निर्माण का  होमोटॉपी एनालॉग है<sub>0</sub>. जहां ग्रोथेंडिक ने बंडलों के समरूपता वर्गों के साथ काम किया, सहगल ने स्वयं बंडलों के साथ काम किया और अपने डेटा के हिस्से के रूप में बंडलों के समरूपता का इस्तेमाल किया। इसका परिणाम  [[स्पेक्ट्रम (टोपोलॉजी)]] में होता है, जिनके होमोटोपी समूह उच्च के-समूह होते हैं (के<sub>0</sub>). हालांकि, सहगल का दृष्टिकोण केवल विभाजित सटीक अनुक्रमों के लिए संबंधों को लागू करने में सक्षम था, सामान्य सटीक अनुक्रमों के लिए नहीं।  रिंग के ऊपर प्रोजेक्टिव मॉड्यूल की श्रेणी में, हर छोटा सटीक अनुक्रम विभाजित होता है, और इसलिए Γ-ऑब्जेक्ट्स का उपयोग रिंग के K-सिद्धांत को परिभाषित करने के लिए किया जा सकता है। हालांकि,  किस्म पर वेक्टर बंडलों की श्रेणी में और रिंग के ऊपर सभी मॉड्यूल की श्रेणी में गैर-विभाजित लघु सटीक अनुक्रम हैं, इसलिए सहगल का दृष्टिकोण ब्याज के सभी मामलों पर लागू नहीं होता है।
क्विलेन के साथ बातचीत से प्रेरित होकर, सहगल ने जल्द ही बीजगणितीय के-सिद्धांत के निर्माण के लिए Γ-ऑब्जेक्ट्स के नाम से  और दृष्टिकोण पेश किया।<ref>Segal 1974</ref> सहगल का दृष्टिकोण K के ग्रोथेंडिक के निर्माण का  होमोटॉपी एनालॉग है<sub>0</sub>. जहां ग्रोथेंडिक ने बंडलों के समरूपता वर्गों के साथ काम किया, सहगल ने स्वयं बंडलों के साथ काम किया और अपने डेटा के हिस्से के रूप में बंडलों के समरूपता का इस्तेमाल किया। इसका परिणाम  [[स्पेक्ट्रम (टोपोलॉजी)]] में होता है, जिनके होमोटोपी समूह उच्च के-समूह होते हैं (के<sub>0</sub>). हालांकि, सहगल का दृष्टिकोण केवल विभाजित त्रुटिहीनसटीक अनुक्रमों के लिए संबंधों को लागू करने में सक्षम था, सामान्य त्रुटिहीनसटीक अनुक्रमों के लिए नहीं।  रिंग के ऊपर प्रोजेक्टिव मॉड्यूल की श्रेणी में, हर छोटा त्रुटिहीनसटीक अनुक्रम विभाजित होता है, और इसलिए Γ-ऑब्जेक्ट्स का उपयोग रिंग के K-सिद्धांत को परिभाषित करने के लिए किया जा सकता है। हालांकि,  किस्म पर वेक्टर बंडलों की श्रेणी में और रिंग के ऊपर सभी मॉड्यूल की श्रेणी में गैर-विभाजित लघु त्रुटिहीनसटीक अनुक्रम हैं, इसलिए सहगल का दृष्टिकोण ब्याज के सभी मामलों पर लागू नहीं होता है।


1972 के वसंत में, क्विलेन को उच्च के-सिद्धांत के निर्माण के लिए  और दृष्टिकोण मिला, जो अत्यधिक सफल साबित हुआ। यह नई परिभाषा  [[सटीक श्रेणी]] के साथ शुरू हुई,  ऐसी श्रेणी जो कुछ औपचारिक गुणों को संतुष्ट करती है, लेकिन मॉड्यूल या वेक्टर बंडलों की श्रेणी से संतुष्ट गुणों की तुलना में थोड़ी कमजोर है। इससे उन्होंने अपने क्यू-कंस्ट्रक्शन|क्यू-कंस्ट्रक्शन नामक  नए उपकरण का उपयोग करके  सहायक श्रेणी का निर्माण किया। सेगल की Γ-ऑब्जेक्ट्स की तरह, क्यू-निर्माण की जड़ें ग्रोथेंडिक की K की परिभाषा में हैं<sub>0</sub>. ग्रोथेंडिक की परिभाषा के विपरीत, क्यू-निर्माण  श्रेणी बनाता है, एबेलियन समूह नहीं, और सेगल के Γ-ऑब्जेक्ट्स के विपरीत, क्यू-निर्माण सीधे छोटे सटीक अनुक्रमों के साथ काम करता है। यदि C  एबेलियन श्रेणी है, तो QC  ऐसी श्रेणी है जिसमें C के समान वस्तुएँ हैं, लेकिन जिनके आकारिकी को C में लघु सटीक अनुक्रमों के संदर्भ में परिभाषित किया गया है। सटीक श्रेणी के K- समूह ΩBQC के होमोटोपी समूह हैं, [[लूप स्पेस]] सरल सेट का (लूप स्पेस लेना इंडेक्सिंग को सही करता है)। क्विलेन ने भी अपना साबित किया{{nowrap|+ {{=}} ''Q''}} प्रमेय कि K-सिद्धांत की उनकी दो परिभाषाएँ -दूसरे से सहमत हैं। इससे सही K निकला<sub>0</sub> और सरल प्रमाणों का नेतृत्व किया, लेकिन फिर भी कोई नकारात्मक के-समूह नहीं मिला।
1972 के वसंत में, क्विलेन को उच्च के-सिद्धांत के निर्माण के लिए  और दृष्टिकोण मिला, जो अत्यधिक सफल साबित हुआ। यह नई परिभाषा  [[सटीक श्रेणी|त्रुटिहीनसटीक श्रेणी]] के साथ शुरू हुई,  ऐसी श्रेणी जो कुछ औपचारिक गुणों को संतुष्ट करती है, लेकिन मॉड्यूल या वेक्टर बंडलों की श्रेणी से संतुष्ट गुणों की तुलना में थोड़ी कमजोर है। इससे उन्होंने अपने क्यू-कंस्ट्रक्शन|क्यू-कंस्ट्रक्शन नामक  नए उपकरण का उपयोग करके  सहायक श्रेणी का निर्माण किया। सेगल की Γ-ऑब्जेक्ट्स की तरह, क्यू-निर्माण की जड़ें ग्रोथेंडिक की K की परिभाषा में हैं<sub>0</sub>. ग्रोथेंडिक की परिभाषा के विपरीत, क्यू-निर्माण  श्रेणी बनाता है, एबेलियन समूह नहीं, और सेगल के Γ-ऑब्जेक्ट्स के विपरीत, क्यू-निर्माण सीधे छोटे त्रुटिहीनसटीक अनुक्रमों के साथ काम करता है। यदि C  एबेलियन श्रेणी है, तो QC  ऐसी श्रेणी है जिसमें C के समान वस्तुएँ हैं, लेकिन जिनके आकारिकी को C में लघु त्रुटिहीनसटीक अनुक्रमों के संदर्भ में परिभाषित किया गया है। त्रुटिहीनसटीक श्रेणी के K- समूह ΩBQC के होमोटोपी समूह हैं, [[लूप स्पेस]] सरल सेट का (लूप स्पेस लेना इंडेक्सिंग को सही करता है)। क्विलेन ने भी अपना साबित किया{{nowrap|+ {{=}} ''Q''}} प्रमेय कि K-सिद्धांत की उनकी दो परिभाषाएँ -दूसरे से सहमत हैं। इससे सही K निकला<sub>0</sub> और सरल प्रमाणों का नेतृत्व किया, लेकिन फिर भी कोई नकारात्मक के-समूह नहीं मिला।


सभी एबेलियन श्रेणियां सटीक श्रेणियां हैं, लेकिन सभी सटीक श्रेणियां एबेलियन नहीं हैं। क्योंकि क्विलन इस अधिक सामान्य स्थिति में काम करने में सक्षम था, वह अपने प्रमाणों में उपकरण के रूप में सटीक श्रेणियों का उपयोग करने में सक्षम था। इस तकनीक ने उन्हें बीजगणितीय के-सिद्धांत के कई मूलभूत प्रमेयों को सिद्ध करने की अनुमति दी। इसके अतिरिक्त, यह साबित करना संभव था कि स्वान और गेर्स्टन की पहले की परिभाषाएँ कुछ शर्तों के तहत क्विलेन के समकक्ष थीं।
सभी एबेलियन श्रेणियां त्रुटिहीनसटीक श्रेणियां हैं, लेकिन सभी त्रुटिहीनसटीक श्रेणियां एबेलियन नहीं हैं। क्योंकि क्विलन इस अधिक सामान्य स्थिति में काम करने में सक्षम था, वह अपने प्रमाणों में उपकरण के रूप में त्रुटिहीनसटीक श्रेणियों का उपयोग करने में सक्षम था। इस तकनीक ने उन्हें बीजगणितीय के-सिद्धांत के कई मूलभूत प्रमेयों को सिद्ध करने की अनुमति दी। इसके अतिरिक्त, यह साबित करना संभव था कि स्वान और गेर्स्टन की पहले की परिभाषाएँ कुछ शर्तों के तहत क्विलेन के समकक्ष थीं।


के-थ्योरी अब अंगूठियों के लिए  होमोलॉजी सिद्धांत और विविधता के लिए  कोहोलॉजी सिद्धांत प्रतीत होता है। हालांकि, इसके कई मूलभूत प्रमेयों ने परिकल्पना की है कि प्रश्न में अंगूठी या विविधता नियमित थी। मूलभूत अपेक्षित संबंधों में से  लंबा सटीक अनुक्रम था (स्थानीयकरण अनुक्रम कहा जाता है) जो विभिन्न प्रकार के ्स के के-सिद्धांत और  खुले उपसमुच्चय यू से संबंधित है। क्विलेन पूर्ण सामान्यता में स्थानीयकरण अनुक्रम के अस्तित्व को साबित करने में असमर्थ था। हालांकि, वह जी-सिद्धांत (या कभी-कभी के-सिद्धांत) नामक संबंधित सिद्धांत के अस्तित्व को साबित करने में सक्षम था। ग्रोथेंडिक द्वारा विषय के विकास में जी-सिद्धांत को प्रारंभिक रूप से परिभाषित किया गया था। ग्रोथेंडिक परिभाषित जी<sub>0</sub>(्स)  किस्म ्स के लिए ्स पर सुसंगत शीशों के आइसोमोर्फिज्म वर्गों पर मुक्त एबेलियन समूह होने के लिए, सुसंगत ढेरों के सटीक अनुक्रमों से आने वाले मॉड्यूलो संबंध। बाद के लेखकों द्वारा अपनाई गई स्पष्ट रूपरेखा में, विविधता का के-सिद्धांत वेक्टर बंडलों की अपनी श्रेणी का के-सिद्धांत है, जबकि इसका जी-सिद्धांत इसके सुसंगत ढेरों की श्रेणी का के-सिद्धांत है। क्विलन न केवल जी-सिद्धांत के लिए  स्थानीयकरण सटीक अनुक्रम के अस्तित्व को साबित कर सकता था, वह यह भी साबित कर सकता था कि  नियमित अंगूठी या विविधता के लिए, के-सिद्धांत जी-सिद्धांत के बराबर है, और इसलिए नियमित विविधता के के-सिद्धांत का स्थानीयकरण सटीक अनुक्रम था। चूँकि यह क्रम इस विषय में कई तथ्यों के लिए मौलिक था, नियमितता की परिकल्पना उच्च के-सिद्धांत पर प्रारंभिक कार्य में व्याप्त थी।
के-थ्योरी अब अंगूठियों के लिए  होमोलॉजी सिद्धांत और विविधता के लिए  कोहोलॉजी सिद्धांत प्रतीत होता है। हालांकि, इसके कई मूलभूत प्रमेयों ने परिकल्पना की है कि प्रश्न में अंगूठी या विविधता नियमित थी। मूलभूत अपेक्षित संबंधों में से  लंबा त्रुटिहीनसटीक अनुक्रम था (स्थानीयकरण अनुक्रम कहा जाता है) जो विभिन्न प्रकार के ्स के के-सिद्धांत और  खुले उपसमुच्चय यू से संबंधित है। क्विलेन पूर्ण सामान्यता में स्थानीयकरण अनुक्रम के अस्तित्व को साबित करने में असमर्थ था। हालांकि, वह जी-सिद्धांत (या कभी-कभी के-सिद्धांत) नामक संबंधित सिद्धांत के अस्तित्व को साबित करने में सक्षम था। ग्रोथेंडिक द्वारा विषय के विकास में जी-सिद्धांत को प्रारंभिक रूप से परिभाषित किया गया था। ग्रोथेंडिक परिभाषित जी<sub>0</sub>(्स)  किस्म ्स के लिए ्स पर सुसंगत शीशों के आइसोमोर्फिज्म वर्गों पर मुक्त एबेलियन समूह होने के लिए, सुसंगत ढेरों के त्रुटिहीनसटीक अनुक्रमों से आने वाले मॉड्यूलो संबंध। बाद के लेखकों द्वारा अपनाई गई स्पष्ट रूपरेखा में, विविधता का के-सिद्धांत वेक्टर बंडलों की अपनी श्रेणी का के-सिद्धांत है, जबकि इसका जी-सिद्धांत इसके सुसंगत ढेरों की श्रेणी का के-सिद्धांत है। क्विलन न केवल जी-सिद्धांत के लिए  स्थानीयकरण त्रुटिहीनसटीक अनुक्रम के अस्तित्व को साबित कर सकता था, वह यह भी साबित कर सकता था कि  नियमित अंगूठी या विविधता के लिए, के-सिद्धांत जी-सिद्धांत के बराबर है, और इसलिए नियमित विविधता के के-सिद्धांत का स्थानीयकरण त्रुटिहीनसटीक अनुक्रम था। चूँकि यह क्रम इस विषय में कई तथ्यों के लिए मौलिक था, नियमितता की परिकल्पना उच्च के-सिद्धांत पर प्रारंभिक कार्य में व्याप्त थी।


=== टोपोलॉजी में बीजगणितीय के-सिद्धांत के अनुप्रयोग ===
=== टोपोलॉजी में बीजगणितीय के-सिद्धांत के अनुप्रयोग ===
Line 63: Line 63:
एस-कोबोर्डिज्म प्रमेय के लिए उचित संदर्भ एच-कोबोर्डिज्म का वर्गीकरण स्थान है। यदि M  CAT मैनिफोल्ड है, तो H<sup>CAT</sup>(M)  ऐसा स्थान है जो M पर h-coboardisms के बंडलों को वर्गीकृत करता है। s-coboardism प्रमेय को इस कथन के रूप में पुनर्व्याख्या की जा सकती है कि इस स्थान के जुड़े घटकों का सेट π का ​​व्हाइटहेड समूह है<sub>1</sub>(एम)। इस स्थान में व्हाइटहेड समूह की तुलना में अधिक जानकारी है; उदाहरण के लिए, तुच्छ कोबोर्डिज्म का जुड़ा हुआ घटक एम पर संभावित सिलेंडरों का वर्णन करता है और विशेष रूप से कई गुना और के बीच  होमोटॉपी की विशिष्टता में बाधा है {{nowrap|''M'' &times; [0, 1]}}. इन सवालों पर विचार करने के लिए वाल्डहौसेन ने रिक्त स्थान के अपने बीजगणितीय के-सिद्धांत को पेश करने का नेतृत्व किया।<ref>Waldhausen 1978</ref> M का बीजगणितीय K-सिद्धांत  स्थान A(M) है जिसे परिभाषित किया गया है ताकि यह उच्च K-समूहों के लिए अनिवार्य रूप से K के समान भूमिका निभाए।<sub>1</sub>(Zπ<sub>1</sub>(M)) M के लिए करता है। विशेष रूप से, Waldhausen ने दिखाया कि A(M) से स्पेस Wh(M) तक  नक्शा है जो मानचित्र को सामान्य करता है {{nowrap|''K''<sub>1</sub>('''Z'''π<sub>1</sub>(''M'')) → Wh(''π''<sub>1</sub>(''M''))}} और जिसका होमोटॉपी फाइबर  होमोलॉजी थ्योरी है।
एस-कोबोर्डिज्म प्रमेय के लिए उचित संदर्भ एच-कोबोर्डिज्म का वर्गीकरण स्थान है। यदि M  CAT मैनिफोल्ड है, तो H<sup>CAT</sup>(M)  ऐसा स्थान है जो M पर h-coboardisms के बंडलों को वर्गीकृत करता है। s-coboardism प्रमेय को इस कथन के रूप में पुनर्व्याख्या की जा सकती है कि इस स्थान के जुड़े घटकों का सेट π का ​​व्हाइटहेड समूह है<sub>1</sub>(एम)। इस स्थान में व्हाइटहेड समूह की तुलना में अधिक जानकारी है; उदाहरण के लिए, तुच्छ कोबोर्डिज्म का जुड़ा हुआ घटक एम पर संभावित सिलेंडरों का वर्णन करता है और विशेष रूप से कई गुना और के बीच  होमोटॉपी की विशिष्टता में बाधा है {{nowrap|''M'' &times; [0, 1]}}. इन सवालों पर विचार करने के लिए वाल्डहौसेन ने रिक्त स्थान के अपने बीजगणितीय के-सिद्धांत को पेश करने का नेतृत्व किया।<ref>Waldhausen 1978</ref> M का बीजगणितीय K-सिद्धांत  स्थान A(M) है जिसे परिभाषित किया गया है ताकि यह उच्च K-समूहों के लिए अनिवार्य रूप से K के समान भूमिका निभाए।<sub>1</sub>(Zπ<sub>1</sub>(M)) M के लिए करता है। विशेष रूप से, Waldhausen ने दिखाया कि A(M) से स्पेस Wh(M) तक  नक्शा है जो मानचित्र को सामान्य करता है {{nowrap|''K''<sub>1</sub>('''Z'''π<sub>1</sub>(''M'')) → Wh(''π''<sub>1</sub>(''M''))}} और जिसका होमोटॉपी फाइबर  होमोलॉजी थ्योरी है।


ए-थ्योरी को पूरी तरह से विकसित करने के लिए, वाल्डहॉसन ने के-थ्योरी की नींव में महत्वपूर्ण तकनीकी प्रगति की। Waldhausen ने Waldhausen श्रेणी की शुरुआत की, और Waldhausen श्रेणी C के लिए उन्होंने  साधारण श्रेणी S की शुरुआत की<sub>&sdot;</sub>सी (एस सेगल के लिए है) सी में कोफिब्रेशन की श्रृंखलाओं के संदर्भ में परिभाषित किया गया है।<ref>Waldhausen 1985</ref> इसने के-सिद्धांत की नींव को सटीक अनुक्रमों के अनुरूपों को लागू करने की आवश्यकता से मुक्त कर दिया।
ए-थ्योरी को पूरी तरह से विकसित करने के लिए, वाल्डहॉसन ने के-थ्योरी की नींव में महत्वपूर्ण तकनीकी प्रगति की। Waldhausen ने Waldhausen श्रेणी की शुरुआत की, और Waldhausen श्रेणी C के लिए उन्होंने  साधारण श्रेणी S की शुरुआत की<sub>&sdot;</sub>सी (एस सेगल के लिए है) सी में कोफिब्रेशन की श्रृंखलाओं के संदर्भ में परिभाषित किया गया है।<ref>Waldhausen 1985</ref> इसने के-सिद्धांत की नींव को त्रुटिहीनसटीक अनुक्रमों के अनुरूपों को लागू करने की आवश्यकता से मुक्त कर दिया।


=== बीजगणितीय के-सिद्धांत === में बीजगणितीय टोपोलॉजी और बीजगणितीय ज्यामिति
=== बीजगणितीय के-सिद्धांत === में बीजगणितीय टोपोलॉजी और बीजगणितीय ज्यामिति
Line 77: Line 77:
1970 के दशक और 1980 के दशक के प्रारंभ में, विलक्षण विविधता पर के-सिद्धांत में अभी भी पर्याप्त नींव का अभाव था। जबकि यह माना जाता था कि क्विलेन के के-थ्योरी ने सही समूह दिए थे, यह ज्ञात नहीं था कि इन समूहों में सभी परिकल्पित गुण थे। इसके लिए, बीजगणितीय K-सिद्धांत का पुनर्निमाण किया जाना था। यह थॉमसन द्वारा  लंबे मोनोग्राफ में किया गया था जिसे उन्होंने अपने मृत मित्र थॉमस ट्रोबॉघ को सह-श्रेय दिया था, जिन्होंने कहा था कि उन्होंने उन्हें  सपने में  महत्वपूर्ण विचार दिया था।<ref>Thomason and Trobaugh 1990</ref> थॉमसन ने वॉल्डहॉसन के के-थ्योरी के निर्माण को ग्रोथेंडिक के सेमिनायर डे जियोमेट्री एल्गेब्रिक डु बोइस मैरी के खंड छह में वर्णित इंटरसेक्शन सिद्धांत की नींव के साथ जोड़ा। वहीं, के<sub>0</sub> बीजगणितीय विविधता पर ढेरों के परिसरों के संदर्भ में वर्णित किया गया था। थॉमसन ने पाया कि यदि कोई शेवों की [[व्युत्पन्न श्रेणी]] के साथ काम करता है, तो इसका  सरल विवरण था कि कब शेवों के  जटिल को विभिन्न प्रकार के खुले उपसमुच्चय से पूरी विविधता तक बढ़ाया जा सकता है। व्युत्पन्न श्रेणियों के लिए K-सिद्धांत के Waldhausen के निर्माण को लागू करके, थॉमसन यह साबित करने में सक्षम थे कि बीजगणितीय K-सिद्धांत में कोहोलॉजी सिद्धांत के सभी अपेक्षित गुण थे।
1970 के दशक और 1980 के दशक के प्रारंभ में, विलक्षण विविधता पर के-सिद्धांत में अभी भी पर्याप्त नींव का अभाव था। जबकि यह माना जाता था कि क्विलेन के के-थ्योरी ने सही समूह दिए थे, यह ज्ञात नहीं था कि इन समूहों में सभी परिकल्पित गुण थे। इसके लिए, बीजगणितीय K-सिद्धांत का पुनर्निमाण किया जाना था। यह थॉमसन द्वारा  लंबे मोनोग्राफ में किया गया था जिसे उन्होंने अपने मृत मित्र थॉमस ट्रोबॉघ को सह-श्रेय दिया था, जिन्होंने कहा था कि उन्होंने उन्हें  सपने में  महत्वपूर्ण विचार दिया था।<ref>Thomason and Trobaugh 1990</ref> थॉमसन ने वॉल्डहॉसन के के-थ्योरी के निर्माण को ग्रोथेंडिक के सेमिनायर डे जियोमेट्री एल्गेब्रिक डु बोइस मैरी के खंड छह में वर्णित इंटरसेक्शन सिद्धांत की नींव के साथ जोड़ा। वहीं, के<sub>0</sub> बीजगणितीय विविधता पर ढेरों के परिसरों के संदर्भ में वर्णित किया गया था। थॉमसन ने पाया कि यदि कोई शेवों की [[व्युत्पन्न श्रेणी]] के साथ काम करता है, तो इसका  सरल विवरण था कि कब शेवों के  जटिल को विभिन्न प्रकार के खुले उपसमुच्चय से पूरी विविधता तक बढ़ाया जा सकता है। व्युत्पन्न श्रेणियों के लिए K-सिद्धांत के Waldhausen के निर्माण को लागू करके, थॉमसन यह साबित करने में सक्षम थे कि बीजगणितीय K-सिद्धांत में कोहोलॉजी सिद्धांत के सभी अपेक्षित गुण थे।


1976 में, कीथ डेनिस ने [[होशचाइल्ड समरूपता]] पर आधारित के-सिद्धांत की गणना के लिए  पूरी तरह से नई तकनीक की खोज की।<ref>Dennis 1976</ref> यह डेनिस ट्रेस मैप के अस्तित्व पर आधारित था, जो कि के-थ्योरी से होशचाइल्ड होमोलॉजी तक  समरूपता है। जबकि डेनिस ट्रेस मैप परिमित गुणांकों के साथ के-सिद्धांत की गणना के लिए सफल प्रतीत होता है, यह तर्कसंगत गणनाओं के लिए कम सफल था। गुडविली, अपने कार्यकर्ताओं की गणना से प्रेरित होकर, के-सिद्धांत और होशचाइल्ड समरूपता के मध्यवर्ती सिद्धांत के अस्तित्व का अनुमान लगाया। उन्होंने इस सिद्धांत को टोपोलॉजिकल होशचाइल्ड होमोलॉजी कहा क्योंकि इसका ग्राउंड रिंग स्फेयर स्पेक्ट्रम होना चाहिए ( रिंग के रूप में माना जाता है जिसके संचालन को केवल होमोटॉपी तक परिभाषित किया जाता है)। 1980 के दशक के मध्य में, बोकस्टेड ने टोपोलॉजिकल होशचाइल्ड होमोलॉजी की  परिभाषा दी, जो गुडविली के लगभग सभी अनुमानित गुणों को संतुष्ट करती है, और इसने के-समूहों की आगे की संगणना को संभव बनाया।<ref>Bokstedt 1986</ref> डेनिस ट्रेस मैप का बोकस्टेड का संस्करण स्पेक्ट्रा का रूपांतरण था {{nowrap|''K'' → ''THH''}}. यह परिवर्तन टीएचएच पर  सर्कल कार्रवाई के निश्चित बिंदुओं के माध्यम से होता है, जो [[चक्रीय समरूपता]] के साथ संबंध का सुझाव देता है। [[नोविकोव अनुमान]] के  बीजगणितीय के-थ्योरी एनालॉग को साबित करने के क्रम में, बोकस्टेड, ह्सियांग और मैडसेन ने टोपोलॉजिकल चक्रीय होमोलॉजी की शुरुआत की, जो टोपोलॉजिकल होशचाइल्ड होमोलॉजी के समान संबंध को बोर करती है, जैसा कि होशचाइल्ड होमोलॉजी को चक्रीय होमोलॉजी ने किया था।<ref>Bokstedt–Hsiang–Madsen 1993</ref> टोपोलॉजिकल साइक्लिक होमोलॉजी के माध्यम से टोपोलॉजिकल होशचाइल्ड होमोलॉजी कारकों के लिए डेनिस ट्रेस मैप, गणना के लिए  और अधिक विस्तृत उपकरण प्रदान करता है। 1996 में, डंडास, गुडविली और मैककार्थी ने साबित किया कि टोपोलॉजिकल चक्रीय होमोलॉजी में  सटीक अर्थ में वही स्थानीय संरचना होती है जो बीजगणितीय के-सिद्धांत के रूप में होती है, ताकि यदि के-सिद्धांत या टोपोलॉजिकल चक्रीय होमोलॉजी में गणना संभव हो, तो आस-पास की कई अन्य गणनाएँ अनुसरण करना।<ref>Dundas–Goodwillie–McCarthy 2012</ref>
1976 में, कीथ डेनिस ने [[होशचाइल्ड समरूपता]] पर आधारित के-सिद्धांत की गणना के लिए  पूरी तरह से नई तकनीक की खोज की।<ref>Dennis 1976</ref> यह डेनिस ट्रेस मैप के अस्तित्व पर आधारित था, जो कि के-थ्योरी से होशचाइल्ड होमोलॉजी तक  समरूपता है। जबकि डेनिस ट्रेस मैप परिमित गुणांकों के साथ के-सिद्धांत की गणना के लिए सफल प्रतीत होता है, यह तर्कसंगत गणनाओं के लिए कम सफल था। गुडविली, अपने कार्यकर्ताओं की गणना से प्रेरित होकर, के-सिद्धांत और होशचाइल्ड समरूपता के मध्यवर्ती सिद्धांत के अस्तित्व का अनुमान लगाया। उन्होंने इस सिद्धांत को टोपोलॉजिकल होशचाइल्ड होमोलॉजी कहा क्योंकि इसका ग्राउंड रिंग स्फेयर स्पेक्ट्रम होना चाहिए ( रिंग के रूप में माना जाता है जिसके संचालन को केवल होमोटॉपी तक परिभाषित किया जाता है)। 1980 के दशक के मध्य में, बोकस्टेड ने टोपोलॉजिकल होशचाइल्ड होमोलॉजी की  परिभाषा दी, जो गुडविली के लगभग सभी अनुमानित गुणों को संतुष्ट करती है, और इसने के-समूहों की आगे की संगणना को संभव बनाया।<ref>Bokstedt 1986</ref> डेनिस ट्रेस मैप का बोकस्टेड का संस्करण स्पेक्ट्रा का रूपांतरण था {{nowrap|''K'' → ''THH''}}. यह परिवर्तन टीएचएच पर  सर्कल कार्रवाई के निश्चित बिंदुओं के माध्यम से होता है, जो [[चक्रीय समरूपता]] के साथ संबंध का सुझाव देता है। [[नोविकोव अनुमान]] के  बीजगणितीय के-थ्योरी एनालॉग को साबित करने के क्रम में, बोकस्टेड, ह्सियांग और मैडसेन ने टोपोलॉजिकल चक्रीय होमोलॉजी की शुरुआत की, जो टोपोलॉजिकल होशचाइल्ड होमोलॉजी के समान संबंध को बोर करती है, जैसा कि होशचाइल्ड होमोलॉजी को चक्रीय होमोलॉजी ने किया था।<ref>Bokstedt–Hsiang–Madsen 1993</ref> टोपोलॉजिकल साइक्लिक होमोलॉजी के माध्यम से टोपोलॉजिकल होशचाइल्ड होमोलॉजी कारकों के लिए डेनिस ट्रेस मैप, गणना के लिए  और अधिक विस्तृत उपकरण प्रदान करता है। 1996 में, डंडास, गुडविली और मैककार्थी ने साबित किया कि टोपोलॉजिकल चक्रीय होमोलॉजी में  त्रुटिहीनसटीक अर्थ में वही स्थानीय संरचना होती है जो बीजगणितीय के-सिद्धांत के रूप में होती है, ताकि यदि के-सिद्धांत या टोपोलॉजिकल चक्रीय होमोलॉजी में गणना संभव हो, तो आस-पास की कई अन्य गणनाएँ अनुसरण करना।<ref>Dundas–Goodwillie–McCarthy 2012</ref>




Line 94: Line 94:
नक्शा प्रत्येक (कक्षा का) सूक्ष्म रूप से उत्पन्न प्रोजेक्टिव ए-मॉड्यूल एम को मुक्त मॉड्यूल के रैंक पर भेज रहा है <math>A_{\mathfrak p}</math>-मापांक <math>M_{\mathfrak p}</math> (यह मॉड्यूल वास्तव में नि: शुल्क है, क्योंकि स्थानीय अंगूठी पर कोई भी सूक्ष्म रूप से जेनरेट किया गया प्रोजेक्टिव मॉड्यूल निःशुल्क है)। यह उपसमूह <math>\tilde{K}_0\left(A\right)</math> A के घटे हुए शून्य K-सिद्धांत के रूप में जाना जाता है।
नक्शा प्रत्येक (कक्षा का) सूक्ष्म रूप से उत्पन्न प्रोजेक्टिव ए-मॉड्यूल एम को मुक्त मॉड्यूल के रैंक पर भेज रहा है <math>A_{\mathfrak p}</math>-मापांक <math>M_{\mathfrak p}</math> (यह मॉड्यूल वास्तव में नि: शुल्क है, क्योंकि स्थानीय अंगूठी पर कोई भी सूक्ष्म रूप से जेनरेट किया गया प्रोजेक्टिव मॉड्यूल निःशुल्क है)। यह उपसमूह <math>\tilde{K}_0\left(A\right)</math> A के घटे हुए शून्य K-सिद्धांत के रूप में जाना जाता है।


यदि B  rng (बीजगणित) है, तो हम K की परिभाषा का विस्तार कर सकते हैं<sub>0</sub> निम्नलिखित नुसार। चलो A = B⊕'Z'  पहचान तत्व (0,1) के साथ मिलकर ता प्राप्त करने वाली अंगूठी के लिए बी का विस्तार हो।  संक्षिप्त सटीक अनुक्रम B → A → 'Z' है और हम K को परिभाषित करते हैं<sub>0</sub>(बी) संबंधित मानचित्र के कर्नेल होने के लिए<sub>0</sub>(ए) → के<sub>0</sub>(जेड) = जेड।<ref name=Ros30>Rosenberg (1994) p.30</ref>
यदि B  rng (बीजगणित) है, तो हम K की परिभाषा का विस्तार कर सकते हैं<sub>0</sub> निम्नलिखित नुसार। चलो A = B⊕'Z'  पहचान तत्व (0,1) के साथ मिलकर ता प्राप्त करने वाली अंगूठी के लिए बी का विस्तार हो।  संक्षिप्त त्रुटिहीनसटीक अनुक्रम B → A → 'Z' है और हम K को परिभाषित करते हैं<sub>0</sub>(बी) संबंधित मानचित्र के कर्नेल होने के लिए<sub>0</sub>(ए) → के<sub>0</sub>(जेड) = जेड।<ref name=Ros30>Rosenberg (1994) p.30</ref>




Line 133: Line 133:
रिश्तेदार के-ग्रुप को डबल के संदर्भ में परिभाषित किया गया है<ref name=Ros92>Rosenberg (1994) 2.5.1, p.92</ref>
रिश्तेदार के-ग्रुप को डबल के संदर्भ में परिभाषित किया गया है<ref name=Ros92>Rosenberg (1994) 2.5.1, p.92</ref>
:<math>K_1(A,I) = \ker \left({ K_1(D(A,I)) \rightarrow K_1(A) }\right) \ . </math>
:<math>K_1(A,I) = \ker \left({ K_1(D(A,I)) \rightarrow K_1(A) }\right) \ . </math>
प्राकृतिक [[सटीक क्रम]] है<ref name=Ros95>Rosenberg (1994) 2.5.4, p.95</ref>
प्राकृतिक [[सटीक क्रम|त्रुटिहीनसटीक क्रम]] है<ref name=Ros95>Rosenberg (1994) 2.5.4, p.95</ref>
:<math> K_1(A,I) \rightarrow K_1(A) \rightarrow K_1(A/I) \rightarrow K_0(A,I) \rightarrow K_0(A) \rightarrow K_0(A/I) \ . </math>
:<math> K_1(A,I) \rightarrow K_1(A) \rightarrow K_1(A/I) \rightarrow K_0(A,I) \rightarrow K_0(A) \rightarrow K_0(A/I) \ . </math>




==== क्रमविनिमेय छल्ले और क्षेत्र ====
==== क्रमविनिमेय छल्ले और क्षेत्र ====
A के लिए  क्रमविनिमेय वलय,  निर्धारक को परिभाषित कर सकता है: GL(A) → A*, A की इकाइयों के समूह के लिए, जो E(A) पर गायब हो जाता है और इस प्रकार  मानचित्र पर उतरता है: K<sub>1</sub>(ए) → ए *। ई (ए) ◅ एसएल (ए) के रूप में, कोई भी 'विशेष व्हाइटहेड समूह' एसके को परिभाषित कर सकता है<sub>1</sub>(ए) := एसएल(ए)/ई(ए). यह मानचित्र मानचित्र A* → GL(1, A) → K के माध्यम से विभाजित होता है<sub>1</sub>(ए) (ऊपरी बाएं कोने में इकाई), और इसलिए चालू है, और कर्नेल के रूप में विशेष व्हाइटहेड समूह है, विभाजित लघु सटीक अनुक्रम प्रदान करता है:
A के लिए  क्रमविनिमेय वलय,  निर्धारक को परिभाषित कर सकता है: GL(A) → A*, A की इकाइयों के समूह के लिए, जो E(A) पर गायब हो जाता है और इस प्रकार  मानचित्र पर उतरता है: K<sub>1</sub>(ए) → ए *। ई (ए) ◅ एसएल (ए) के रूप में, कोई भी 'विशेष व्हाइटहेड समूह' एसके को परिभाषित कर सकता है<sub>1</sub>(ए) := एसएल(ए)/ई(ए). यह मानचित्र मानचित्र A* → GL(1, A) → K के माध्यम से विभाजित होता है<sub>1</sub>(ए) (ऊपरी बाएं कोने में इकाई), और इसलिए चालू है, और कर्नेल के रूप में विशेष व्हाइटहेड समूह है, विभाजित लघु त्रुटिहीनसटीक अनुक्रम प्रदान करता है:


:<math>1 \to SK_1(A) \to K_1(A) \to A^* \to 1,</math>
:<math>1 \to SK_1(A) \to K_1(A) \to A^* \to 1,</math>
जो विशेष रेखीय समूह को परिभाषित करने वाले सामान्य विभाजन लघु सटीक अनुक्रम का भागफल है, अर्थात्
जो विशेष रेखीय समूह को परिभाषित करने वाले सामान्य विभाजन लघु त्रुटिहीनसटीक अनुक्रम का भागफल है, अर्थात्


:<math>1 \to \operatorname{SL}(A) \to \operatorname{GL}(A) \to A^* \to 1.</math>
:<math>1 \to \operatorname{SL}(A) \to \operatorname{GL}(A) \to A^* \to 1.</math>
Line 180: Line 180:
मात्सुमोतो का मूल प्रमेय और भी अधिक सामान्य है: किसी भी जड़ प्रणाली के लिए, यह अस्थिर के-सिद्धांत के लिए  प्रस्तुति देता है। यह प्रस्तुति केवल सहानुभूति [[ मूल प्रक्रिया ]] के लिए यहां दी गई प्रस्तुति से अलग है। गैर-सहानुभूति जड़ प्रणालियों के लिए, जड़ प्रणाली के संबंध में अस्थिर दूसरा के-समूह जीएल (ए) के लिए बिल्कुल स्थिर के-समूह है। अस्थिर दूसरे के-समूह (इस संदर्भ में) को किसी दिए गए रूट सिस्टम के लिए सार्वभौमिक प्रकार के चेवेली समूह के सार्वभौमिक केंद्रीय विस्तार के कर्नेल को लेकर परिभाषित किया गया है। यह निर्माण रूट सिस्टम ए के लिए स्टाइनबर्ग ्सटेंशन के कर्नेल का उत्पादन करता है<sub>''n''</sub> (n > 1) और, सीमा में, स्थिर दूसरे K-समूह।
मात्सुमोतो का मूल प्रमेय और भी अधिक सामान्य है: किसी भी जड़ प्रणाली के लिए, यह अस्थिर के-सिद्धांत के लिए  प्रस्तुति देता है। यह प्रस्तुति केवल सहानुभूति [[ मूल प्रक्रिया ]] के लिए यहां दी गई प्रस्तुति से अलग है। गैर-सहानुभूति जड़ प्रणालियों के लिए, जड़ प्रणाली के संबंध में अस्थिर दूसरा के-समूह जीएल (ए) के लिए बिल्कुल स्थिर के-समूह है। अस्थिर दूसरे के-समूह (इस संदर्भ में) को किसी दिए गए रूट सिस्टम के लिए सार्वभौमिक प्रकार के चेवेली समूह के सार्वभौमिक केंद्रीय विस्तार के कर्नेल को लेकर परिभाषित किया गया है। यह निर्माण रूट सिस्टम ए के लिए स्टाइनबर्ग ्सटेंशन के कर्नेल का उत्पादन करता है<sub>''n''</sub> (n > 1) और, सीमा में, स्थिर दूसरे K-समूह।


==== लंबे सटीक क्रम ====
==== लंबे त्रुटिहीनसटीक क्रम ====
यदि A  डेडेकाइंड डोमेन है जिसमें [[अंशों का क्षेत्र]] F है तो  लंबा सटीक अनुक्रम है
यदि A  डेडेकाइंड डोमेन है जिसमें [[अंशों का क्षेत्र]] F है तो  लंबा त्रुटिहीनसटीक अनुक्रम है


:<math> K_2F \rightarrow \oplus_{\mathbf p} K_1 A/{\mathbf p} \rightarrow K_1 A \rightarrow K_1 F \rightarrow \oplus_{\mathbf p} K_0 A/{\mathbf p} \rightarrow K_0 A \rightarrow K_0 F \rightarrow 0 \ </math>
:<math> K_2F \rightarrow \oplus_{\mathbf p} K_1 A/{\mathbf p} \rightarrow K_1 A \rightarrow K_1 F \rightarrow \oplus_{\mathbf p} K_0 A/{\mathbf p} \rightarrow K_0 A \rightarrow K_0 F \rightarrow 0 \ </math>
जहां 'पी' 'ए' के ​​सभी प्रमुख आदर्शों पर चलता है।<ref name=Mil123>Milnor (1971) p.123</ref>
जहां 'पी' 'ए' के ​​सभी प्रमुख आदर्शों पर चलता है।<ref name=Mil123>Milnor (1971) p.123</ref>
सापेक्ष K के लिए सटीक अनुक्रम का विस्तार भी है<sub>1</sub> और के<sub>0</sub>:<ref name=Ros200>Rosenberg (1994) p.200</ref>
सापेक्ष K के लिए त्रुटिहीनसटीक अनुक्रम का विस्तार भी है<sub>1</sub> और के<sub>0</sub>:<ref name=Ros200>Rosenberg (1994) p.200</ref>
:<math>K_2(A) \rightarrow K_2(A/I) \rightarrow K_1(A,I) \rightarrow K_1(A) \cdots \ . </math>
:<math>K_2(A) \rightarrow K_2(A/I) \rightarrow K_1(A,I) \rightarrow K_1(A) \cdots \ . </math>


Line 217: Line 217:
== उच्चतर के-सिद्धांत ==
== उच्चतर के-सिद्धांत ==
उच्च K-समूहों की स्वीकृत परिभाषाएँ किसके द्वारा दी गई थीं {{harvtxt|Quillen|1973}}, कुछ वर्षों के बाद जिसके दौरान कई असंगत परिभाषाएँ सुझाई गईं। कार्यक्रम का उद्देश्य वर्गीकरण रिक्त स्थान के संदर्भ में K(''R'') और K(''R'',''I'') की परिभाषाएं खोजना था ताकि
उच्च K-समूहों की स्वीकृत परिभाषाएँ किसके द्वारा दी गई थीं {{harvtxt|Quillen|1973}}, कुछ वर्षों के बाद जिसके दौरान कई असंगत परिभाषाएँ सुझाई गईं। कार्यक्रम का उद्देश्य वर्गीकरण रिक्त स्थान के संदर्भ में K(''R'') और K(''R'',''I'') की परिभाषाएं खोजना था ताकि
''आर'' ⇒ के(''आर'') और (''आर'',''आई'') ⇒ के(''आर'',''आई'')  [[होमोटॉपी श्रेणी]] में कारक हैं रिक्त स्थान और सापेक्ष K-समूहों के लिए लंबा सटीक अनुक्रम  [[कंपन]] K(''R'',''I'') → K(''R'') → K(''R) के लंबे सटीक होमोटॉपी अनुक्रम के रूप में उत्पन्न होता है ''/''मैं'')।<ref name=Ros2456>Rosenberg (1994) pp. 245–246</ref>
''आर'' ⇒ के(''आर'') और (''आर'',''आई'') ⇒ के(''आर'',''आई'')  [[होमोटॉपी श्रेणी]] में कारक हैं रिक्त स्थान और सापेक्ष K-समूहों के लिए लंबा त्रुटिहीनसटीक अनुक्रम  [[कंपन]] K(''R'',''I'') → K(''R'') → K(''R) के लंबे त्रुटिहीनसटीक होमोटॉपी अनुक्रम के रूप में उत्पन्न होता है ''/''मैं'')।<ref name=Ros2456>Rosenberg (1994) pp. 245–246</ref>
क्विलेन ने दो निर्माण, प्लस-निर्माण और क्यू-निर्माण, बाद में अलग-अलग तरीकों से संशोधित किया।<ref name=Ros246>Rosenberg (1994) p.246</ref> दो निर्माण समान के-समूह उत्पन्न करते हैं।<ref name=Ros289>Rosenberg (1994) p.289</ref>
क्विलेन ने दो निर्माण, प्लस-निर्माण और क्यू-निर्माण, बाद में अलग-अलग तरीकों से संशोधित किया।<ref name=Ros246>Rosenberg (1994) p.246</ref> दो निर्माण समान के-समूह उत्पन्न करते हैं।<ref name=Ros289>Rosenberg (1994) p.289</ref>


Line 237: Line 237:
क्यू-निर्माण +-निर्माण के समान परिणाम देता है, लेकिन यह अधिक सामान्य स्थितियों में लागू होता है। इसके अलावा, परिभाषा इस अर्थ में अधिक प्रत्यक्ष है कि क्यू-निर्माण के माध्यम से परिभाषित के-समूह परिभाषा के अनुसार कार्यात्मक हैं। प्लस-निर्माण में यह तथ्य स्वत: नहीं है।
क्यू-निर्माण +-निर्माण के समान परिणाम देता है, लेकिन यह अधिक सामान्य स्थितियों में लागू होता है। इसके अलावा, परिभाषा इस अर्थ में अधिक प्रत्यक्ष है कि क्यू-निर्माण के माध्यम से परिभाषित के-समूह परिभाषा के अनुसार कार्यात्मक हैं। प्लस-निर्माण में यह तथ्य स्वत: नहीं है।


कल्पना करना <math>P</math>  सटीक श्रेणी है; के लिए जुड़े <math>P</math>  नई श्रेणी <math>QP</math> परिभाषित किया गया है, जिसकी वस्तुएं हैं <math>P</math> और M' से M' तक आकारिकी रेखाचित्रों की समरूपता वर्ग हैं
कल्पना करना <math>P</math>  त्रुटिहीनसटीक श्रेणी है; के लिए जुड़े <math>P</math>  नई श्रेणी <math>QP</math> परिभाषित किया गया है, जिसकी वस्तुएं हैं <math>P</math> और M' से M' तक आकारिकी रेखाचित्रों की समरूपता वर्ग हैं


:<math> M'\longleftarrow N\longrightarrow M'',</math>
:<math> M'\longleftarrow N\longrightarrow M'',</math>
जहां पहला तीर  स्वीकार्य [[अधिरूपता]] है और दूसरा तीर  स्वीकार्य [[एकरूपता|रूपता]] है। आकारिकी पर ध्यान दें <math>QP</math> [[मकसद (बीजीय ज्यामिति)]] की श्रेणी में morphisms की परिभाषाओं के अनुरूप हैं, जहां morphisms पत्राचार के रूप में दिया जाता है <math>Z \subset X \times Y</math> ऐसा है कि<blockquote><math>X \leftarrow Z \rightarrow Y</math></blockquote>आरेख है जहां बाईं ओर का तीर  कवरिंग मैप है (इसलिए विशेषण) और दाईं ओर का तीर इंजेक्शन है। वर्गीकरण अंतरिक्ष निर्माण का उपयोग करके इस श्रेणी को तब  स्थलीय स्थान में बदल दिया जा सकता है <math>BQP</math> , जिसे [[तंत्रिका (श्रेणी सिद्धांत)]] के [[ज्यामितीय अहसास]] के रूप में परिभाषित किया गया है <math>QP</math>. फिर, i-th ''K''-सटीक श्रेणी का समूह <math>P</math> तब के रूप में परिभाषित किया गया है
जहां पहला तीर  स्वीकार्य [[अधिरूपता]] है और दूसरा तीर  स्वीकार्य [[एकरूपता|रूपता]] है। आकारिकी पर ध्यान दें <math>QP</math> [[मकसद (बीजीय ज्यामिति)]] की श्रेणी में morphisms की परिभाषाओं के अनुरूप हैं, जहां morphisms पत्राचार के रूप में दिया जाता है <math>Z \subset X \times Y</math> ऐसा है कि<blockquote><math>X \leftarrow Z \rightarrow Y</math></blockquote>आरेख है जहां बाईं ओर का तीर  कवरिंग मैप है (इसलिए विशेषण) और दाईं ओर का तीर इंजेक्शन है। वर्गीकरण अंतरिक्ष निर्माण का उपयोग करके इस श्रेणी को तब  स्थलीय स्थान में बदल दिया जा सकता है <math>BQP</math> , जिसे [[तंत्रिका (श्रेणी सिद्धांत)]] के [[ज्यामितीय अहसास]] के रूप में परिभाषित किया गया है <math>QP</math>. फिर, i-th ''K''-त्रुटिहीनसटीक श्रेणी का समूह <math>P</math> तब के रूप में परिभाषित किया गया है


:<math> K_i(P)=\pi_{i+1}(\mathrm{BQ}P,0)</math>
:<math> K_i(P)=\pi_{i+1}(\mathrm{BQ}P,0)</math>
Line 250: Line 250:
The ''K''-groups  ''K''<sub>''i''</sub>(''R'') of the ring ''R'' are then the ''K''-groups ''K''<sub>''i''</sub>(''P''<sub>''R''</sub>)  where ''P''<sub>''R''</sub> is the category of finitely generated [[projective module|projective ''R''-modules]].  
The ''K''-groups  ''K''<sub>''i''</sub>(''R'') of the ring ''R'' are then the ''K''-groups ''K''<sub>''i''</sub>(''P''<sub>''R''</sub>)  where ''P''<sub>''R''</sub> is the category of finitely generated [[projective module|projective ''R''-modules]].  
-->
-->
अधिक आम तौर पर,  [[योजना (गणित)]] ्स के लिए, ्स के उच्च के-समूहों को ्स पर स्थानीय रूप से मुक्त [[सुसंगत शीफ]] के के-समूह (सटीक श्रेणी) के रूप में परिभाषित किया जाता है।
अधिक आम तौर पर,  [[योजना (गणित)]] ्स के लिए, ्स के उच्च के-समूहों को ्स पर स्थानीय रूप से मुक्त [[सुसंगत शीफ]] के के-समूह (त्रुटिहीनसटीक श्रेणी) के रूप में परिभाषित किया जाता है।
   
   
इसके निम्न संस्करण का भी उपयोग किया जाता है: परिमित रूप से उत्पन्न प्रोजेक्टिव (= स्थानीय रूप से मुक्त) मॉड्यूल के बजाय, सूक्ष्म रूप से उत्पन्न मॉड्यूल लें। परिणामी K-समूहों को आमतौर पर G लिखा जाता है<sub>''n''</sub>(आर)। जब R  नोथेरियन वलय नियमित वलय है, तो G- और K-सिद्धांत मेल खाते हैं। वास्तव में, नियमित छल्ले का [[वैश्विक आयाम]] परिमित है, अर्थात किसी भी परिमित रूप से उत्पन्न मॉड्यूल में  परिमित प्रक्षेप्य संकल्प P होता है<sub>*</sub> → एम, और  साधारण तर्क से पता चलता है कि कैनोनिकल मैप के<sub>0</sub>(आर) → जी<sub>0</sub>(आर)  समरूपता है, [एम] = Σ ± [पी के साथ<sub>''n''</sub>]। यह समरूपता उच्च K-समूहों तक भी फैली हुई है।
इसके निम्न संस्करण का भी उपयोग किया जाता है: परिमित रूप से उत्पन्न प्रोजेक्टिव (= स्थानीय रूप से मुक्त) मॉड्यूल के बजाय, सूक्ष्म रूप से उत्पन्न मॉड्यूल लें। परिणामी K-समूहों को आमतौर पर G लिखा जाता है<sub>''n''</sub>(आर)। जब R  नोथेरियन वलय नियमित वलय है, तो G- और K-सिद्धांत मेल खाते हैं। वास्तव में, नियमित छल्ले का [[वैश्विक आयाम]] परिमित है, अर्थात किसी भी परिमित रूप से उत्पन्न मॉड्यूल में  परिमित प्रक्षेप्य संकल्प P होता है<sub>*</sub> → एम, और  साधारण तर्क से पता चलता है कि कैनोनिकल मैप के<sub>0</sub>(आर) → जी<sub>0</sub>(आर)  समरूपता है, [एम] = Σ ± [पी के साथ<sub>''n''</sub>]। यह समरूपता उच्च K-समूहों तक भी फैली हुई है।
Line 256: Line 256:
=== एस-निर्माण ===
=== एस-निर्माण ===
{{main|Waldhausen S-construction}}
{{main|Waldhausen S-construction}}
[[फ्रीडेलम वाल्डहॉसन]] के कारण के-सिद्धांत समूहों का तीसरा निर्माण एस-निर्माण है।<ref>{{Citation | last1=Waldhausen | first1=Friedhelm | author1-link=Friedhelm Waldhausen | title=Algebraic ''K''-theory of spaces | doi=10.1007/BFb0074449 | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Lecture Notes in Mathematics | mr=802796 | year=1985 | volume=1126 | pages=318–419 | chapter=Algebraic K-theory of spaces | isbn=978-3-540-15235-4| url=https://pub.uni-bielefeld.de/record/1782197 }}. See also Lecture IV and the references in {{Harvard citations|last1=Friedlander|last2=Weibel|year=1999}}</ref> यह कोफिब्रेशन वाली श्रेणियों पर लागू होता है (जिसे वाल्डहाउज़ेन श्रेणी भी कहा जाता है)। यह सटीक श्रेणियों की तुलना में अधिक सामान्य अवधारणा है।
[[फ्रीडेलम वाल्डहॉसन]] के कारण के-सिद्धांत समूहों का तीसरा निर्माण एस-निर्माण है।<ref>{{Citation | last1=Waldhausen | first1=Friedhelm | author1-link=Friedhelm Waldhausen | title=Algebraic ''K''-theory of spaces | doi=10.1007/BFb0074449 | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Lecture Notes in Mathematics | mr=802796 | year=1985 | volume=1126 | pages=318–419 | chapter=Algebraic K-theory of spaces | isbn=978-3-540-15235-4| url=https://pub.uni-bielefeld.de/record/1782197 }}. See also Lecture IV and the references in {{Harvard citations|last1=Friedlander|last2=Weibel|year=1999}}</ref> यह कोफिब्रेशन वाली श्रेणियों पर लागू होता है (जिसे वाल्डहाउज़ेन श्रेणी भी कहा जाता है)। यह त्रुटिहीनसटीक श्रेणियों की तुलना में अधिक सामान्य अवधारणा है।


== उदाहरण ==
== उदाहरण ==

Revision as of 11:55, 7 March 2023


बीजगणितीय 'K'-सिद्धांत गणित का विषय क्षेत्र है जिसमें ज्यामिति, टोपोलॉजी, अंगूठी सिद्धांत और संख्या सिद्धांत सम्मिलित हैं। ज्यामितीय, बीजगणितीय और अंकगणितीय वस्तुओं को 'K'-समूह नामक वस्तुओं को सौंपा गया है। अमूर्त बीजगणित के अर्थ में ये समूह (गणित) हैं। उनमें मूल वस्तु के बारे में विस्तृत जानकारी होती है, लेकिन गणना करना कुख्यात रूप से कठिन होता है; उदाहरण के लिए, महत्वपूर्ण उत्कृष्ट समस्या पूर्णांकों के K-समूहों की गणना करना है।

K-सिद्धांत की खोज 1950 के दशक के अंत में अलेक्जेंडर ग्रोथेंडिक ने बीजगणितीय विविधता पर प्रतिच्छेदन सिद्धांत के अपने अध्ययन में की थी। आधुनिक भाषा में ग्रोथेंडिक ने केवल K0 शून्य के-ग्रुप को परिभाषित किया लेकिन यहां तक कि इस एकल समूह में बहुत सारे अनुप्रयोग हैं, जैसे ग्रोथेंडिक-रीमैन-रोच प्रमेय। प्रेरक कोहोलॉजी और विशेष रूप से चाउ समूहों के साथ अपने संबंधों के माध्यम से (उच्च) बीजगणितीय K-सिद्धांत के विकास में छेड़छाड़ सिद्धांत अभी भी प्रेरक शक्ति है। इस विषय में मौलिक संख्या-सैद्धांतिक विषय भी सम्मिलित हैं जैसे द्विघात पारस्परिकता और संख्या क्षेत्रों को वास्तविक संख्याओं और जटिल संख्याओं में एम्बेड के साथ-साथ उच्च नियामकों (गणित) के निर्माण और L-फलन के विशेष मूल्यों जैसे अधिक आधुनिक चिंताएं।

निम्न K-समूहों को सबसे पहले इस अर्थ में खोजा गया था कि अन्य बीजगणितीय संरचनाओं के संदर्भ में इन समूहों का पर्याप्त विवरण पाया गया था। उदाहरण के लिए, यदि F क्षेत्र (गणित) है, तो K0(F) पूर्णांक Z के लिए आइसोमोर्फिक है और आयाम (वेक्टर स्पेस) की धारणा से निकटता से संबंधित है। क्रमविनिमेय वलय R के लिए, समूह K0(R) R के पिकार्ड समूह से संबंधित है, और जब R संख्या क्षेत्र में पूर्णांकों का वलय है, तो यह वर्ग समूह के मौलिक निर्माण का सामान्यीकरण करता है। समूह K1(R) इकाइयों के समूह R× से निकटता से संबंधित है, और यदि R क्षेत्र है, तो यह वास्तविक में इकाइयों का समूह है। संख्या क्षेत्र F के लिए, समूह K2(F) वर्ग क्षेत्र सिद्धांत, हिल्बर्ट प्रतीक, और पूर्णताओं पर द्विघात समीकरणों की विलेयता से संबंधित है। इसके विपरीत, छल्ले के उच्च के-समूहों की सही परिभाषा खोजना डेनियल क्विलेन की कठिन उपलब्धि थी, और बीजगणितीय विविधता के उच्च के-समूहों के बारे में कई मूलभूत तथ्य रॉबर्ट वेन थॉमसन के काम तक ज्ञात नहीं थे।

इतिहास

K-सिद्धांत का इतिहास चार्ल्स वीबेल द्वारा विस्तृत किया गया था।[1]


ग्रोथेंडिक ग्रुप के0

19वीं शताब्दी में, बर्नहार्ड रीमैन और उनके छात्र गुस्ताव रोच ने वह साबित किया जिसे अब रीमैन-रोच प्रमेय के रूप में जाना जाता है। यदि X रीमैन सतह है, तो X पर मेरोमॉर्फिक फ़ंक्शन और मेरोमोर्फिक विभेदक रूप के सेट वेक्टर रिक्त स्थान बनाते हैं। X पर लाइन बंडल इन सदिश स्थानों के उप-स्थानों को निर्धारित करता है, और यदि X प्रक्षेपी है, तो ये उप-स्थान परिमित आयामी हैं। रीमैन-रोच प्रमेय कहता है कि इन उप-स्थानों के बीच आयामों में अंतर लाइन बंडल की डिग्री (घुमावदारता का एक उपाय) के साथ-साथ X के जीनस से एक ऋण के बराबर है। 20 वीं शताब्दी के मध्य में, रीमैन-रोच प्रमेय था फ्रेडरिक हिर्जेब्रुक द्वारा सभी बीजगणितीय विविधता के लिए सामान्यीकृत। हिर्ज़ब्रुक के निर्माण में, हिर्ज़ब्रुच-रिमैन-रोच प्रमेय, प्रमेय यूलर विशेषताओं के बारे में बयान बन गया: बीजगणितीय विविधता पर वेक्टर बंडल की यूलर विशेषता (जो कि इसके कोहोलॉजी समूहों के आयामों का वैकल्पिक योग है) यूलर विशेषता के बराबर है तुच्छ बंडल प्लस वेक्टर बंडल के विशिष्ट वर्गों से आने वाला सुधार कारक। यह सामान्यीकरण है क्योंकि प्रक्षेपी रीमैन सतह पर, लाइन बंडल की यूलर विशेषता पहले बताए गए आयामों में अंतर के बराबर होती है, तुच्छ बंडल की यूलर विशेषता जीनस से माइनस है, और केवल गैर-तुच्छ विशेषता वर्ग डिग्री है।

के-थ्योरी का विषय 1957 में अलेक्जेंडर ग्रोथेंडिक के निर्माण से अपना नाम लेता है, जो ग्रोथेंडिक-रीमैन-रोच प्रमेय में दिखाई दिया, हिरजेब्रुक के प्रमेय का उनका सामान्यीकरण।[2] बता दें कि X चिकनी बीजगणितीय किस्म है। X पर प्रत्येक वेक्टर बंडल के लिए, ग्रोथेंडिक अपरिवर्तनीय, इसकी कक्षा को जोड़ता है। X पर सभी वर्गों के समुच्चय को जर्मन क्लास से K(X) कहा जाता था। परिभाषा के अनुसार, K(X) X पर वेक्टर बंडलों के आइसोमोर्फिज्म वर्गों पर मुक्त एबेलियन समूह का भागफल है, और इसलिए यह एबेलियन समूह है। यदि सदिश बंडल V के अनुरूप आधार तत्व को [V] निरूपित किया जाता है, तो सदिश बंडलों के प्रत्येक छोटे त्रुटिहीनसटीक अनुक्रम के लिए:

ग्रोथेंडिक ने संबंध लगाया [V] = [V′] + [V″]. ये जनरेटर और संबंध K(X) को परिभाषित करते हैं, और उनका अर्थ है कि यह सदिश बंडलों को तरह से त्रुटिहीनसटीक अनुक्रमों के साथ संगत करने के लिए इनवेरिएंट को असाइन करने का सार्वभौमिक तरीका है।

ग्रोथेंडिक ने परिप्रेक्ष्य लिया कि रीमैन-रोच प्रमेय विविधता के आकारिकी के बारे में बयान है, स्वयं विविधता के बारे में नहीं। उन्होंने साबित किया कि K(X) से X के चाउ समूहों के लिए चेरन चरित्र और X के टोड वर्ग से आने वाले समरूपता है। इसके अतिरिक्त, उन्होंने साबित किया कि उचित रूपवाद f : XY चिकनी किस्म के लिए Y समरूपता निर्धारित करता है f* : K(X) → K(Y) पुशफॉरवर्ड कहा जाता है। यह ्स पर सदिश बंडल से वाई के चाउ समूह में तत्व का निर्धारण करने के दो तरीके देता है: ्स से शुरू होकर, कोई पहले के-सिद्धांत में पुशफॉरवर्ड की गणना कर सकता है और फिर वाई के चेर्न चरित्र और टोड वर्ग को लागू कर सकता है, या कोई भी कर सकता है पहले ्स के चेर्न कैरेक्टर और टॉड क्लास को लागू करें और फिर चाउ समूहों के लिए पुशफॉरवर्ड की गणना करें। ग्रोथेंडिक-रीमैन-रोच प्रमेय कहता है कि ये समान हैं। जब Y बिंदु होता है, तो वेक्टर बंडल वेक्टर स्पेस होता है, वेक्टर स्पेस का वर्ग इसका आयाम होता है, और ग्रोथेंडिक-रीमैन-रोच प्रमेय हिरजेब्रुक के प्रमेय के विशेषज्ञ होते हैं।

समूह K(X) को अब K के नाम से जाना जाता है0(्स)। प्रक्षेपी मॉड्यूल द्वारा वेक्टर बंडलों को प्रतिस्थापित करने पर, K0 गैर-कम्यूटेटिव रिंगों के लिए भी परिभाषित किया गया, जहां इसका समूह अभ्यावेदन के लिए अनुप्रयोग था। माइकल अतियाह और हिर्जेब्रुक ने ग्रोथेंडिक के निर्माण को जल्दी से टोपोलॉजी में पहुँचाया और इसका इस्तेमाल टोपोलॉजिकल के-थ्योरी को परिभाषित करने के लिए किया।[3] टोपोलॉजिकल के-थ्योरी असाधारण कोहोलॉजी सिद्धांत के पहले उदाहरणों में से था: यह प्रत्येक टोपोलॉजिकल स्पेस ्स (कुछ हल्के तकनीकी बाधाओं को संतुष्ट करता है) को समूह के अनुक्रम से जोड़ता है।n(्स) जो सामान्यीकरण स्वयंसिद्ध को छोड़कर सभी ईलेनबर्ग-स्टीनरोड स्वयंसिद्धों को संतुष्ट करता है। बीजगणितीय विविधता की सेटिंग, हालांकि, अधिक कठोर है, और टोपोलॉजी में उपयोग किए जाने वाले लचीले निर्माण उपलब्ध नहीं थे। जबकि समूह के0 बीजगणितीय विविधता और गैर-कम्यूटेटिव रिंगों के कोहोलॉजी सिद्धांत की शुरुआत के लिए आवश्यक गुणों को संतुष्ट करने के लिए लग रहा था, उच्च के की कोई स्पष्ट परिभाषा नहीं थीn(्स)। यहां तक ​​​​कि इस तरह की परिभाषाएं विकसित होने के बावजूद, प्रतिबंध और ग्लूइंग के आसपास के तकनीकी मुद्दों ने आमतौर पर के को मजबूर कर दियाn केवल अंगूठियों के लिए परिभाषित किया जाना चाहिए, विविधता के लिए नहीं।

के0, क1, और के2

K से निकटता से संबंधित समूह1 ग्रुप रिंग्स के लिए पहले J.H.C द्वारा पेश किया गया था। व्हाइटहेड। हेनरी पोंकारे ने त्रिभुज के संदर्भ में बेट्टी संख्या को कई गुना परिभाषित करने का प्रयास किया था। हालाँकि, उनके तरीकों में गंभीर अंतर था: पोंकारे यह साबित नहीं कर सके कि कई गुना के दो त्रिभुज हमेशा ही बेट्टी संख्याएँ देते हैं। यह स्पष्ट रूप से सच था कि त्रिभुज को उप-विभाजित करके बेट्टी संख्याएँ अपरिवर्तित थीं, और इसलिए यह स्पष्ट था कि कोई भी दो त्रिभुज जो सामान्य उपखंड साझा करते थे, उनकी बेट्टी संख्याएँ समान थीं। जो ज्ञात नहीं था वह यह था कि किन्हीं दो त्रिकोणों ने सामान्य उपखंड को स्वीकार किया। यह परिकल्पना अनुमान बन गई जिसे हाउप्टवर्मुटुंग (मोटे तौर पर मुख्य अनुमान) के रूप में जाना जाता है। तथ्य यह है कि त्रिभुज उपखंड के नेतृत्व में स्थिर थे, जे.एच.सी. व्हाइटहेड ने सरल होमोटॉपी प्रकार की धारणा का परिचय दिया।[4] साधारण होमोटॉपी समतुल्यता को साधारण कॉम्प्लेक्स या कोशिका परिसर में सरलता या कोशिकाओं को जोड़ने के संदर्भ में परिभाषित किया गया है ताकि प्रत्येक अतिरिक्त सिम्प्लेक्स या सेल विरूपण पुराने स्थान के उपखंड में वापस आ जाए। इस परिभाषा के लिए प्रेरणा का हिस्सा यह है कि त्रिभुज का उपखंड मूल त्रिभुज के समतुल्य सरल होमोटोपी है, और इसलिए दो त्रिभुज जो सामान्य उपखंड साझा करते हैं, वे साधारण होमोटॉपी समकक्ष होने चाहिए। व्हाइटहेड ने मरोड़ नामक अपरिवर्तनीय को प्रस्तुत करके सिद्ध किया कि सरल होमोटोपी तुल्यता होमोटोपी तुल्यता की तुलना में महीन अपरिवर्तनीय है। होमोटॉपी समतुल्यता का मरोड़ समूह में मान लेता है जिसे अब व्हाइटहेड समूह कहा जाता है और Wh(π) को निरूपित किया जाता है, जहां π दो परिसरों का मूलभूत समूह है। व्हाइटहेड ने गैर-तुच्छ मरोड़ के उदाहरण पाए और इस तरह साबित किया कि कुछ होमोटोपी समकक्ष सरल नहीं थे। व्हाइटहेड समूह को बाद में K का भागफल पाया गया1(Zπ), जहां Zπ π का इंटीग्रल समूह की अंगूठी है। बाद में जॉन मिल्नोर ने हाउप्टवर्मुटुंग का खंडन करने के लिए व्हाइटहेड टॉर्सियन से संबंधित अपरिवर्तनीय Reidemeister मरोड़ का इस्तेमाल किया।

के की पहली पर्याप्त परिभाषा1 अंगूठी का निर्माण हाइमन बास और स्टीफन शैनुअल द्वारा किया गया था।[5] टोपोलॉजिकल के-थ्योरी में, के1 अंतरिक्ष के निलंबन (टोपोलॉजी) पर वेक्टर बंडलों का उपयोग करके परिभाषित किया गया है। ऐसे सभी वेक्टर बंडल जकड़न निर्माण से आते हैं, जहां स्पेस के दो हिस्सों पर दो तुच्छ वेक्टर बंडल स्पेस की सामान्य पट्टी के साथ चिपके होते हैं। यह ग्लूइंग डेटा सामान्य रेखीय समूह का उपयोग करके व्यक्त किया जाता है, लेकिन प्राथमिक मेट्रिसेस (प्राथमिक पंक्ति या स्तंभ संचालन के अनुरूप मैट्रिसेस) से आने वाले उस समूह के तत्व समकक्ष ग्लूइंग को परिभाषित करते हैं। इससे प्रेरित होकर, के.एस. की बास-शैनुअल परिभाषा1 वलय का R है GL(R) / E(R), जहां जीएल (आर) अनंत सामान्य रैखिक समूह है (सभी जीएल का संघn(आर)) और ई (आर) प्राथमिक मैट्रिसेस का उपसमूह है। उन्होंने K की परिभाषा भी प्रदान की0 अंगूठियों की समरूपता और साबित किया कि K0 और के1 रिश्तेदार होमोलॉजी त्रुटिहीनसटीक अनुक्रम के समान त्रुटिहीनसटीक अनुक्रम में साथ फिट हो सकते हैं।

इस अवधि से के-सिद्धांत में कार्य बास की पुस्तक बीजगणितीय के-सिद्धांत में समाप्त हुआ।[6] तत्कालीन ज्ञात परिणामों की सुसंगत व्याख्या प्रदान करने के अलावा, बास ने प्रमेयों के कई बयानों में सुधार किया। विशेष रूप से ध्यान देने योग्य बात यह है कि बास, मूर्ति के साथ अपने पहले के काम पर निर्माण कर रहे हैं,[7] बीजीय K-सिद्धांत के मौलिक प्रमेय के रूप में जाना जाने वाला पहला प्रमाण प्रदान किया। यह K से संबंधित चार-टर्म त्रुटिहीनसटीक अनुक्रम है0 रिंग R से K1 R का, बहुपद वलय R[t], और स्थानीयकरण R[t, t-1]। बास ने माना कि इस प्रमेय ने K का विवरण प्रदान किया है0 पूरी तरह से के1. इस विवरण को पुनरावर्ती रूप से लागू करके, उन्होंने नकारात्मक K-समूह K का उत्पादन किया−n(आर)। स्वतंत्र कार्य में, मैक्स करौबी ने कुछ श्रेणियों के लिए नकारात्मक के-समूहों की और परिभाषा दी और साबित किया कि उनकी परिभाषाओं से बास के समान समूह उत्पन्न हुए।[8] विषय में अगला प्रमुख विकास K की परिभाषा के साथ आया2. स्टाइनबर्ग ने क्षेत्र पर शेवेले समूह के सार्वभौमिक केंद्रीय विस्तार का अध्ययन किया और जनरेटर और संबंधों के संदर्भ में इस समूह की स्पष्ट प्रस्तुति दी।[9] समूह ई के मामले मेंn(के) प्राथमिक मैट्रिसेस का, सार्वभौमिक केंद्रीय विस्तार अब सेंट लिखा गया हैn(के) और स्टाइनबर्ग समूह कहा जाता है। 1967 के वसंत में, जॉन मिल्नोर ने के2(आर) समरूपता का कर्नेल होना St(R) → E(R).[10] समूह के2 K के लिए जाने जाने वाले कुछ त्रुटिहीनसटीक अनुक्रमों को आगे बढ़ाया1 और के0, और इसमें संख्या सिद्धांत के लिए आकर्षक अनुप्रयोग थे। हिजिया मात्सुमोतो की 1968 की थीसिस[11] दिखाया कि क्षेत्र F के लिए, K2(एफ) आइसोमोर्फिक था:

यह संबंध हिल्बर्ट प्रतीक से भी संतुष्ट होता है, जो स्थानीय क्षेत्रों पर द्विघात समीकरणों की विलेयता को व्यक्त करता है। विशेष रूप से, जॉन टेट (गणितज्ञ) यह साबित करने में सक्षम थे कि के2(क्यू) द्विघात पारस्परिकता के कानून के आसपास अनिवार्य रूप से संरचित है।

उच्च के-समूह

1960 के दशक के अंत और 1970 के दशक के प्रारंभ में, उच्च K-सिद्धांत की कई परिभाषाएँ प्रस्तावित की गईं। स्वैन[12] और गेर्स्टन[13] दोनों ने K की परिभाषाएँ प्रस्तुत कींn सभी n के लिए, और गेर्स्टन ने साबित किया कि उनके और स्वान के सिद्धांत समान थे, लेकिन दो सिद्धांत सभी अपेक्षित गुणों को संतुष्ट करने के लिए ज्ञात नहीं थे। Nobile और Villamayor ने उच्च K-समूहों की परिभाषा भी प्रस्तावित की।[14] Karoubi और Villamayor ने सभी n के लिए अच्छे व्यवहार वाले K-समूहों को परिभाषित किया,[15] लेकिन उनके समकक्ष के1 कभी-कभी बास-शानुएल के। का उचित अंश था1. उनके K-समूहों को अब KV कहा जाता हैn और के-थ्योरी के होमोटोपी-इनवेरिएंट संशोधनों से संबंधित हैं।

मात्सुमोतो के प्रमेय से प्रेरित होकर, मिलनोर ने क्षेत्र के उच्च के-समूहों की परिभाषा बनाई।[16] उन्होंने अपनी परिभाषा को पूरी तरह से तदर्थ के रूप में संदर्भित किया,[17] और यह न तो सभी रिंगों के लिए सामान्यीकृत प्रतीत होता है और न ही यह क्षेत्रों के उच्च के-सिद्धांत की सही परिभाषा प्रतीत होती है। बहुत बाद में, नेस्टरेंको और सुस्लिन ने इसकी खोज की[18] और टोटारो द्वारा[19] वह मिल्नोर के-सिद्धांत वास्तव में क्षेत्र के सच्चे के-सिद्धांत का प्रत्यक्ष योग है। विशेष रूप से, के-समूहों में निस्पंदन होता है जिसे वजन निस्पंदन कहा जाता है, और क्षेत्र का मिलनोर के-सिद्धांत के-सिद्धांत का उच्चतम भार-वर्गीकृत टुकड़ा है। इसके अतिरिक्त, थॉमसन ने पाया कि सामान्य विविधता के लिए मिल्नोर के-सिद्धांत का कोई एनालॉग नहीं है।[20] व्यापक रूप से स्वीकार की जाने वाली उच्च के-सिद्धांत की पहली परिभाषा डैनियल क्विलेन की थी।[21] टोपोलॉजी में एडम्स के अनुमान पर क्विलेन के काम के हिस्से के रूप में, उन्होंने वर्गीकृत रिक्त स्थान बीजीएल ('एफ') से मानचित्रों का निर्माण किया था।q) के होमोटोपी फाइबर के लिए ψq − 1, जहां ψq qवां एडम्स ऑपरेशन है जो वर्गीकरण स्थान BU पर कार्य करता है। यह नक्शा विश्वकोश है, और बीजीएल ('एफ') को संशोधित करने के बादq) नई जगह बीजीएल ('एफ') बनाने के लिए थोड़ा साq)+, नक्शा होमोटॉपी तुल्यता बन गया। इस संशोधन को प्लस निर्माण कहा गया। एडम्स के संचालन को ग्रोथेंडिक के काम के बाद से चेर्न कक्षाओं और के-सिद्धांत से संबंधित माना जाता था, और इसलिए क्विलन को आर के के-सिद्धांत को बीजीएल (आर) के समरूप समूहों के रूप में परिभाषित करने के लिए प्रेरित किया गया था।+. इससे न केवल के1 और के2, एडम्स संचालन के लिए के-सिद्धांत के संबंध ने क्विलन को परिमित क्षेत्रों के के-समूहों की गणना करने की अनुमति दी।

वर्गीकरण स्थान बीजीएल जुड़ा हुआ है, इसलिए क्विलेन की परिभाषा के के लिए सही मान देने में विफल रही0. इसके अतिरिक्त, इसने कोई नकारात्मक K-समूह नहीं दिया। चूंकि के0 ज्ञात और स्वीकृत परिभाषा थी, इस कठिनाई को दूर करना संभव था, लेकिन यह तकनीकी रूप से अटपटा बना रहा। संकल्पनात्मक रूप से, समस्या यह थी कि परिभाषा जीएल से निकली थी, जो मौलिक रूप से के का स्रोत था1. क्योंकि GL केवल वेक्टर बंडलों को चिपकाने के बारे में जानता है, स्वयं वेक्टर बंडलों के बारे में नहीं, इसलिए उसके लिए K का वर्णन करना असंभव था0.

क्विलेन के साथ बातचीत से प्रेरित होकर, सहगल ने जल्द ही बीजगणितीय के-सिद्धांत के निर्माण के लिए Γ-ऑब्जेक्ट्स के नाम से और दृष्टिकोण पेश किया।[22] सहगल का दृष्टिकोण K के ग्रोथेंडिक के निर्माण का होमोटॉपी एनालॉग है0. जहां ग्रोथेंडिक ने बंडलों के समरूपता वर्गों के साथ काम किया, सहगल ने स्वयं बंडलों के साथ काम किया और अपने डेटा के हिस्से के रूप में बंडलों के समरूपता का इस्तेमाल किया। इसका परिणाम स्पेक्ट्रम (टोपोलॉजी) में होता है, जिनके होमोटोपी समूह उच्च के-समूह होते हैं (के0). हालांकि, सहगल का दृष्टिकोण केवल विभाजित त्रुटिहीनसटीक अनुक्रमों के लिए संबंधों को लागू करने में सक्षम था, सामान्य त्रुटिहीनसटीक अनुक्रमों के लिए नहीं। रिंग के ऊपर प्रोजेक्टिव मॉड्यूल की श्रेणी में, हर छोटा त्रुटिहीनसटीक अनुक्रम विभाजित होता है, और इसलिए Γ-ऑब्जेक्ट्स का उपयोग रिंग के K-सिद्धांत को परिभाषित करने के लिए किया जा सकता है। हालांकि, किस्म पर वेक्टर बंडलों की श्रेणी में और रिंग के ऊपर सभी मॉड्यूल की श्रेणी में गैर-विभाजित लघु त्रुटिहीनसटीक अनुक्रम हैं, इसलिए सहगल का दृष्टिकोण ब्याज के सभी मामलों पर लागू नहीं होता है।

1972 के वसंत में, क्विलेन को उच्च के-सिद्धांत के निर्माण के लिए और दृष्टिकोण मिला, जो अत्यधिक सफल साबित हुआ। यह नई परिभाषा त्रुटिहीनसटीक श्रेणी के साथ शुरू हुई, ऐसी श्रेणी जो कुछ औपचारिक गुणों को संतुष्ट करती है, लेकिन मॉड्यूल या वेक्टर बंडलों की श्रेणी से संतुष्ट गुणों की तुलना में थोड़ी कमजोर है। इससे उन्होंने अपने क्यू-कंस्ट्रक्शन|क्यू-कंस्ट्रक्शन नामक नए उपकरण का उपयोग करके सहायक श्रेणी का निर्माण किया। सेगल की Γ-ऑब्जेक्ट्स की तरह, क्यू-निर्माण की जड़ें ग्रोथेंडिक की K की परिभाषा में हैं0. ग्रोथेंडिक की परिभाषा के विपरीत, क्यू-निर्माण श्रेणी बनाता है, एबेलियन समूह नहीं, और सेगल के Γ-ऑब्जेक्ट्स के विपरीत, क्यू-निर्माण सीधे छोटे त्रुटिहीनसटीक अनुक्रमों के साथ काम करता है। यदि C एबेलियन श्रेणी है, तो QC ऐसी श्रेणी है जिसमें C के समान वस्तुएँ हैं, लेकिन जिनके आकारिकी को C में लघु त्रुटिहीनसटीक अनुक्रमों के संदर्भ में परिभाषित किया गया है। त्रुटिहीनसटीक श्रेणी के K- समूह ΩBQC के होमोटोपी समूह हैं, लूप स्पेस सरल सेट का (लूप स्पेस लेना इंडेक्सिंग को सही करता है)। क्विलेन ने भी अपना साबित किया+ = Q प्रमेय कि K-सिद्धांत की उनकी दो परिभाषाएँ -दूसरे से सहमत हैं। इससे सही K निकला0 और सरल प्रमाणों का नेतृत्व किया, लेकिन फिर भी कोई नकारात्मक के-समूह नहीं मिला।

सभी एबेलियन श्रेणियां त्रुटिहीनसटीक श्रेणियां हैं, लेकिन सभी त्रुटिहीनसटीक श्रेणियां एबेलियन नहीं हैं। क्योंकि क्विलन इस अधिक सामान्य स्थिति में काम करने में सक्षम था, वह अपने प्रमाणों में उपकरण के रूप में त्रुटिहीनसटीक श्रेणियों का उपयोग करने में सक्षम था। इस तकनीक ने उन्हें बीजगणितीय के-सिद्धांत के कई मूलभूत प्रमेयों को सिद्ध करने की अनुमति दी। इसके अतिरिक्त, यह साबित करना संभव था कि स्वान और गेर्स्टन की पहले की परिभाषाएँ कुछ शर्तों के तहत क्विलेन के समकक्ष थीं।

के-थ्योरी अब अंगूठियों के लिए होमोलॉजी सिद्धांत और विविधता के लिए कोहोलॉजी सिद्धांत प्रतीत होता है। हालांकि, इसके कई मूलभूत प्रमेयों ने परिकल्पना की है कि प्रश्न में अंगूठी या विविधता नियमित थी। मूलभूत अपेक्षित संबंधों में से लंबा त्रुटिहीनसटीक अनुक्रम था (स्थानीयकरण अनुक्रम कहा जाता है) जो विभिन्न प्रकार के ्स के के-सिद्धांत और खुले उपसमुच्चय यू से संबंधित है। क्विलेन पूर्ण सामान्यता में स्थानीयकरण अनुक्रम के अस्तित्व को साबित करने में असमर्थ था। हालांकि, वह जी-सिद्धांत (या कभी-कभी के-सिद्धांत) नामक संबंधित सिद्धांत के अस्तित्व को साबित करने में सक्षम था। ग्रोथेंडिक द्वारा विषय के विकास में जी-सिद्धांत को प्रारंभिक रूप से परिभाषित किया गया था। ग्रोथेंडिक परिभाषित जी0(्स) किस्म ्स के लिए ्स पर सुसंगत शीशों के आइसोमोर्फिज्म वर्गों पर मुक्त एबेलियन समूह होने के लिए, सुसंगत ढेरों के त्रुटिहीनसटीक अनुक्रमों से आने वाले मॉड्यूलो संबंध। बाद के लेखकों द्वारा अपनाई गई स्पष्ट रूपरेखा में, विविधता का के-सिद्धांत वेक्टर बंडलों की अपनी श्रेणी का के-सिद्धांत है, जबकि इसका जी-सिद्धांत इसके सुसंगत ढेरों की श्रेणी का के-सिद्धांत है। क्विलन न केवल जी-सिद्धांत के लिए स्थानीयकरण त्रुटिहीनसटीक अनुक्रम के अस्तित्व को साबित कर सकता था, वह यह भी साबित कर सकता था कि नियमित अंगूठी या विविधता के लिए, के-सिद्धांत जी-सिद्धांत के बराबर है, और इसलिए नियमित विविधता के के-सिद्धांत का स्थानीयकरण त्रुटिहीनसटीक अनुक्रम था। चूँकि यह क्रम इस विषय में कई तथ्यों के लिए मौलिक था, नियमितता की परिकल्पना उच्च के-सिद्धांत पर प्रारंभिक कार्य में व्याप्त थी।

टोपोलॉजी में बीजगणितीय के-सिद्धांत के अनुप्रयोग

टोपोलॉजी के लिए बीजगणितीय के-सिद्धांत का सबसे पहला प्रयोग व्हाइटहेड का व्हाइटहेड टॉर्सन का निर्माण था। 1963 में C. T. C. वॉल द्वारा निकट संबंधी निर्माण की खोज की गई थी।[23] वाल ने पाया कि स्थान π जिस पर परिमित संकुल का प्रभुत्व है, सामान्यीकृत यूलर अभिलाक्षणिक है जो K के भागफल में मान लेता है।0(Zπ), जहां π अंतरिक्ष का मौलिक समूह है। इस अपरिवर्तनीय को दीवार की परिमितता बाधा कहा जाता है क्योंकि ्स होमोटोपी परिमित परिसर के समतुल्य है यदि और केवल अगर अपरिवर्तनीय गायब हो जाता है। लॉरेंट सीबेनमैन ने अपनी थीसिस में वॉल के समान अपरिवर्तनीय पाया जो सीमा के साथ कॉम्पैक्ट मैनिफोल्ड के इंटीरियर होने के कारण खुले कई गुना बाधा देता है।[24] यदि सीमा एम और एन के साथ दो मैनिफोल्ड्स में आइसोमॉर्फिक इंटीरियर (टॉप, पीएल, या डीआईएफएफ में उपयुक्त) है, तो उनके बीच आइसोमोर्फिज्म एम और एन के बीच एच-कोबोरिज्म को परिभाषित करता है।

व्हाइटहेड टोरसन को अंततः अधिक सीधे के-सैद्धांतिक तरीके से पुनर्व्याख्या किया गया था। यह पुनर्व्याख्या h-coboardism|h-coboardisms के अध्ययन के माध्यम से हुई। दो एन-डायमेंशनल मैनिफोल्ड्स एम और एन एच-कोबार्डेंट हैं यदि कोई मौजूद है (n + 1)-आयामी कई गुना सीमा W के साथ जिसकी सीमा M और N का असंयुक्त संघ है और जिसके लिए M और N का W में समावेश होमोटॉपी समकक्ष हैं (श्रेणियों में TOP, PL, या DIFF)। स्टीफन स्मेल का एच-कोबोर्डिज्म प्रमेय[25] दावा किया कि अगर n ≥ 5, डब्ल्यू कॉम्पैक्ट है, और एम, एन, और डब्ल्यू बस जुड़े हुए हैं, फिर डब्ल्यू सिलेंडर के लिए आइसोमोर्फिक है M × [0, 1] (TOP, PL, या DIFF में जैसा उपयुक्त हो)। इस प्रमेय ने पोंकारे के अनुमान को सिद्ध किया n ≥ 5.

अगर एम और एन को आसानी से जुड़ा हुआ नहीं माना जाता है, तो एच-कोबॉर्डिज्म को सिलेंडर नहीं होना चाहिए। मजूर के कारण स्वतंत्र रूप से एस-कोबोर्डवाद प्रमेय,[26] स्टालिंग्स, और बार्डन,[27] सामान्य स्थिति की व्याख्या करता है: एच-कोबोरिज्म सिलेंडर है अगर और केवल अगर समावेशन का व्हाइटहेड मरोड़ MW गायब हो जाता है। यह एच-कोबोर्डिज्म प्रमेय को सामान्यीकृत करता है क्योंकि सरल जुड़ाव परिकल्पना का अर्थ है कि प्रासंगिक व्हाइटहेड समूह तुच्छ है। वास्तव में एस-कोबोर्डिज्म प्रमेय का तात्पर्य है कि एच-कोबोर्डिज्म के आइसोमोर्फिज्म वर्गों और व्हाइटहेड समूह के तत्वों के बीच विशेषण पत्राचार है।

एच-कोबोर्डिज़्म के अस्तित्व से जुड़ा स्पष्ट प्रश्न उनकी विशिष्टता है। तुल्यता की प्राकृतिक धारणा समरूपता #आइसोटोपी है। जॉन डियर ने साबित किया कि कम से कम 5 आयामों के आसानी से जुड़े हुए चिकने मैनिफोल्ड्स एम के लिए, एच-कोबॉर्डिज़्म का आइसोटोप कमजोर धारणा के समान है जिसे स्यूडो-आइसोटोपी कहा जाता है।[28] हैचर और वैगनर ने स्यूडो-आइसोटोपियों के स्थान के घटकों का अध्ययन किया और इसे K के भागफल से संबंधित किया2(जेडπ)।[29] एस-कोबोर्डिज्म प्रमेय के लिए उचित संदर्भ एच-कोबोर्डिज्म का वर्गीकरण स्थान है। यदि M CAT मैनिफोल्ड है, तो HCAT(M) ऐसा स्थान है जो M पर h-coboardisms के बंडलों को वर्गीकृत करता है। s-coboardism प्रमेय को इस कथन के रूप में पुनर्व्याख्या की जा सकती है कि इस स्थान के जुड़े घटकों का सेट π का ​​व्हाइटहेड समूह है1(एम)। इस स्थान में व्हाइटहेड समूह की तुलना में अधिक जानकारी है; उदाहरण के लिए, तुच्छ कोबोर्डिज्म का जुड़ा हुआ घटक एम पर संभावित सिलेंडरों का वर्णन करता है और विशेष रूप से कई गुना और के बीच होमोटॉपी की विशिष्टता में बाधा है M × [0, 1]. इन सवालों पर विचार करने के लिए वाल्डहौसेन ने रिक्त स्थान के अपने बीजगणितीय के-सिद्धांत को पेश करने का नेतृत्व किया।[30] M का बीजगणितीय K-सिद्धांत स्थान A(M) है जिसे परिभाषित किया गया है ताकि यह उच्च K-समूहों के लिए अनिवार्य रूप से K के समान भूमिका निभाए।1(Zπ1(M)) M के लिए करता है। विशेष रूप से, Waldhausen ने दिखाया कि A(M) से स्पेस Wh(M) तक नक्शा है जो मानचित्र को सामान्य करता है K1(Zπ1(M)) → Wh(π1(M)) और जिसका होमोटॉपी फाइबर होमोलॉजी थ्योरी है।

ए-थ्योरी को पूरी तरह से विकसित करने के लिए, वाल्डहॉसन ने के-थ्योरी की नींव में महत्वपूर्ण तकनीकी प्रगति की। Waldhausen ने Waldhausen श्रेणी की शुरुआत की, और Waldhausen श्रेणी C के लिए उन्होंने साधारण श्रेणी S की शुरुआत कीसी (एस सेगल के लिए है) सी में कोफिब्रेशन की श्रृंखलाओं के संदर्भ में परिभाषित किया गया है।[31] इसने के-सिद्धांत की नींव को त्रुटिहीनसटीक अनुक्रमों के अनुरूपों को लागू करने की आवश्यकता से मुक्त कर दिया।

=== बीजगणितीय के-सिद्धांत === में बीजगणितीय टोपोलॉजी और बीजगणितीय ज्यामिति

क्विलन ने अपने छात्र केनेथ ब्राउन (गणितज्ञ) को सुझाव दिया कि स्पेक्ट्रम (बीजगणितीय टोपोलॉजी) के शीफ (गणित) का सिद्धांत बनाना संभव हो सकता है, जिसमें से के-सिद्धांत उदाहरण प्रदान करेगा। के-थ्योरी स्पेक्ट्रा का शीफ, विभिन्न प्रकार के प्रत्येक खुले उपसमुच्चय के लिए, उस खुले उपसमुच्चय के के-सिद्धांत को संबद्ध करेगा। ब्राउन ने अपनी थीसिस के लिए ऐसा सिद्धांत विकसित किया। साथ ही, गेर्स्टन का भी यही विचार था। 1972 की शरद ऋतु में सिएटल सम्मेलन में, उन्होंने साथ वर्णक्रमीय अनुक्रम की खोज की जो शीफ कोहोलॉजी से अभिसरण कर रहा था। , के. का शीराn्स पर समूह, कुल स्थान के के-समूह के लिए। इसे अब ब्राउन-गेर्स्टन स्पेक्ट्रल अनुक्रम कहा जाता है।[32] स्पेंसर बलोच, के-समूहों के ढेरों पर गेर्स्टन के कार्य से प्रभावित होकर, यह साबित करते हैं कि नियमित सतह पर, कोहोलॉजी समूह चाउ समूह सीएच के लिए आइसोमोर्फिक है2(X) कोडिमेंशन के 2 चक्र X पर।[33] इससे प्रेरित होकर, गेर्स्टन ने अनुमान लगाया कि नियमित स्थानीय रिंग R के लिए भिन्न क्षेत्र F, K के साथn(आर) के में इंजेक्ट करता हैn(एफ) सभी एन के लिए। जल्द ही Quillen ने साबित कर दिया कि यह सच है जब R में क्षेत्र होता है,[34] और इसका प्रयोग करके उन्होंने यह सिद्ध कर दिया

सभी के लिए पी। इसे बलोच के सूत्र के रूप में जाना जाता है। जबकि तब से गेर्स्टन के अनुमान पर प्रगति हुई है, सामान्य मामला खुला रहता है।

लिचटेनबौम ने अनुमान लगाया कि संख्या क्षेत्र के जीटा समारोह के विशेष मूल्यों को क्षेत्र के पूर्णांकों की अंगूठी के के-समूहों के संदर्भ में व्यक्त किया जा सकता है। इन विशेष मूल्यों को पूर्णांकों के छल्ले के ईटेल कोहोलॉजी से संबंधित माना जाता था। इसलिए क्विलन ने लिचेंबाउम के अनुमान को सामान्यीकृत किया, टोपोलॉजिकल के-थ्योरी में अतियाह-हिर्जेब्रुक वर्णक्रमीय अनुक्रम जैसे वर्णक्रमीय अनुक्रम के अस्तित्व की भविष्यवाणी की।[35] क्विलेन का प्रस्तावित स्पेक्ट्रल अनुक्रम रिंग आर के एटेल कोहोलॉजी से शुरू होगा और पर्याप्त उच्च डिग्री में और प्राइम पर पूरा करने के बाद l R में उलटा, abut करने के लिए l-आर के के-सिद्धांत का विशेष समापन। लिचटेनबाम द्वारा अध्ययन किए गए मामले में, वर्णक्रमीय अनुक्रम पतित हो जाएगा, जिससे लिचेंबाउम का अनुमान निकलेगा।

प्रमुख पर स्थानीयकरण की आवश्यकता l ने ब्राउनर को सुझाव दिया कि परिमित गुणांकों के साथ K-सिद्धांत का संस्करण होना चाहिए।[36] उन्होंने के-सिद्धांत समूहों के को पेश कियाn(आर; 'जेड'/lZ) जो Z/ थेlजेड-वेक्टर रिक्त स्थान, और उन्होंने टोपोलॉजिकल के-सिद्धांत में बॉटल तत्व का एनालॉग पाया। सोले ने इस सिद्धांत का उपयोग एटेल चेर्न वर्ग ेस के निर्माण के लिए किया, जो टोपोलॉजिकल चेर्न क्लासेस का एनालॉग है, जो ईटेल कोहोलॉजी में बीजगणितीय 'के'-सिद्धांत के तत्वों को कक्षाओं में ले गया।[37] बीजीय K-सिद्धांत के विपरीत, étale cohomology अत्यधिक संगणनीय है, इसलिए étale Chern कक्षाओं ने K-सिद्धांत में तत्वों के अस्तित्व का पता लगाने के लिए प्रभावी उपकरण प्रदान किया। विलियम जेरार्ड ड्वायर|विलियम जी. ड्वायर और एरिक फ्रीडलैंडर ने फिर ईटेल टोपोलॉजी के लिए के-थ्योरी के एनालॉग का आविष्कार किया जिसे एटेल के-थ्योरी कहा जाता है।[38] जटिल संख्याओं पर परिभाषित विविधता के लिए, एटेल के-थ्योरी टोपोलॉजिकल के-थ्योरी के लिए आइसोमॉर्फिक है। इसके अलावा, étale K-theory ने Quillen द्वारा अनुमानित के समान वर्णक्रमीय अनुक्रम को स्वीकार किया। थॉमसन ने 1980 के आसपास साबित किया कि बॉटल तत्व को पलटने के बाद, बीजगणितीय के-सिद्धांत परिमित गुणांकों के साथ एटेल के-सिद्धांत के लिए आइसोमोर्फिक बन गया।[39] 1970 के दशक और 1980 के दशक के प्रारंभ में, विलक्षण विविधता पर के-सिद्धांत में अभी भी पर्याप्त नींव का अभाव था। जबकि यह माना जाता था कि क्विलेन के के-थ्योरी ने सही समूह दिए थे, यह ज्ञात नहीं था कि इन समूहों में सभी परिकल्पित गुण थे। इसके लिए, बीजगणितीय K-सिद्धांत का पुनर्निमाण किया जाना था। यह थॉमसन द्वारा लंबे मोनोग्राफ में किया गया था जिसे उन्होंने अपने मृत मित्र थॉमस ट्रोबॉघ को सह-श्रेय दिया था, जिन्होंने कहा था कि उन्होंने उन्हें सपने में महत्वपूर्ण विचार दिया था।[40] थॉमसन ने वॉल्डहॉसन के के-थ्योरी के निर्माण को ग्रोथेंडिक के सेमिनायर डे जियोमेट्री एल्गेब्रिक डु बोइस मैरी के खंड छह में वर्णित इंटरसेक्शन सिद्धांत की नींव के साथ जोड़ा। वहीं, के0 बीजगणितीय विविधता पर ढेरों के परिसरों के संदर्भ में वर्णित किया गया था। थॉमसन ने पाया कि यदि कोई शेवों की व्युत्पन्न श्रेणी के साथ काम करता है, तो इसका सरल विवरण था कि कब शेवों के जटिल को विभिन्न प्रकार के खुले उपसमुच्चय से पूरी विविधता तक बढ़ाया जा सकता है। व्युत्पन्न श्रेणियों के लिए K-सिद्धांत के Waldhausen के निर्माण को लागू करके, थॉमसन यह साबित करने में सक्षम थे कि बीजगणितीय K-सिद्धांत में कोहोलॉजी सिद्धांत के सभी अपेक्षित गुण थे।

1976 में, कीथ डेनिस ने होशचाइल्ड समरूपता पर आधारित के-सिद्धांत की गणना के लिए पूरी तरह से नई तकनीक की खोज की।[41] यह डेनिस ट्रेस मैप के अस्तित्व पर आधारित था, जो कि के-थ्योरी से होशचाइल्ड होमोलॉजी तक समरूपता है। जबकि डेनिस ट्रेस मैप परिमित गुणांकों के साथ के-सिद्धांत की गणना के लिए सफल प्रतीत होता है, यह तर्कसंगत गणनाओं के लिए कम सफल था। गुडविली, अपने कार्यकर्ताओं की गणना से प्रेरित होकर, के-सिद्धांत और होशचाइल्ड समरूपता के मध्यवर्ती सिद्धांत के अस्तित्व का अनुमान लगाया। उन्होंने इस सिद्धांत को टोपोलॉजिकल होशचाइल्ड होमोलॉजी कहा क्योंकि इसका ग्राउंड रिंग स्फेयर स्पेक्ट्रम होना चाहिए ( रिंग के रूप में माना जाता है जिसके संचालन को केवल होमोटॉपी तक परिभाषित किया जाता है)। 1980 के दशक के मध्य में, बोकस्टेड ने टोपोलॉजिकल होशचाइल्ड होमोलॉजी की परिभाषा दी, जो गुडविली के लगभग सभी अनुमानित गुणों को संतुष्ट करती है, और इसने के-समूहों की आगे की संगणना को संभव बनाया।[42] डेनिस ट्रेस मैप का बोकस्टेड का संस्करण स्पेक्ट्रा का रूपांतरण था KTHH. यह परिवर्तन टीएचएच पर सर्कल कार्रवाई के निश्चित बिंदुओं के माध्यम से होता है, जो चक्रीय समरूपता के साथ संबंध का सुझाव देता है। नोविकोव अनुमान के बीजगणितीय के-थ्योरी एनालॉग को साबित करने के क्रम में, बोकस्टेड, ह्सियांग और मैडसेन ने टोपोलॉजिकल चक्रीय होमोलॉजी की शुरुआत की, जो टोपोलॉजिकल होशचाइल्ड होमोलॉजी के समान संबंध को बोर करती है, जैसा कि होशचाइल्ड होमोलॉजी को चक्रीय होमोलॉजी ने किया था।[43] टोपोलॉजिकल साइक्लिक होमोलॉजी के माध्यम से टोपोलॉजिकल होशचाइल्ड होमोलॉजी कारकों के लिए डेनिस ट्रेस मैप, गणना के लिए और अधिक विस्तृत उपकरण प्रदान करता है। 1996 में, डंडास, गुडविली और मैककार्थी ने साबित किया कि टोपोलॉजिकल चक्रीय होमोलॉजी में त्रुटिहीनसटीक अर्थ में वही स्थानीय संरचना होती है जो बीजगणितीय के-सिद्धांत के रूप में होती है, ताकि यदि के-सिद्धांत या टोपोलॉजिकल चक्रीय होमोलॉजी में गणना संभव हो, तो आस-पास की कई अन्य गणनाएँ अनुसरण करना।[44]


निचला के-समूह

निचले के-समूहों को पहले खोजा गया था, और विभिन्न तदर्थ विवरण दिए गए थे, जो उपयोगी बने रहे। कुल मिलाकर, A को वलय (गणित) होने दें।

के0

फ़ैक्टर के0 अपने अंतिम रूप से उत्पन्न मॉड्यूल प्रक्षेपी मॉड्यूल के आइसोमोर्फिज्म वर्गों के सेट के ग्रोथेंडिक समूह के लिए रिंग ए लेता है, जिसे प्रत्यक्ष योग के तहत मोनोइड माना जाता है। कोई भी वलय समरूपता A → B नक्शा K देता है0(ए) → के0(बी) मैपिंग (की कक्षा) प्रोजेक्टिव ए-मॉड्यूल एम से एम ⊗A बी, के बना रहा है0 सहसंयोजक फ़ंक्टर।

यदि वलय A क्रमविनिमेय है, तो हम K के उपसमूह को परिभाषित कर सकते हैं0(ए) सेट के रूप में

कहाँ :

नक्शा प्रत्येक (कक्षा का) सूक्ष्म रूप से उत्पन्न प्रोजेक्टिव ए-मॉड्यूल एम को मुक्त मॉड्यूल के रैंक पर भेज रहा है -मापांक (यह मॉड्यूल वास्तव में नि: शुल्क है, क्योंकि स्थानीय अंगूठी पर कोई भी सूक्ष्म रूप से जेनरेट किया गया प्रोजेक्टिव मॉड्यूल निःशुल्क है)। यह उपसमूह A के घटे हुए शून्य K-सिद्धांत के रूप में जाना जाता है।

यदि B rng (बीजगणित) है, तो हम K की परिभाषा का विस्तार कर सकते हैं0 निम्नलिखित नुसार। चलो A = B⊕'Z' पहचान तत्व (0,1) के साथ मिलकर ता प्राप्त करने वाली अंगूठी के लिए बी का विस्तार हो। संक्षिप्त त्रुटिहीनसटीक अनुक्रम B → A → 'Z' है और हम K को परिभाषित करते हैं0(बी) संबंधित मानचित्र के कर्नेल होने के लिए0(ए) → के0(जेड) = जेड।[45]


उदाहरण

  • (प्रक्षेपी) क्षेत्र (गणित) पर मॉड्यूल k वेक्टर रिक्त स्थान हैं और K0(के) आयाम (वेक्टर स्पेस) द्वारा 'जेड' के लिए आइसोमोर्फिक है।
  • स्थानीय रिंग ए पर बारीक रूप से उत्पन्न प्रोजेक्टिव मॉड्यूल स्वतंत्र हैं और इसलिए इस मामले में बार फिर के0(ए) मुक्त मॉड्यूल के रैंक द्वारा 'जेड' के लिए आइसोमोर्फिक है।[46]
  • A डेडेकिंड डोमेन के लिए, K0(ए) = तस्वीर (ए) ⊕ 'जेड', जहां तस्वीर (ए) ए का पिकार्ड समूह है,[47]

इस निर्माण का बीजगणितीय-ज्यामितीय संस्करण बीजगणितीय विविधता की श्रेणी पर लागू होता है; यह किसी दिए गए बीजगणितीय किस्म ्स के साथ ्स पर स्थानीय रूप से मुक्त ढेरों (या सुसंगत ढेरों) की श्रेणी के ग्रोथेंडिक के के-समूह के साथ संबद्ध है।X के ऊपर (वास्तविक) सदिश बंडलों का शीर्ष(X) K से मेल खाता है0्स पर निरंतर कार्य वास्तविक-मूल्यवान कार्यों की अंगूठी की।[48]


रिश्तेदार के0

आइए मैं ए का आदर्श बनूं और डबल को कार्टेशियन उत्पाद ए × ए के सबरिंग के रूप में परिभाषित करता हूं:[49]

रिश्तेदार के-ग्रुप को डबल के संदर्भ में परिभाषित किया गया है[50]

जहां नक्शा पहले कारक के साथ प्रक्षेपण से प्रेरित होता है।

रिश्तेदार के0(ए, आई) के लिए आइसोमोर्फिक है0(I), I के बारे में बिना पहचान के अंगूठी के रूप में। A से स्वतंत्रता होमोलॉजी में ्सिशन प्रमेय का एनालॉग है।[45]


के0 अंगूठी के रूप में

यदि A क्रमविनिमेय वलय है, तो प्रक्षेपी मॉड्यूल का टेंसर उत्पाद फिर से प्रक्षेपी होता है, और इसलिए टेंसर उत्पाद K को घुमाते हुए गुणन को प्रेरित करता है0 पहचान के रूप में वर्ग [ए] के साथ क्रमविनिमेय अंगूठी में।[46] बाहरी उत्पाद इसी तरह λ-अंगूठी संरचना को प्रेरित करता है। पिकार्ड समूह इकाइयों के समूह के उपसमूह के रूप में एम्बेड करता है0(ए).[51]


के1

हाइमन बास ने यह परिभाषा प्रदान की, जो अंगूठी की इकाइयों के समूह को सामान्यीकृत करती है: के1(ए) अनंत सामान्य रैखिक समूह का अपमान है:

यहाँ

GL(n) की प्रत्यक्ष सीमा है, जो GL(n + 1) में ऊपरी बाएँ ब्लॉक मैट्रिक्स के रूप में एम्बेड होती है, और इसका कम्यूटेटर उपसमूह है। प्राथमिक मैट्रिक्स को परिभाषित करें जो पहचान मैट्रिक्स का योग है और ल ऑफ-विकर्ण तत्व है (यह प्राथमिक मैट्रिक्स का सबसेट है)। फिर व्हाइटहेड के लेम्मा में कहा गया है कि प्राथमिक मैट्रिक्स द्वारा उत्पन्न समूह ई (ए) कम्यूटेटर उपसमूह [जीएल (ए), जीएल (ए)] के बराबर है। वास्तव में, समूह GL(A)/E(A) को सबसे पहले व्हाइटहेड द्वारा परिभाषित और अध्ययन किया गया था,[52] और रिंग 'ए' का व्हाइटहेड समूह कहा जाता है।

रिश्तेदार के1

रिश्तेदार के-ग्रुप को डबल के संदर्भ में परिभाषित किया गया है[53]

प्राकृतिक त्रुटिहीनसटीक क्रम है[54]


क्रमविनिमेय छल्ले और क्षेत्र

A के लिए क्रमविनिमेय वलय, निर्धारक को परिभाषित कर सकता है: GL(A) → A*, A की इकाइयों के समूह के लिए, जो E(A) पर गायब हो जाता है और इस प्रकार मानचित्र पर उतरता है: K1(ए) → ए *। ई (ए) ◅ एसएल (ए) के रूप में, कोई भी 'विशेष व्हाइटहेड समूह' एसके को परिभाषित कर सकता है1(ए) := एसएल(ए)/ई(ए). यह मानचित्र मानचित्र A* → GL(1, A) → K के माध्यम से विभाजित होता है1(ए) (ऊपरी बाएं कोने में इकाई), और इसलिए चालू है, और कर्नेल के रूप में विशेष व्हाइटहेड समूह है, विभाजित लघु त्रुटिहीनसटीक अनुक्रम प्रदान करता है:

जो विशेष रेखीय समूह को परिभाषित करने वाले सामान्य विभाजन लघु त्रुटिहीनसटीक अनुक्रम का भागफल है, अर्थात्

इकाइयों के समूह A* = GL को सम्मिलित करके निर्धारक को विभाजित किया जाता है1(ए) सामान्य रैखिक समूह जीएल (ए) में, इसलिए के1(ए) इकाइयों के समूह और विशेष व्हाइटहेड समूह के प्रत्यक्ष योग के रूप में विभाजित होता है: के1(ए) ≅ ए * ⊕ एसके1 (ए)।

जब A यूक्लिडियन डोमेन हो (उदाहरण के लिए क्षेत्र, या पूर्णांक) SK1(ए) गायब हो जाता है, और निर्धारक मानचित्र के से समरूपता है1(ए) से ए.[55] यह पीआईडी ​​के लिए सामान्य रूप से झूठा है, इस प्रकार यूक्लिडियन डोमेन की दुर्लभ गणितीय विशेषताओं में से प्रदान करता है जो सभी पीआईडी ​​​​के लिए सामान्यीकृत नहीं होता है। स्पष्ट पीआईडी ​​जैसे कि SK1 1980 में इस्चेबेक द्वारा और 1981 में ग्रेसन द्वारा नॉनज़रो दिया गया था।[56] यदि A Dedekind डोमेन है जिसका भागफल क्षेत्र बीजगणितीय संख्या क्षेत्र (परिमेय का परिमित विस्तार) है, तो Milnor (1971, corollary 16.3) दिखाता है कि एस.के1(ए) गायब हो जाता है।[57] एसके का गायब होना1 यह कहकर व्याख्या की जा सकती है कि के1 जीएल की छवि से उत्पन्न होता है1 जीएल में। जब यह विफल हो जाता है, तो कोई पूछ सकता है कि क्या के1 जीएल की छवि से उत्पन्न होता है2. Dedekind डोमेन के लिए, यह मामला है: वास्तव में, K1 जीएल की छवियों द्वारा उत्पन्न होता है1 और एसएल2 जीएल में।[56] एसके का उपसमूह1 एसएल द्वारा उत्पन्न2 Mennicke प्रतीकों द्वारा अध्ययन किया जा सकता है। डेडेकाइंड डोमेन के लिए अधिकतम गुण परिमित द्वारा सभी उद्धरणों के साथ, एसके1 मरोड़ समूह है।[58] गैर-कम्यूटेटिव रिंग के लिए, निर्धारक को सामान्य रूप से परिभाषित नहीं किया जा सकता है, लेकिन मानचित्र GL(A) → K1(ए) निर्धारक का सामान्यीकरण है।

केंद्रीय सरल बीजगणित

क्षेत्र एफ पर केंद्रीय सरल बीजगणित ए के मामले में, कम मानदंड नक्शा के देने वाले निर्धारक का सामान्यीकरण प्रदान करता है1(ए) → एफ और एसके1(ए) कर्नेल के रूप में परिभाषित किया जा सकता है। 'वांग का प्रमेय' कहता है कि यदि A के पास प्राइम डिग्री है तो SK1(ए) तुच्छ है,[59] और इसे वर्ग-मुक्त डिग्री तक बढ़ाया जा सकता है।[60] वांग के लिए शि प्रेस जी ने यह भी दिखाया कि SK1(ए) किसी संख्या क्षेत्र पर किसी भी केंद्रीय सरल बीजगणित के लिए तुच्छ है,[61] लेकिन प्लैटोनोव ने डिग्री प्राइम स्क्वायर के बीजगणित के उदाहरण दिए हैं जिसके लिए एस.के1(ए) गैर तुच्छ है।[60]


के2

जॉन मिलनर ने K की सही परिभाषा पाई2: यह ए के स्टाइनबर्ग समूह (के-सिद्धांत) सेंट (ए) के समूह का केंद्र है।

इसे मानचित्र के कर्नेल (बीजगणित) के रूप में भी परिभाषित किया जा सकता है

या प्रारंभिक मैट्रिसेस के समूह के शूर गुणक के रूप में।

क्षेत्र के लिए, के2 स्टाइनबर्ग प्रतीकों द्वारा निर्धारित किया जाता है: यह मात्सुमोतो के प्रमेय की ओर जाता है।

कोई गणना कर सकता है कि K2 किसी परिमित क्षेत्र के लिए शून्य है।[62][63] K की गणना2(क्यू) जटिल है: टेट साबित हुआ[63][64]

और टिप्पणी की कि प्रमाण गॉस के द्विघात पारस्परिकता के नियम के पहले प्रमाण का अनुसरण करता है।[65][66] गैर-आर्किमिडीयन स्थानीय क्षेत्रों के लिए, समूह K2(एफ) आदेश एम के सीमित चक्रीय समूह का प्रत्यक्ष योग है, और विभाज्य समूह के2(एफ)मी.[67] हमारे पास के2(जेड) = जेड/2,[68] और सामान्य तौर पर के2 किसी संख्या क्षेत्र के पूर्णांकों के वलय के लिए परिमित है।[69] हमारे पास आगे के2(Z/n) = Z/2 अगर n 4 से विभाज्य है, और अन्यथा शून्य।[70]


मात्सुमोतो का प्रमेय

मात्सुमोतो की प्रमेय[71] बताता है कि क्षेत्र के लिए, दूसरा के-ग्रुप द्वारा दिया गया है[72][73]

मात्सुमोतो का मूल प्रमेय और भी अधिक सामान्य है: किसी भी जड़ प्रणाली के लिए, यह अस्थिर के-सिद्धांत के लिए प्रस्तुति देता है। यह प्रस्तुति केवल सहानुभूति मूल प्रक्रिया के लिए यहां दी गई प्रस्तुति से अलग है। गैर-सहानुभूति जड़ प्रणालियों के लिए, जड़ प्रणाली के संबंध में अस्थिर दूसरा के-समूह जीएल (ए) के लिए बिल्कुल स्थिर के-समूह है। अस्थिर दूसरे के-समूह (इस संदर्भ में) को किसी दिए गए रूट सिस्टम के लिए सार्वभौमिक प्रकार के चेवेली समूह के सार्वभौमिक केंद्रीय विस्तार के कर्नेल को लेकर परिभाषित किया गया है। यह निर्माण रूट सिस्टम ए के लिए स्टाइनबर्ग ्सटेंशन के कर्नेल का उत्पादन करता हैn (n > 1) और, सीमा में, स्थिर दूसरे K-समूह।

लंबे त्रुटिहीनसटीक क्रम

यदि A डेडेकाइंड डोमेन है जिसमें अंशों का क्षेत्र F है तो लंबा त्रुटिहीनसटीक अनुक्रम है

जहां 'पी' 'ए' के ​​सभी प्रमुख आदर्शों पर चलता है।[74] सापेक्ष K के लिए त्रुटिहीनसटीक अनुक्रम का विस्तार भी है1 और के0:[75]


बाँधना

K पर युग्म है1 कश्मीर में मूल्यों के साथ2. A के ऊपर आने वाले मैट्रिक्स X और Y को देखते हुए, स्टाइनबर्ग समूह (K- सिद्धांत) में X, Y के साथ तत्वों x और y को छवियों के रूप में लें। कम्यूटेटर K. का तत्व है2.[76] नक्शा हमेशा विशेषण नहीं होता है।[77]


मिल्नोर के-सिद्धांत

K के लिए उपरोक्त अभिव्यक्ति2 क्षेत्र k ने मिल्नोर को उच्च K-समूहों की निम्नलिखित परिभाषा के लिए प्रेरित किया

इस प्रकार गुणात्मक समूह k के टेन्सर बीजगणित के भागफल के वर्गीकृत भागों के रूप में× द्वारा उत्पन्न दो तरफा आदर्श द्वारा

n = 0,1,2 के लिए ये नीचे वालों के साथ मेल खाते हैं, लेकिन n ≧ 3 के लिए ये सामान्य रूप से भिन्न हैं।[78] उदाहरण के लिए, हमारे पास केM
n
('एफ'q) = 0 n ≧ 2 के लिए लेकिन केnFqविषम n के लिए अशून्य है (नीचे देखें)।

टेंसर बीजगणित पर टेंसर उत्पाद उत्पाद को प्रेरित करता है निर्माण वर्गीकृत अंगूठी जो वर्गीकृत-कम्यूटेटिव है।[79] तत्वों की छवियां में प्रतीक कहलाते हैं, निरूपित करते हैं . k में पूर्णांक m व्युत्क्रमणीय के लिए नक्शा है

कहाँ k के कुछ वियोज्य विस्तार में ता के m-वें मूल के समूह को दर्शाता है। यह तक फैला हुआ है

मिल्नोर के-ग्रुप के परिभाषित संबंधों को संतुष्ट करना। इस तरह मानचित्र के रूप में माना जा सकता है , जिसे गैलोज़ प्रतीक मानचित्र कहा जाता है।[80] ईटेल कोहोलॉजी | एटले (या गैलोइस कोहोलॉजी) कोहोलॉजी ऑफ द फील्ड और मिल्नोर के-थ्योरी मोडुलो 2 के बीच का संबंध मिल्नोर अनुमान है, जिसे व्लादिमीर वोवोडस्की ने सिद्ध किया है।[81] विषम अभाज्य संख्याओं के लिए अनुरूप कथन बलोच-काटो अनुमान है, जो वोवोडस्की, रोस्ट और अन्य लोगों द्वारा सिद्ध किया गया है।

उच्चतर के-सिद्धांत

उच्च K-समूहों की स्वीकृत परिभाषाएँ किसके द्वारा दी गई थीं Quillen (1973), कुछ वर्षों के बाद जिसके दौरान कई असंगत परिभाषाएँ सुझाई गईं। कार्यक्रम का उद्देश्य वर्गीकरण रिक्त स्थान के संदर्भ में K(R) और K(R,I) की परिभाषाएं खोजना था ताकि आर ⇒ के(आर) और (आर,आई) ⇒ के(आर,आई) होमोटॉपी श्रेणी में कारक हैं रिक्त स्थान और सापेक्ष K-समूहों के लिए लंबा त्रुटिहीनसटीक अनुक्रम कंपन K(R,I) → K(R) → K(R) के लंबे त्रुटिहीनसटीक होमोटॉपी अनुक्रम के रूप में उत्पन्न होता है /मैं)।[82] क्विलेन ने दो निर्माण, प्लस-निर्माण और क्यू-निर्माण, बाद में अलग-अलग तरीकों से संशोधित किया।[83] दो निर्माण समान के-समूह उत्पन्न करते हैं।[84]


+ - निर्माण

रिंगों के उच्च बीजगणितीय K-सिद्धांत की संभावित परिभाषा Quillen द्वारा दी गई थी

यहाँ पीn होमोटॉपी समूह है, जीएल (आर) अनंत के लिए चल रहे मैट्रिक्स के आकार के लिए आर पर सामान्य रैखिक समूहों की सीधी सीमा है, बी होमोटोपी सिद्धांत का वर्गीकरण अंतरिक्ष निर्माण है, और + क्विलेन का प्लस निर्माण है। उन्होंने मूल रूप से इस विचार को समूह कोहोलॉजी के अध्ययन के दौरान पाया [85] और नोट किया कि उनकी कुछ गणनाएँ संबंधित थीं .

यह परिभाषा केवल n > 0 के लिए मान्य है, इसलिए कोई अक्सर उच्च बीजगणितीय K-सिद्धांत के माध्यम से परिभाषित करता है

चूंकि बीजीएल (आर)+ पथ जुड़ा हुआ है और K0(आर) अलग, यह परिभाषा उच्च डिग्री में भिन्न नहीं होती है और एन = 0 के लिए भी लागू होती है।

क्यू-निर्माण

क्यू-निर्माण +-निर्माण के समान परिणाम देता है, लेकिन यह अधिक सामान्य स्थितियों में लागू होता है। इसके अलावा, परिभाषा इस अर्थ में अधिक प्रत्यक्ष है कि क्यू-निर्माण के माध्यम से परिभाषित के-समूह परिभाषा के अनुसार कार्यात्मक हैं। प्लस-निर्माण में यह तथ्य स्वत: नहीं है।

कल्पना करना त्रुटिहीनसटीक श्रेणी है; के लिए जुड़े नई श्रेणी परिभाषित किया गया है, जिसकी वस्तुएं हैं और M' से M' तक आकारिकी रेखाचित्रों की समरूपता वर्ग हैं

जहां पहला तीर स्वीकार्य अधिरूपता है और दूसरा तीर स्वीकार्य रूपता है। आकारिकी पर ध्यान दें मकसद (बीजीय ज्यामिति) की श्रेणी में morphisms की परिभाषाओं के अनुरूप हैं, जहां morphisms पत्राचार के रूप में दिया जाता है ऐसा है कि

आरेख है जहां बाईं ओर का तीर कवरिंग मैप है (इसलिए विशेषण) और दाईं ओर का तीर इंजेक्शन है। वर्गीकरण अंतरिक्ष निर्माण का उपयोग करके इस श्रेणी को तब स्थलीय स्थान में बदल दिया जा सकता है , जिसे तंत्रिका (श्रेणी सिद्धांत) के ज्यामितीय अहसास के रूप में परिभाषित किया गया है . फिर, i-th K-त्रुटिहीनसटीक श्रेणी का समूह तब के रूप में परिभाषित किया गया है

निश्चित शून्य वस्तु के साथ . ग्रुपॉयड के वर्गीकरण स्थान पर ध्यान दें होमोटॉपी समूहों को डिग्री ऊपर ले जाता है, इसलिए डिग्री में बदलाव के लिए प्राणी स्थान का।

यह परिभाषा K की उपरोक्त परिभाषा से मेल खाती है0(पी)। यदि पी सूक्ष्म रूप से उत्पन्न प्रोजेक्टिव मॉड्यूल | प्रोजेक्टिव आर-मॉड्यूल की श्रेणी है, तो यह परिभाषा उपर्युक्त बीजीएल से सहमत है+ के. की परिभाषाn(आर) सभी एन के लिए। अधिक आम तौर पर, योजना (गणित) ्स के लिए, ्स के उच्च के-समूहों को ्स पर स्थानीय रूप से मुक्त सुसंगत शीफ के के-समूह (त्रुटिहीनसटीक श्रेणी) के रूप में परिभाषित किया जाता है।

इसके निम्न संस्करण का भी उपयोग किया जाता है: परिमित रूप से उत्पन्न प्रोजेक्टिव (= स्थानीय रूप से मुक्त) मॉड्यूल के बजाय, सूक्ष्म रूप से उत्पन्न मॉड्यूल लें। परिणामी K-समूहों को आमतौर पर G लिखा जाता हैn(आर)। जब R नोथेरियन वलय नियमित वलय है, तो G- और K-सिद्धांत मेल खाते हैं। वास्तव में, नियमित छल्ले का वैश्विक आयाम परिमित है, अर्थात किसी भी परिमित रूप से उत्पन्न मॉड्यूल में परिमित प्रक्षेप्य संकल्प P होता है* → एम, और साधारण तर्क से पता चलता है कि कैनोनिकल मैप के0(आर) → जी0(आर) समरूपता है, [एम] = Σ ± [पी के साथn]। यह समरूपता उच्च K-समूहों तक भी फैली हुई है।

एस-निर्माण

फ्रीडेलम वाल्डहॉसन के कारण के-सिद्धांत समूहों का तीसरा निर्माण एस-निर्माण है।[86] यह कोफिब्रेशन वाली श्रेणियों पर लागू होता है (जिसे वाल्डहाउज़ेन श्रेणी भी कहा जाता है)। यह त्रुटिहीनसटीक श्रेणियों की तुलना में अधिक सामान्य अवधारणा है।

उदाहरण

जबकि क्विलन बीजगणितीय के-सिद्धांत ने बीजगणितीय ज्यामिति और टोपोलॉजी के विभिन्न पहलुओं में गहरी अंतर्दृष्टि प्रदान की है, के-समूह कुछ पृथक लेकिन दिलचस्प मामलों को छोड़कर गणना करने में विशेष रूप से कठिन साबित हुए हैं। (यह भी देखें: फील्ड के के-समूह।)

परिमित क्षेत्रों के बीजगणितीय के-समूह

रिंग के उच्च बीजगणितीय K-समूहों की पहली और सबसे महत्वपूर्ण गणना क्विलेन द्वारा स्वयं परिमित क्षेत्रों के मामले में की गई थी:

अगर 'एफ'q क्यू तत्वों के साथ परिमित क्षेत्र है, फिर:

  • 0(एफq) = जेड,
  • 2i(एफq) = 0 के लिए मैं ≥1,
  • 2i–1(एफq) = Z/(qi − 1)'Z' i ≥ 1 के लिए।

Rick Jardine (1993) ने विभिन्न विधियों का उपयोग करके क्विलेन की गणना का खंडन किया।

पूर्णांकों के वलयों के बीजगणितीय K-समूह

क्विलेन ने सिद्ध किया कि यदि A बीजगणितीय संख्या क्षेत्र F (परिमेय का परिमित विस्तार) में पूर्णांकों का वलय है, तो A के बीजगणितीय K-समूह परिमित रूप से उत्पन्न होते हैं। आर्मंड बोरेल ने इसका उपयोग K की गणना के लिए कियाi(ए) और केi(एफ) सापेक्ष मरोड़। उदाहरण के लिए, पूर्णांक 'Z' के लिए, बोरेल ने सिद्ध किया कि (मॉड्यूलो टॉर्शन)

  • i (Z)/tors.=0 धनात्मक i के लिए जब तक i=4k+1 k धनात्मक के साथ
  • 4k+1 (Z)/tors.= Z धनात्मक k के लिए।

K का मरोड़ उपसमूह2i+1(जेड), और परिमित समूहों के आदेश के4k+2(जेड) हाल ही में निर्धारित किया गया है, लेकिन क्या बाद वाले समूह चक्रीय हैं, और क्या समूह 'के'4k(जेड) गायब हो जाना साइक्लोटोमिक पूर्णांकों के वर्ग समूहों के बारे में वंडिवर के अनुमान पर निर्भर करता है। अधिक विवरण के लिए क्विलेन-लिक्टेनबौम अनुमान देखें।

अनुप्रयोग और खुले प्रश्न

बीजगणितीय के-समूहों का उपयोग एल-फ़ंक्शंस के विशेष मूल्यों और इवासावा सिद्धांत के गैर-कम्यूटेटिव मुख्य अनुमान के निर्माण और उच्च नियामकों के निर्माण में किया जाता है।[69] पार्शिन का अनुमान परिमित क्षेत्रों पर चिकनी विविधता के लिए उच्च बीजगणितीय के-समूहों से संबंधित है, और कहा गया है कि इस मामले में समूह मरोड़ तक गायब हो जाते हैं।

हाइमन बास (बास 'अनुमान) के कारण और मौलिक अनुमान कहता है कि सभी समूह जीn(ए) अंतिम रूप से उत्पन्न होते हैं जब ए अंतिम रूप से उत्पन्न 'जेड'-बीजगणित होता है। (समूह जीn(ए) अंतिम रूप से उत्पन्न ए-मॉड्यूल की श्रेणी के के-समूह हैं) [87]


यह भी देखें

  • योगात्मक के-सिद्धांत
  • बलोच का सूत्र
  • बीजगणितीय K-सिद्धांत का मौलिक प्रमेय|बीजगणितीय K-सिद्धांत का मौलिक प्रमेय
  • बीजगणितीय के-सिद्धांत में मूल प्रमेय|बीजगणितीय के-सिद्धांत में मूल प्रमेय
  • के-सिद्धांत|के-सिद्धांत
  • के-थ्योरी ऑफ ए कैटेगरी|के-थ्योरी ऑफ ए कैटेगरी
  • क्षेत्र का के-समूह|क्षेत्र का के-समूह
  • के-थ्योरी स्पेक्ट्रम|के-थ्योरी स्पेक्ट्रम
  • रेडशिफ्ट अनुमान
  • टोपोलॉजिकल के-थ्योरी|टोपोलॉजिकल के-थ्योरी
  • कठोरता (के-सिद्धांत)|कठोरता (के-सिद्धांत)

टिप्पणियाँ

  1. Weibel 1999
  2. Grothendieck 1957, Borel–Serre 1958
  3. Atiyah–Hirzebruch 1961
  4. Whitehead 1939, Whitehead 1941, Whitehead 1950
  5. Bass–Schanuel 1962
  6. Bass 1968
  7. Bass–Murthy 1967
  8. Karoubi 1968
  9. Steinberg 1962
  10. Milnor 1971
  11. Matsumoto 1969
  12. Swan 1968
  13. Gersten 1969
  14. Nobile–Villamayor 1968
  15. Karoubi–Villamayor 1971
  16. Milnor 1970
  17. Milnor 1970, p. 319
  18. Nesterenko–Suslin 1990
  19. Totaro 1992
  20. Thomason 1992
  21. Quillen 1971
  22. Segal 1974
  23. Wall 1965
  24. Siebenmann 1965
  25. Smale 1962
  26. Mazur 1963
  27. Barden 1963
  28. Cerf 1970
  29. Hatcher and Wagoner 1973
  30. Waldhausen 1978
  31. Waldhausen 1985
  32. Brown–Gersten 1973
  33. Bloch 1974
  34. Quillen 1973
  35. Quillen 1975
  36. Browder 1976
  37. Soulé 1979
  38. Dwyer–Friedlander 1982
  39. Thomason 1985
  40. Thomason and Trobaugh 1990
  41. Dennis 1976
  42. Bokstedt 1986
  43. Bokstedt–Hsiang–Madsen 1993
  44. Dundas–Goodwillie–McCarthy 2012
  45. 45.0 45.1 Rosenberg (1994) p.30
  46. 46.0 46.1 Milnor (1971) p.5
  47. Milnor (1971) p.14
  48. Karoubi, Max (2008), K-Theory: an Introduction, Classics in mathematics, Berlin, New York: Springer-Verlag, ISBN 978-3-540-79889-7, see Theorem I.6.18
  49. Rosenberg (1994) 1.5.1, p.27
  50. Rosenberg (1994) 1.5.3, p.27
  51. Milnor (1971) p.15
  52. J.H.C. Whitehead, Simple homotopy types Amer. J. Math. , 72 (1950) pp. 1–57
  53. Rosenberg (1994) 2.5.1, p.92
  54. Rosenberg (1994) 2.5.4, p.95
  55. Rosenberg (1994) Theorem 2.3.2, p.74
  56. 56.0 56.1 Rosenberg (1994) p.75
  57. Rosenberg (1994) p.81
  58. Rosenberg (1994) p.78
  59. Gille & Szamuely (2006) p.47
  60. 60.0 60.1 Gille & Szamuely (2006) p.48
  61. Wang, Shianghaw (1950). "एक साधारण बीजगणित के कम्यूटेटर समूह पर". Am. J. Math. 72 (2): 323–334. doi:10.2307/2372036. ISSN 0002-9327. JSTOR 2372036. Zbl 0040.30302.
  62. Lam (2005) p.139
  63. 63.0 63.1 Lemmermeyer (2000) p.66
  64. Milnor (1971) p.101
  65. Milnor (1971) p.102
  66. Gras (2003) p.205
  67. Milnor (1971) p.175
  68. Milnor (1971) p.81
  69. 69.0 69.1 Lemmermeyer (2000) p.385
  70. Silvester (1981) p.228
  71. Hideya Matsumoto
  72. Matsumoto, Hideya (1969), "Sur les sous-groupes arithmétiques des groupes semi-simples déployés", Annales Scientifiques de l'École Normale Supérieure, 4 (in français), 2 (2): 1–62, doi:10.24033/asens.1174, ISSN 0012-9593, MR 0240214, Zbl 0261.20025
  73. Rosenberg (1994) Theorem 4.3.15, p.214
  74. Milnor (1971) p.123
  75. Rosenberg (1994) p.200
  76. Milnor (1971) p.63
  77. Milnor (1971) p.69
  78. (Weibel 2005), cf. Lemma 1.8
  79. Gille & Szamuely (2006) p.184
  80. Gille & Szamuely (2006) p.108
  81. Voevodsky, Vladimir (2003), "Motivic cohomology with Z/2-coefficients", Institut des Hautes Études Scientifiques. Publications Mathématiques, 98 (1): 59–104, doi:10.1007/s10240-003-0010-6, ISSN 0073-8301, MR 2031199
  82. Rosenberg (1994) pp. 245–246
  83. Rosenberg (1994) p.246
  84. Rosenberg (1994) p.289
  85. "ag.बीजगणितीय ज्यामिति - उच्च बीजगणितीय K-सिद्धांत की Quillen की प्रेरणा". MathOverflow. Retrieved 2021-03-26.
  86. Waldhausen, Friedhelm (1985), "Algebraic K-theory of spaces", Algebraic K-theory of spaces, Lecture Notes in Mathematics, vol. 1126, Berlin, New York: Springer-Verlag, pp. 318–419, doi:10.1007/BFb0074449, ISBN 978-3-540-15235-4, MR 0802796. See also Lecture IV and the references in (Friedlander & Weibel 1999)
  87. (Friedlander & Weibel 1999), Lecture VI


संदर्भ


अग्रिम पठन



शैक्षणिक संदर्भ

ऐतिहासिक संदर्भ

बाहरी संबंध