लेबेस्ग माप: Difference between revisions

From Vigyanwiki
m (8 revisions imported from alpha:लेबेस्ग_माप)
No edit summary
 
Line 110: Line 110:
[[Category:Collapse templates]]
[[Category:Collapse templates]]
[[Category:Created On 28/02/2023]]
[[Category:Created On 28/02/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes| ]]
Line 117: Line 118:
[[Category:Sidebars with styles needing conversion]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Vigyan Ready]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]

Latest revision as of 15:37, 16 March 2023

माप सिद्धांत में, गणित की शाखा, फ्रांस के गणितज्ञ हेनरी लेबेस्ग के नाम पर लेबेस्ग माप, n-आयामी यूक्लिडियन अंतरिक्ष के उपसमुच्चय के लिए माप निर्दिष्ट करने की मानक विधि है। n = 1, 2, या 3 के लिए, यह लंबाई, क्षेत्रफल, या आयतन के मानक माप के साथ मेल खाता है। सामान्यतः, इसे n-आयामी आयतन, n-आयतन, या केवल आयतन भी कहा जाता है।[1] इसका उपयोग पूरे वास्तविक विश्लेषण, विशेष रूप से लेबेस्ग एकीकरण को परिभाषित करने में किया जाता है। ऐसे समुच्चय जिन्हें लेबेस्ग माप निर्दिष्ट किया जा सकता है, लेबेस्ग-मापने योग्य कहलाते हैं; लेबेस्ग-मापने योग्य समुच्चय A का माप यहाँ λ(A) द्वारा दर्शाया गया है।

हेनरी लेबेस्ग ने इस माप का वर्णन वर्ष 1901 में किया, उसके बाद अगले वर्ष लेबेस्ग इंटीग्रल के अपने विवरण के द्वारा वर्णन किया गया। दोनों को 1902 में उनके शोध प्रबंध के हिस्से के रूप में प्रकाशित किया गया था।[2]


परिभाषा

किसी भी अंतराल के लिए (गणित) , या , समुच्चय की वास्तविक संख्याओं में, माना इसकी लंबाई को निरूपित करें। किसी उपसमुच्चय के लिए , लेबेस्ग की बाहरी माप[3] को इन्फिनमम के रूप में परिभाषित किया गया है:

उपरोक्त परिभाषा को निम्नानुसार उच्च आयामों के लिए सामान्यीकृत किया जा सकता है।[4] किसी भी आयताकार घनाभ के लिए जो खुले अंतराल का, माना गुणा है, माना इसकी मात्रा को निरूपित करता है। किसी उपसमुच्चय के लिए,

कुछ समुच्चय कैराथियोडोरी कसौटी पर खरे उतरते हैं, जो प्रत्येक के लिए यह आवश्यक है:

ऐसे सभी का समुच्चय σ-बीजगणित बनाता है। ऐसे किसी भी के लिए , इसके लेबेस्ग माप को इसके लेबेस्ग बाहरी माप के रूप में परिभाषित किया गया है: .

समुच्चय जो कैराथियोडोरी कसौटी पर खरा नहीं उतरता है वह लेबेस्ग-मापने योग्य नहीं है। जेडएफसी सिद्ध करता है कि गैर-मापने योग्य समुच्चय उपस्थित हैं; उदाहरण विटाली समुच्चय है।

अंतर्ज्ञान

परिभाषा के पहले भाग में कहा गया है कि उपसमुच्चय खुले अंतराल के समुच्चय द्वारा कवरेज द्वारा वास्तविक संख्याओं को इसके बाहरी माप में घटा दिया जाता है। अंतराल के इन समुच्चयों में से प्रत्येक अर्थ में , को कवर करता है, चूंकि इन अंतरालों के मिलन में सम्मिलित होता है। किसी भी कवरिंग अंतराल समुच्चय की कुल लंबाई के माप को अधिक अनुमानित कर सकती है, क्योंकि अंतरालों के मिलन का उपसमुच्चय है, और इसलिए अंतरालों में वे बिंदु सम्मिलित हो सकते हैं जो के अंदर नहीं हैं। लेबेस्ग बाहरी माप निम्नतम और उच्चतम के रूप में उभर कर आता है। ऐसे सभी संभावित समुच्चयों में से लंबाई की सबसे निचली सीमा (इन्फिनिमम) सहज रूप से, यह उन अंतराल समुच्चयों की कुल लंबाई है जो को सबसे अधिक कसकर फिट करते हैं और ओवरलैप नहीं करते हैं।

यह लेबेस्ग बाहरी माप की विशेषता है। क्या यह बाहरी माप लेबेस्ग माप में उचित अनुवाद करता है, यह एक अतिरिक्त नियम पर निर्भर करता है। उपसमुच्चय लेकर इस स्थिति का परीक्षण किया जाता है, वास्तविक संख्याओं का उपयोग करके को दो भागों में विभाजित करने के साधन के रूप: का हिस्सा जो के साथ प्रतिच्छेद करता है और का शेष भाग जो में नहीं है। इन समुच्चयों का अंतर और है। ये विभाजन बाहरी माप के अधीन हैं। यदि संभव हो तो वास्तविक संख्याओं के ऐसे सभी उपसमुच्चयों के लिए, द्वारा काटे गए के विभाजन में बाहरी माप हैं, जिनका योग का बाहरी माप है, तो का बाहरी लेबेस्ग्यू माप इसका लेबेस्ग माप देता है। सहजता से, इस स्थिति का अर्थ है कि समुच्चय में कुछ विचित्र गुण नहीं होने चाहिए जो दूसरे समुच्चय के माप में विसंगति का कारण बनते हैं, जब उस समुच्चय को क्लिप करने के लिए मास्क के रूप में का उपयोग किया जाता है, जो समुच्चय के अस्तित्व पर संकेत देता है जिसके लिए लेबेस्ग्यू बाहरी माप लेबेस्ग माप नहीं देता है। (इस तरह के समुच्चय, वास्तव में, लेबेस्ग-मापने योग्य नहीं हैं।)

उदाहरण

  • वास्तविक संख्याओं का कोई भी बंद अंतराल [a, b] लेबेस्ग-मापने योग्य है, और इसका लेबेस्ग्यू माप लंबाई ba है। खुले अंतराल (a, b) का माप समान है, क्योंकि दो समुच्चयों के बीच के अंतर में केवल अंतिम बिंदु a और b होते हैं, जिनमें से प्रत्येक का माप शून्य होता है।
  • अंतराल [a, b] और [c, d] का कोई भी कार्तीय गुणन लेबेस्ग-मापने योग्य है, और इसका लेबेस्ग्यू माप (ba)(dc), संबंधित आयत का क्षेत्रफल है।
  • इसके अतिरिक्त, हर बोरेल समुच्चय लेबेस्ग-मापने योग्य है। चूंकि, यह लेबेस्ग-मापने योग्य समुच्चय हैं जो बोरेल समुच्चय नहीं हैं।[5][6]
  • वास्तविक संख्याओं के किसी भी गणनीय समुच्चय का लेबेस्ग माप 0 है। विशेष रूप से, बीजगणितीय संख्याओं के समुच्चय का लेबेस्ग माप 0 है, तथापि समुच्चय R में सघन समुच्चय है।
  • कैंटर समुच्चय और लिउविल संख्या का समुच्चय असंख्य समुच्चयों के उदाहरण हैं जिनमें लेबेस्ग माप 0 है।
  • यदि नियतत्व का स्वयंसिद्ध सिद्धांत मान्य है तो वास्तविक के सभी समुच्चय लेबेस्ग-मापने योग्य हैं। चूंकि निर्धारण पसंद के स्वयंसिद्ध के साथ संगत नहीं है।
  • विटाली समुच्चय उन समुच्चयों के उदाहरण हैं जो लेबेस्ग्यू माप के संबंध में गैर-मापने योग्य समुच्चय हैं। उनका अस्तित्व पसंद के स्वयंसिद्ध पर निर्भर करता है।
  • ओस्गुड वक्र सकारात्मक संख्या लेबेस्ग माप के साथ सरल समतल वक्र हैं[7] (इसे पीनो वक्र निर्माण के छोटे बदलाव से प्राप्त किया जा सकता है)। ड्रैगन वक्र और असामान्य उदाहरण है।
  • कोई भी लाइन , के लिए , शून्य लेबेस्ग माप है। सामान्यतः, प्रत्येक उचित हाइपरप्लेन के परिवेश स्थान में शून्य लेबेस्ग माप होता है।

गुण

ट्रांसलेशन इनवेरिएंस: लेबेस्ग माप और समान हैं।

पर लेबेस्ग माप के निम्नलिखित गुण हैं:

  1. यदि A अंतराल का कार्तीय गुणनफल है, तो A लेबेस्ग-मापने योग्य है और:
  2. यदि A गणनीय असंयुक्त लेबेस्ग-मापने योग्य समुच्चयों का असंयुक्त संघ है, तो A स्वयं लेबेस्ग-मापने योग्य है और λ(A) सम्मिलित मापन योग्य समुच्चयों के मापों के योग (या अनंत श्रृंखला) के बराबर है।
  3. यदि A लेबेस्ग-मापने योग्य है, तो इसका पूरक भी है।
  4. λ(A) ≥ 0 प्रत्येक लेबेस्ग-मापने योग्य समुच्चय A के लिए है।
  5. यदि A और B लेबेस्ग-मापने योग्य हैं और A, B का उपसमुच्चय है, तो λ(A) ≤ λ(B)। (2. का परिणाम)
  6. लेबेस्ग-मापने योग्य समुच्चय के गणनीय संघ और प्रतिच्छेदन लेबेस्ग-मापने योग्य हैं। (2 और 3 का परिणाम नहीं है, क्योंकि समुच्चय का परिवार जो पूरक और असंबद्ध गणनीय संघों के अनुसार बंद है, इसे गणनीय संघों के अनुसार बंद करने की आवश्यकता नहीं है: )
  7. यदि A, Rn का खुला या बंद समुच्चय उपसमुच्चय है (या यहां तक ​​कि बोरेल समुच्चय, मीट्रिक स्थान देखें), तो A लेबेस्ग-मापने योग्य है।
  8. यदि A लेबेस्ग-मापने योग्य समुच्चय है, तो यह लेबेस्ग माप के अर्थ में लगभग खुला और बंद है।
  9. लेबेस्ग-मापने योग्य समुच्चय को खुले समुच्चय और निहित बंद समुच्चय के बीच निचोड़ा जा सकता है। इस संपत्ति का उपयोग लेबेस्ग मापनीयता की वैकल्पिक परिभाषा के रूप में किया गया है। अधिक ठीक, लेबेस्ग-मापने योग्य है यदि और केवल यदि सबके लिए वहाँ खुला समुच्चय उपस्थित है और बंद समुच्चय जैसे कि , और है।[8]
  10. लेबेस्ग-मापने योग्य समुच्चय को युक्त Gδ समुच्चय और निहित Fσ समुच्चय के बीच "निचोड़ा" जा सकता है। Fσ. अर्थात्, यदि A लेबेस्ग-मापने योग्य है तो वहां Gδ समुच्चय G और Fσ समुच्चय F उपस्थित है। जैसे कि G ⊇ A ⊇ F और λ(G \ A) = λ(A \ F) = 0।
  11. लेबेस्ग माप स्थानीय रूप से परिमित माप और आंतरिक नियमित माप दोनों है, और इसलिए यह रेडॉन माप है।
  12. लेबेस्ग माप गैर- खुले समुच्चयों पर दृढता से सकारात्मक माप है, और इसलिए इसका समर्थन संपूर्ण Rn है।
  13. यदि A λ(A) = 0 (अशक्त समुच्चय) के साथ लेबेस्ग-मापने योग्य समुच्चय है, तो A का प्रत्येक उपसमुच्चय भी अशक्त समुच्चय है। उदाहरण के लिए, A का प्रत्येक उपसमुच्चय मापने योग्य होता है।
  14. यदि A लेबेस्ग-मापने योग्य है और x Rn का तत्व है, तो A + x = {a + x: a ∈ A} द्वारा परिभाषित x द्वारा A का अनुवाद भी लेबेस्ग-मापने योग्य है और A के समान माप है।
  15. यदि A लेबेस्ग-मापने योग्य है और , फिर का फैलाव द्वारा परिभाषित लेबेस्ग-मापने योग्य भी है और इसकी माप है।
  16. अधिक सामान्यतः, यदि T रैखिक परिवर्तन है और A 'Rn' का मापनीय उपसमुच्चय है, तो T(A) भी लेबेस्ग-मापने योग्य है और इसकी माप है।

उपरोक्त सभी को संक्षेप में प्रस्तुत किया जा सकता है (चूंकि पिछले दो दावे गैर-तुच्छ रूप से निम्नलिखित से जुड़े हुए हैं):

लेबेस्ग-मापने योग्य समुच्चय σ-बीजगणित बनाते हैं जिसमें अंतराल के सभी गुणन होते हैं, और λ अद्वितीय पूर्ण माप अनुवाद संबंधी व्युत्क्रम है। अनुवाद-अपरिवर्तनीय माप उस σ-बीजगणित पर

लेबेस्ग माप में σ-परिमित होने का गुण भी है।

अशक्त समुच्चय

Rn का उपसमुच्चय रिक्त समुच्चय है, यदि प्रत्येक ε > 0 के लिए, इसे n अंतरालों के गिने-चुने कई गुणनों से कवर किया जा सकता है, जिनकी कुल मात्रा अधिकतम ε है। सभी गणनीय समुच्चय अशक्त समुच्चय होते हैं।

यदि Rn का उपसमुच्चय का हौसडॉर्फ आयाम n से कम है तो यह n-आयामी लेबेस्ग माप के संबंध में शून्य समुच्चय है। यहाँ हॉसडॉर्फ आयाम 'Rn' पर यूक्लिडियन मीट्रिक के सापेक्ष है (या इसके समतुल्य कोई मीट्रिक रूडोल्फ लिपशिट्ज)। दूसरी ओर, समुच्चय में n से कम टोपोलॉजिकल आयाम हो सकता है और सकारात्मक n-आयामी लेबेस्ग माप हो सकता है। इसका उदाहरण स्मिथ-वोल्तेरा-कैंटर समुच्चय है, जिसका सामयिक आयाम 0 है, फिर भी सकारात्मक 1-आयामी लेबेस्ग माप है।

यह दिखाने के लिए कि दिया गया समुच्चय A लेबेस्ग-मापने योग्य है, सामान्यतः अच्छे समुच्चय B को खोजने का प्रयास किया जाता है जो A से केवल शून्य समुच्चय से भिन्न होता है (इस अर्थ में कि सममित अंतर (A − B) ∪ (B − A) शून्य समुच्चय है) और फिर दिखाएं कि खुले या बंद समुच्चयों से गणनीय संघों और प्रतिच्छेदन का उपयोग करके B उत्पन्न किया जा सकता है।

लेबेस्ग माप का निर्माण

लेबेस्ग माप का आधुनिक निर्माण कैराथोडोरी के विस्तार प्रमेय का अनुप्रयोग है। यह निम्नानुसार आगे बढ़ता है।

nN को हल करने के लिए, Rn में बॉक्स फॉर्म का समुच्चय है:

जहाँ biai, और यहां गुणन प्रतीक कार्टेशियन गुणन का प्रतिनिधित्व करता है। इस बॉक्स की मात्रा को परिभाषित किया गया है:

Rn के किसी उपसमुच्चय A के लिए, हम इसके बाहरी माप λ*(A) को निम्न द्वारा परिभाषित कर सकते हैं:

फिर हम समुच्चय A को लेबेस्ग-मापने योग्य के रूप में परिभाषित करते हैं यदि Rn के प्रत्येक उपसमुच्चय S के लिए,

ये लेबेस्ग-मापने योग्य समुच्चय σ-बीजगणित बनाते हैं, और लेबेस्ग माप द्वारा किसी भी लेबेस्ग-मापने योग्य समुच्चय A के लिए λ(A) = λ*(A) परिभाषित किया गया है।

समुच्चय का अस्तित्व जो लेबेस्ग-मापने योग्य नहीं हैं, पसंद के समुच्चय-सैद्धांतिक सिद्धांत का परिणाम है, जो समुच्चय सिद्धांत के लिए स्वयंसिद्धों के कई पारंपरिक प्रणालियों से स्वतंत्र है। विटाली प्रमेय, जो स्वयंसिद्ध से अनुसरण करता है, कहता है कि 'R' के उपसमुच्चय उपस्थित हैं जो लेबेस्ग-मापने योग्य नहीं हैं। पसंद के स्वयंसिद्ध को मानते हुए, कई आश्चर्यजनक गुणों के साथ गैर-मापने योग्य समुच्चय प्रदर्शित किए गए हैं, जैसे कि बनच-टार्स्की विरोधाभास।

1970 में, रॉबर्ट एम. सोलोवे ने दिखाया कि पसंद के स्वयंसिद्ध के अभाव में ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत के ढांचे के अन्दर लेबेस्ग-मापने योग्य नहीं होने वाले समुच्चय का अस्तित्व सिद्ध नहीं होता है (सोलोवे का मॉडल देखें)।[9]


अन्य मापों से संबंध

बोरेल माप उन समुच्चयों पर लेबेस्ग माप से सहमत है जिसके लिए इसे परिभाषित किया गया है; चूंकि, बोरेल माप योग्य समुच्चयों की तुलना में कई अधिक लेबेस्ग-मापने योग्य समुच्चय हैं। बोरेल माप अनुवाद-अपरिवर्तनीय है, लेकिन पूर्ण माप नहीं है।

हार माप को किसी भी स्थानीय रूप से सघन समूह पर परिभाषित किया जा सकता है और यह लेबेस्ग माप का सामान्यीकरण है (Rn अतिरिक्त स्थानीय रूप से सघन समूह है)।

हॉसडॉर्फ माप, लेबेस्ग माप का सामान्यीकरण है जो n की तुलना में कम आयामों के Rn के उपसमुच्चय को मापने के लिए उपयोगी है, जैसे सबमेनिफोल्ड, उदाहरण के लिए, R3 और फ्रैक्टल समुच्चय में सतह या वक्र। हॉसडॉर्फ माप को हॉसडॉर्फ आयाम की धारणा से भ्रमित नहीं होना चाहिए।

यह दिखाया जा सकता है कि लेबेस्ग माप का कोई अनंत-आयामी एनालॉग नहीं है।

यह भी देखें

  • लेबेस्ग का घनत्व प्रमेय
  • लिउविल संख्याएं और माप
  • गैर-मापने योग्य समुच्चय
  • विटाली समुच्चय

संदर्भ

  1. The term volume is also used, more strictly, as a synonym of 3-dimensional volume
  2. Lebesgue, H. (1902). "Intégrale, Longueur, Aire". Annali di Matematica Pura ed Applicata. 7: 231–359. doi:10.1007/BF02420592. S2CID 121256884.
  3. Royden, H. L. (1988). वास्तविक विश्लेषण (3rd ed.). New York: Macmillan. p. 56. ISBN 0-02-404151-3.
  4. https://de.wikipedia.org/wiki/Lebesgue-Ma%C3%9F
  5. Asaf Karagila. "What sets are Lebesgue-measurable?". math stack exchange. Retrieved 26 September 2015.
  6. Asaf Karagila. "Is there a sigma-algebra on R strictly between the Borel and Lebesgue algebras?". math stack exchange. Retrieved 26 September 2015.
  7. Osgood, William F. (January 1903). "धनात्मक क्षेत्र का जॉर्डन वक्र". Transactions of the American Mathematical Society. American Mathematical Society. 4 (1): 107–112. doi:10.2307/1986455. ISSN 0002-9947. JSTOR 1986455.
  8. Carothers, N. L. (2000). वास्तविक विश्लेषण. Cambridge: Cambridge University Press. pp. 293. ISBN 9780521497565.
  9. Solovay, Robert M. (1970). "समुच्चय-सिद्धांत का एक मॉडल जिसमें वास्तविकताओं का प्रत्येक समुच्चय Lebesgue-मापने योग्य है". Annals of Mathematics. Second Series. 92 (1): 1–56. doi:10.2307/1970696. JSTOR 1970696.