केंद्रीय सीमा प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 182: Line 182:
या अनौपचारिक रूप से
या अनौपचारिक रूप से
<math display="block">S_n \approx a_n+\Xi b_n. </math>
<math display="block">S_n \approx a_n+\Xi b_n. </math>
वितरण {{math|Ξ}} जो इस तरह से उत्पन्न हो सकते हैं उन्हें स्थिर वितरण कहा जाता है।<ref>{{cite book|last=Johnson |first=Oliver Thomas |date=2004 |title=सूचना सिद्धांत और केंद्रीय सीमा प्रमेय|publisher=Imperial College Press |isbn= 1-86094-473-6 |page= 88}}</ref> स्पष्ट रूप से, सामान्य वितरण स्थिर है, परन्तु अन्य स्थिर वितरण भी हैं, जैसे [[कॉची वितरण]], जिसके लिए माध्य या प्रसरण परिभाषित नहीं हैं। माप क्रम गणक कारक {{mvar|b<sub>n</sub>}} के समानुपाती हो सकता है {{mvar|n<sup>c</sup>}}, किसी के लिए {{math|''c'' ≥ {{sfrac|1|2}}}}; इसे [[धीरे-धीरे बदलते कार्य]] से गुणा भी किया जा सकता है {{mvar|n}}.<ref name=Uchaikin /><ref>{{cite book|last1=Borodin |first1=A. N. |last2=Ibragimov |first2=I. A. |last3=Sudakov |first3=V. N. |date=1995 |title=रैंडम वॉक के कार्यात्मकताओं के लिए सीमा प्रमेय|publisher=AMS Bookstore |isbn= 0-8218-0438-3 |at=Theorem 1.1, p. 8}}</ref>
वितरण {{math|Ξ}} जो इस तरह से उत्पन्न हो सकते है, उन्हें स्थिर वितरण कहा जाता है।<ref>{{cite book|last=Johnson |first=Oliver Thomas |date=2004 |title=सूचना सिद्धांत और केंद्रीय सीमा प्रमेय|publisher=Imperial College Press |isbn= 1-86094-473-6 |page= 88}}</ref> स्पष्ट रूप से, सामान्य वितरण स्थिर है, परन्तु अन्य स्थिर वितरण भी हैं, जैसे [[कॉची वितरण]], जिसके लिए माध्य या प्रसरण परिभाषित नहीं हैं। माप क्रम गणक कारक {{mvar|b<sub>n</sub>}} के समानुपाती {{mvar|n<sup>c</sup>}} हो सकता है, किसी के लिए {{math|''c'' ≥ {{sfrac|1|2}}}}; इसे {{mvar|n}} [[धीरे-धीरे बदलते कार्य|मंदतः परिवर्ती फलन]] से गुणा भी किया जा सकता है।<ref name=Uchaikin /><ref>{{cite book|last1=Borodin |first1=A. N. |last2=Ibragimov |first2=I. A. |last3=Sudakov |first3=V. N. |date=1995 |title=रैंडम वॉक के कार्यात्मकताओं के लिए सीमा प्रमेय|publisher=AMS Bookstore |isbn= 0-8218-0438-3 |at=Theorem 1.1, p. 8}}</ref>


[[पुनरावृत्त लघुगणक का नियम]] निर्दिष्ट करता है कि बड़ी संख्या के नियम और केंद्रीय सीमा प्रमेय के मध्य क्या हो रहा है। विशेष रूप से यह कहता है कि सामान्यीकृत कार्य {{math|{{sqrt|''n'' log log ''n''}}}}, मध्य के आकार में {{mvar|n}}<nowiki> बड़ी संख्या के नियम की और {{math|</nowiki>{{sqrt|''n''}}}केंद्रीय सीमा प्रमेय का }, एक गैर-तुच्छ सीमित व्यवहार प्रदान करता है।
[[पुनरावृत्त लघुगणक का नियम]] निर्दिष्ट करता है कि बड़ी संख्या के नियम और केंद्रीय सीमा प्रमेय के "मध्य" क्या हो रहा है। विशेष रूप से यह कहता है कि सामान्यीकृत फलन {{math|{{sqrt|''n'' log log ''n''}}}}, बड़ी संख्या के नियम के {{mvar|n}} और केंद्रीय सीमा प्रमेय के {{sqrt|''n''}} के मध्य आकार में मध्यवर्ती, एक गैर-तुच्छ सीमित व्यवहार प्रदान करता है।  


=== प्रमेय के वैकल्पिक कथन ===
=== प्रमेय के वैकल्पिक कथन ===


==== घनत्व कार्य ====
==== घनत्व फलन ====
दो या दो से अधिक स्वतंत्र चरों के योग का प्रायिकता घनत्व फलन उनके घनत्वों का [[कनवल्शन|संवलन]] है (यदि ये घनत्व मौजूद हैं)। इस प्रकार केंद्रीय सीमा प्रमेय को संवलन के अंतर्गत घनत्व कार्यों के गुणों के बारे में एक विवरण के रूप में व्याख्या किया जा सकता है: कई घनत्व कार्यों का संवलन सामान्य घनत्व की ओर जाता है क्योंकि घनत्व कार्यों की संख्या बिना बाध्यता के बढ़ जाती है। इन प्रमेयों को ऊपर दिए गए केंद्रीय सीमा प्रमेय के रूपों की तुलना में प्रबल परिकल्पनाओं की आवश्यकता होती है। इस प्रकार के प्रमेयों को प्रायः स्थानीय सीमा प्रमेय कहा जाता है। पेट्रोव देखें<ref>{{Cite book|last=Petrov|first=V. V. |title=स्वतंत्र यादृच्छिक चर का योग|year=1976|publisher=Springer-Verlag|location=New York-Heidelberg | isbn=9783642658099 | at=ch. 7|url=https://books.google.com/books?id=zSDqCAAAQBAJ}}</ref> [[स्वतंत्र और समान रूप से वितरित यादृच्छिक चर]] के योग के लिए एक विशेष स्थानीय सीमा प्रमेय के लिए।
दो या दो से अधिक स्वतंत्र चरों के योग का प्रायिकता घनत्व फलन उनके घनत्वों का [[कनवल्शन|संवलन]] है (यदि ये घनत्व उपस्थित हैं)। इस प्रकार केंद्रीय सीमा प्रमेय को संवलन के अंतर्गत घनत्व कार्यों के गुणों के विषय में एक विवरण के रूप में व्याख्या की जा सकती है: कई घनत्व कार्यों का संवलन सामान्य घनत्व की ओर जाता है क्योंकि घनत्व कार्यों की संख्या बिना बाध्यता के बढ़ जाती है। इन प्रमेयों को ऊपर दिए गए केंद्रीय सीमा प्रमेय के रूपों की तुलना में प्रबल परिकल्पनाओं की आवश्यकता होती है। इस प्रकार के प्रमेयों को प्रायः स्थानीय सीमा प्रमेय कहा जाता है। पेट्रोव<ref>{{Cite book|last=Petrov|first=V. V. |title=स्वतंत्र यादृच्छिक चर का योग|year=1976|publisher=Springer-Verlag|location=New York-Heidelberg | isbn=9783642658099 | at=ch. 7|url=https://books.google.com/books?id=zSDqCAAAQBAJ}}</ref> [[स्वतंत्र और समान रूप से वितरित यादृच्छिक चर]] के योग के लिए एक विशेष स्थानीय सीमा प्रमेय के लिए देखें।


==== विशेषता कार्य ====
==== विशेषता फलन ====
चूंकि संवलन का अभिलाक्षणिक फलन (प्रायिकता सिद्धांत) सम्मिलित घनत्वों के अभिलाक्षणिक कार्यों का गुणनफल है, केंद्रीय सीमा प्रमेय का एक और पुनर्कथन है: कई घनत्व फलनों के अभिलाक्षणिक कार्यों का गुणनफल अभिलक्षणिक फलन के अंतअ हो जाता है सामान्य घनत्व के रूप में घनत्व कार्यों की संख्या बिना बाध्यता के बढ़ जाती है, ऊपर बताई गई प्रतिबंधों के अंतर्गत। विशेष रूप से, विशेषता फलन के तर्क पर उचित माप क्रम गणक कारक अनुप्रयोज्यकरने की आवश्यकता है।
चूंकि संवलन का अभिलाक्षणिक फलन (प्रायिकता सिद्धांत) सम्मिलित घनत्वों के अभिलाक्षणिक कार्यों का गुणनफल है, केंद्रीय सीमा प्रमेय का एक और पुनर्कथन है: कई घनत्व फलनों के अभिलाक्षणिक कार्यों का गुणनफल अभिलक्षणिक फलन के अंतअ हो जाता है सामान्य घनत्व के रूप में घनत्व कार्यों की संख्या बिना बाध्यता के बढ़ जाती है, ऊपर बताई गई प्रतिबंधों के अंतर्गत। विशेष रूप से, विशेषता फलन के तर्क पर उचित माप क्रम गणक कारक अनुप्रयोज्यकरने की आवश्यकता है।


Line 214: Line 214:




== लौकिक प्राधार से परे ==
== लौकिक प्राधार के अतिरिक्त ==
स्पर्शोन्मुख सामान्यता, अर्थात्, उचित परिवर्तन और पुनर्विक्रय के बाद सामान्य वितरण में [[वितरण में अभिसरण]], एक ऐसी घटना है जो ऊपर वर्णित लौकिक प्राधार की तुलना में कहीं अधिक सामान्य है, अर्थात् स्वतंत्र यादृच्छिक चर (या सदिश) की रकम। समय-समय पर नए प्राधार सामने आते हैं; अभी के लिए कोई एकल एकीकृत प्राधार उपलब्ध नहीं है।
स्पर्शोन्मुख सामान्यता, अर्थात्, उचित परिवर्तन और पुनर्विक्रय के बाद सामान्य वितरण में [[वितरण में अभिसरण]], एक ऐसी घटना है जो ऊपर वर्णित लौकिक प्राधार की तुलना में कहीं अधिक सामान्य है, अर्थात् स्वतंत्र यादृच्छिक चर (या सदिश) की रकम। समय-समय पर नए प्राधार सामने आते हैं; अभी के लिए कोई एकल एकीकृत प्राधार उपलब्ध नहीं है।


=== उत्तल निकाय ===
=== अवमुख निकाय ===
{{math theorem | math_statement = एक क्रम होता है {{math|''ε<sub>n</sub>'' ↓ 0}} जिसके लिए निम्नलिखित है। माना {{math|''n'' ≥ 1}}, और माना यादृच्छिक चर {{math|''X''<sub>1</sub>, ..., ''X<sub>n</sub>''}} लीजिये [[लघुगणकीय रूप से अवतल कार्य|लॉग-अवतल]] [[संयुक्त घनत्व कार्य|संयुक्त घनत्व]] {{mvar|f}} ऐसा है कि {{math|1=''f''(''x''<sub>1</sub>, ..., ''x<sub>n</sub>'') = ''f''({{abs|''x''<sub>1</sub>}}, ..., {{abs|''x<sub>n</sub>''}})}} सभी के लिए {{math|''x''<sub>1</sub>, ..., ''x<sub>n</sub>''}},  और {{math|1=E(''X''{{su|b=''k''|p=2}}) = 1}} सभी के लिए {{math|1=''k'' = 1, ..., ''n''}}. फिर का वितरण
{{math theorem | math_statement = एक क्रम होता है {{math|''ε<sub>n</sub>'' ↓ 0}} जिसके लिए निम्नलिखित है। माना {{math|''n'' ≥ 1}}, और माना यादृच्छिक चर {{math|''X''<sub>1</sub>, ..., ''X<sub>n</sub>''}} लीजिये [[लघुगणकीय रूप से अवतल कार्य|लॉग-अवतल]] [[संयुक्त घनत्व कार्य|संयुक्त घनत्व]] {{mvar|f}} ऐसा है कि {{math|1=''f''(''x''<sub>1</sub>, ..., ''x<sub>n</sub>'') = ''f''({{abs|''x''<sub>1</sub>}}, ..., {{abs|''x<sub>n</sub>''}})}} सभी के लिए {{math|''x''<sub>1</sub>, ..., ''x<sub>n</sub>''}},  और {{math|1=E(''X''{{su|b=''k''|p=2}}) = 1}} सभी के लिए {{math|1=''k'' = 1, ..., ''n''}}. फिर का वितरण
<math display="block"> \frac{X_1+\cdots+X_n}{\sqrt n} </math>
<math display="block"> \frac{X_1+\cdots+X_n}{\sqrt n} </math>
Line 224: Line 224:
ये दोनों {{mvar|ε<sub>n</sub>}}-निकट वितरण में घनत्व होता है (वास्तव में, लॉग-अवतल घनत्व), इस प्रकार, उनके मध्य कुल विचरण दूरी घनत्व के अंतर के निरपेक्ष मान का अभिन्न अंग है। कुल भिन्नता में अभिसरण दुर्बल अभिसरण से अधिक प्रबल होता है।
ये दोनों {{mvar|ε<sub>n</sub>}}-निकट वितरण में घनत्व होता है (वास्तव में, लॉग-अवतल घनत्व), इस प्रकार, उनके मध्य कुल विचरण दूरी घनत्व के अंतर के निरपेक्ष मान का अभिन्न अंग है। कुल भिन्नता में अभिसरण दुर्बल अभिसरण से अधिक प्रबल होता है।


लॉग-अवतल घनत्व का एक महत्वपूर्ण उदाहरण एक दिए गए उत्तल निकाय के भीतर स्थिर और बाहर लुप्त होने वाला कार्य है; यह उत्तल पिंड पर समान वितरण के अनुरुप  है, जो उत्तल पिंडों के लिए शब्द केंद्रीय सीमा प्रमेय की व्याख्या करता है।
लॉग-अवतल घनत्व का एक महत्वपूर्ण उदाहरण एक दिए गए अवमुख निकाय के भीतर स्थिर और बाहर लुप्त होने वाला कार्य है; यह अवमुख पिंड पर समान वितरण के अनुरुप  है, जो अवमुख पिंडों के लिए शब्द केंद्रीय सीमा प्रमेय की व्याख्या करता है।


एक और उदाहरण: {{math|1=''f''(''x''<sub>1</sub>, ..., ''x<sub>n</sub>'') = const · exp(−({{abs|''x''<sub>1</sub>}}<sup>''α''</sup> + ⋯ + {{abs|''x<sub>n</sub>''}}<sup>''α''</sup>)<sup>''β''</sup>)}} जहाँ {{math|''α'' > 1}} और {{math|''αβ'' > 1}}. यदि {{math|1=''β'' = 1}} तब {{math|''f''(''x''<sub>1</sub>, ..., ''x<sub>n</sub>'')}} में गुणनखंड करता है {{math|const · exp (−{{abs|''x''<sub>1</sub>}}<sup>''α''</sup>) … exp(−{{abs|''x<sub>n</sub>''}}<sup>''α''</sup>), }} अभिप्राय {{math|''X''<sub>1</sub>, ..., ''X<sub>n</sub>''}} स्वतंत्र हैं। हालांकि, सामान्यतः, वे निर्भर हैं।
एक और उदाहरण: {{math|1=''f''(''x''<sub>1</sub>, ..., ''x<sub>n</sub>'') = const · exp(−({{abs|''x''<sub>1</sub>}}<sup>''α''</sup> + ⋯ + {{abs|''x<sub>n</sub>''}}<sup>''α''</sup>)<sup>''β''</sup>)}} जहाँ {{math|''α'' > 1}} और {{math|''αβ'' > 1}}. यदि {{math|1=''β'' = 1}} तब {{math|''f''(''x''<sub>1</sub>, ..., ''x<sub>n</sub>'')}} में गुणनखंड करता है {{math|const · exp (−{{abs|''x''<sub>1</sub>}}<sup>''α''</sup>) … exp(−{{abs|''x<sub>n</sub>''}}<sup>''α''</sup>), }} अभिप्राय {{math|''X''<sub>1</sub>, ..., ''X<sub>n</sub>''}} स्वतंत्र हैं। हालांकि, सामान्यतः, वे निर्भर हैं।

Revision as of 00:55, 27 March 2023

प्रायिकता सिद्धांत में, केंद्रीय सीमा प्रमेय (CLT) स्थापित करता है, कई स्थितियों में, समान रूप से वितरित स्वतंत्र प्रतिरूपो के लिए, मानकीकृत प्रतिरूप माध्य मानक सामान्य वितरण की ओर जाता है, भले ही मूल चर स्वयं सामान्य रूप से वितरित न हों।

प्रायिकता सिद्धांत में प्रमेय एक महत्वपूर्ण अवधारणा है क्योंकि इसका तात्पर्य है कि प्रायिकता और सांख्यिकी विधियां जो सामान्य वितरण के लिए कार्य करती हैं, अन्य प्रकार के वितरणों से जुड़ी कई समस्याओं पर अनुप्रयोज्य हो सकती हैं।

प्रायिकता सिद्धांत के औपचारिक विकास के पर्यन्त इस प्रमेय में कई परिवर्तन देखे गए हैं। प्रमेय के पूर्व संस्करण 1811 से पूर्व के हैं, परन्तु अपने आधुनिक सामान्य रूप में, प्रायिकता सिद्धांत में इस मौलिक परिणाम को 1920 के अंत तक सटीक रूप से कहा गया था,[1] इस प्रकार लौकिक और आधुनिक प्रायिकता सिद्धांत के मध्य एक सेतु के रूप में कार्य करना है।

यदि समग्र अपेक्षित मान वाली समष्टि से लिए गए यादृच्छिक प्रतिरूप है, परिमित विचरण , यदि प्रथम का प्रतिरूप माध्य है, और फिर वितरण का सीमित रूप, , के साथ , एक मानक सामान्य वितरण है।[2]

उदाहरण के लिए, मान लीजिए कि एक प्रतिरूप प्राप्त किया जाता है जिसमें कई यादृच्छिक चर होते हैं, प्रत्येक अवलोकन यादृच्छिक रूप से इस तरह से उत्पन्न होता है जो अन्य अवलोकनों के मानों पर निर्भर नहीं होता है, और अवलोकन किए गए मानों के अंकगणितीय माध्य की गणना की जाती है। यदि यह प्रक्रिया कई बार की जाती है, तो केंद्रीय सीमा प्रमेय का तात्पर्य है कि औसत की प्रायिकता वितरण एक सामान्य वितरण के अंतअ होगा।

केंद्रीय सीमा प्रमेय के कई रूप हैं। अपने सामान्य रूप में, यादृच्छिक चर स्वतंत्र और समान रूप से वितरित (i.i.d.) होना चाहिए। भिन्नताओं में, सामान्य वितरण के माध्य का अभिसरण गैर-समान वितरणों के लिए या गैर-स्वतंत्र प्रेक्षणों के लिए भी होता है, यदि वे कुछ प्रतिबंधों का अनुपालन करते हैं।

इस प्रमेय का प्रारंभिक संस्करण, कि सामान्य वितरण को द्विपद वितरण के सन्निकटन के रूप में उपयोग किया जा सकता है, तथा द्विपद वितरण, डी मोइवर-लाप्लास प्रमेय है।

स्वतंत्र क्रम

जनसंख्या वितरण का जो भी रूप हो, प्रतिरूपकरण वितरण गॉसियन की ओर जाता है, और इसका फैलाव केंद्रीय सीमा प्रमेय द्वारा दिया जाता है।[3]

लौकिक सीएलटी

माना यादृच्छिक प्रतिरूप का एक क्रम हो - अर्थात, आई.आई.डी. के एक क्रम द्वारा दिए गए अपेक्षित मान के वितरण से निर्मित किए गए यादृच्छिक चर और परिमित विचरण द्वारा दिया गया है, मान लीजिए हम प्रथम प्रतिरूप माध्य में रुचि रखते हैं।


बड़ी संख्या के नियम के अनुसार, प्रतिरूप औसत अनुमानित मान के लगभग निश्चित रूप से (और इसलिए प्रायिकता में भी अभिसरित) अपेक्षित मान जब पर अभिसरित होता है।

लौकिक केंद्रीय सीमा प्रमेय नियतात्मक संख्या इस अभिसरण के पर्यन्त आसपास प्रसंभाव्य अस्थिरता के आकार और वितरण रूप का वर्णन करता है। अधिक सटीक रूप से, यह बताता है कि जैसा बड़ा हो जाता है, प्रतिरूप औसत के मध्य अंतर का वितरण और इसकी सीमा , जब कारक (अर्थात ) द्वारा गुणा किया जाता है। माध्य 0 और विचरण के साथ सामान्य वितरण का अनुमान लगाता है। काफी बड़े n के लिए, का वितरण माध्य के साथ अव्यवस्थिततः सामान्य वितरण और विचरण के अंतअ हो जाता है।

प्रमेय की उपयोगिता यह है कि का वितरण विशिष्ट के वितरण के आकार की उपेक्षा किए बिना सामान्यता तक पहुँचता है। औपचारिक रूप से, प्रमेय को निम्नानुसार कहा जा सकता है:

Lindeberg–Lévy CLT — मान लीजिए i.i.d. का क्रम है। एक यादृच्छिक चर के साथ और फिर ऐसे अनंत तक पहुंचता है, यादृच्छिक चर वितरण में अभिसरण एक के लिए सामान्य है:[4]

यदि , वितरण में अभिसरण का अर्थ है कि संचयी वितरण कार्य करता है, वितरण के बिंदुवार को सीडीएफ में अभिसरण करें: प्रत्येक वास्तविक संख्या के लिए,

जहाँ मानक सामान्य सीडीएफ है, जिसका पर मूल्यांकन किया जाता है, अभिसरण एक समान है इस अर्थ में कि
जहाँ समुच्चय के न्यूनतम ऊपरी सीमा (या सर्वोच्च) को दर्शाता है।[5]


लायपुनोव सीएलटी

प्रमेय का नाम रूसी गणितज्ञ अलेक्जेंडर लायपुनोव के नाम पर रखा गया है। केंद्रीय सीमा प्रमेय के इस संस्करण में यादृच्छिक चर स्वतंत्र होना चाहिए, परन्तु आवश्यक नहीं कि समान रूप से वितरित किया जाए। प्रमेय को भी यादृच्छिक चर की आवश्यकता होती है, कुछ क्रम के क्षण है और यह कि इन क्षणो के वृद्धि की दर नीचे दी गई लायपुनोव स्थिति द्वारा सीमित है।

Lyapunov CLT[6] — मान लीजिए कि स्वतंत्र यादृच्छिक चर का एक क्रम है, प्रत्येक परिमित अपेक्षित मान के साथ और विचरण . परिभाषित

यदि कुछ के लिए , लायपुनोव स्थिति

संतुष्ट है, तो की योग वितरण में एक मानक सामान्य यादृच्छिक चर के रूप में अभिसरण करता है अनंत तक जाता है:

व्यवहार में सामान्यतः लायपुनोव की स्थिति की जांच करना सबसे सरल होता है।

यदि यादृच्छिक चर का एक क्रम लायपुनोव की स्थिति को संतुष्ट करता है, तो यह लिंडबर्ग की स्थिति को भी संतुष्ट करता है। हालांकि, विपरीत निहितार्थ पकड़ में नहीं आता है।

लिंडबर्ग सीएलटी

उसी समुच्चयन में और उपरोक्त के समान संकेतन के साथ, लायपुनोव की स्थिति को निम्नलिखित दुर्बल (1920 में जारल वाल्डेमर लिंडेबर्ग से) के साथ परिवर्तित किया जा सकता है।

मान लीजिए कि प्रत्येक के लिए

जहाँ सूचक कार्य है। फिर मानकीकृत योग का वितरण
मानक सामान्य वितरण की ओर अभिसरण करता है।

बहुआयामी सीएलटी

विशिष्ट फलनों का उपयोग करने वाले प्रमाणों को उन स्थितियों तक बढ़ाया जा सकता है जहां प्रत्येक विशिष्ट में एक यादृच्छिक सदिश है, अभिप्राय सदिश के साथ और सहप्रसरण आव्यूह (सदिश के घटकों के मध्य), और ये यादृच्छिक सदिश स्वतंत्र और समान रूप से वितरित हैं। बहुआयामी केंद्रीय सीमा प्रमेय में कहा गया है कि जब माप क्रमित किया जाता है, तो योग एक बहुभिन्नरूपी सामान्य वितरण में परिवर्तित हो जाते हैं।[7]

माना

k-सदिश है। माप क्रमित इसका अर्थ है कि यह एक यादृच्छिक सदिश है, न कि एक यादृच्छिक (अविभाजित) चर। तब यादृच्छिक सदिशों का योग होगा
और औसत है
और इसलिए
बहुभिन्नरूपी केंद्रीय सीमा प्रमेय कहता है कि
जहां सहप्रसरण आव्यूह के समान है