माइक्रोस्टेट (सांख्यिकीय यांत्रिकी): Difference between revisions
(Created page with "{{Short description|Specific microscopic configuration of a thermodynamic system}} File:Macrostates and microstates of two coins.svg|alt=|thumb|400x400px|एक सिक्...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Specific microscopic configuration of a thermodynamic system}} | {{Short description|Specific microscopic configuration of a thermodynamic system}} | ||
[[File:Macrostates and microstates of two coins.svg|alt=|thumb|400x400px| | [[File:Macrostates and microstates of two coins.svg|alt=|thumb|400x400px|सिक्के को दो बार उछालने के माइक्रोस्टेट और मैक्रोस्टेट। सभी माइक्रोस्टेट्स समान रूप से संभावित हैं, लेकिन मैक्रोस्टेट्स में बिना ऑर्डर के राज्य समिलित हैं (H, T) ल राज्यों (H, H) और (T, T) वाले मैक्रोस्टेट्स की तुलना में दोगुना संभावित है।]] | ||
{{More citations needed|date=December 2008}} | {{More citations needed|date=December 2008}} | ||
[[सांख्यिकीय यांत्रिकी]] में, | [[सांख्यिकीय यांत्रिकी]] में, माइक्रोस्टेट [[थर्मोडायनामिक प्रणाली]] का विशिष्ट सूक्ष्म विन्यास है जो प्रणाली अपने [[थर्मल उतार-चढ़ाव]] के दौरान निश्चित संभावना के साथ कब्जा कर सकता है। इसके विपरीत, प्रणाली का मैक्रोस्टेट इसके मैक्रोस्कोपिक गुणों को संदर्भित करता है, जैसे कि इसका [[तापमान]], [[दबाव]], [[आयतन]] और [[घनत्व]]।<ref>[https://khanexercises.appspot.com/video?v=5EU-y1VF7g4 Macrostates and Microstates] {{webarchive|url=https://web.archive.org/web/20120305203329/http://khanexercises.appspot.com/video?v=5EU-y1VF7g4 |date=2012-03-05 }}</ref> सांख्यिकीय यांत्रिकी पर उपचार<ref name=Reif>{{cite book|title=सांख्यिकीय और तापीय भौतिकी के मूल सिद्धांत| last=Reif| first=Frederick| year=1965| publisher=McGraw-Hill| isbn=978-0-07-051800-1| pages=66–70}}</ref><ref>{{cite book|title=सांख्यिकीय यांत्रिकी| last=Pathria| first=R K| year=1965| publisher=Butterworth-Heinemann| isbn=0-7506-2469-8| page=10|url=https://books.google.com/books?id=PIk9sF9j2oUC}}</ref> मैक्रोस्टेट को निम्नानुसार परिभाषित करें: ऊर्जा के मूल्यों का विशेष सेट, कणों की संख्या, और पृथक थर्मोडायनामिक प्रणाली की मात्रा को इसके विशेष मैक्रोस्टेट को निर्दिष्ट करने के लिए कहा जाता है। इस विवरण में, माइक्रोस्टेट विभिन्न संभावित तरीकों के रूप में प्रकट होते हैं, प्रणाली विशेष मैक्रोस्टेट को प्राप्त कर सकता है। | ||
मैक्रोस्टेट को सभी माइक्रोस्टेट्स के निश्चित [[सांख्यिकीय पहनावा (गणितीय भौतिकी)]] में संभावित राज्यों के संभाव्यता वितरण की विशेषता है। यह वितरण निश्चित माइक्रोस्टेट में प्रणाली को शोध की [[संभावना]] का वर्णन करता है। [[थर्मोडायनामिक सीमा]] में, मैक्रोस्कोपिक प्रणाली द्वारा अपने उतार-चढ़ाव के दौरान देखे गए सभी माइक्रोस्टेट्स में समान मैक्रोस्कोपिक गुण होते हैं। | |||
== ऊष्मप्रवैगिकी अवधारणाओं की सूक्ष्म परिभाषाएँ == | == ऊष्मप्रवैगिकी अवधारणाओं की सूक्ष्म परिभाषाएँ == | ||
सांख्यिकीय यांत्रिकी | सांख्यिकीय यांत्रिकी प्रणाली के अनुभवजन्य थर्मोडायनामिक गुणों को माइक्रोस्टेट्स के समूह के सांख्यिकीय वितरण से जोड़ता है। प्रणाली के सभी मैक्रोस्कोपिक थर्मोडायनामिक गुणों की गणना विभाजन फ़ंक्शन (सांख्यिकीय यांत्रिकी) से की जा सकती है जो योग करती है <math>\text{exp}(-E_i/kT)</math> इसके सभी माइक्रोस्टेट्स। | ||
किसी भी समय | किसी भी समय प्रणाली को समूह में वितरित किया जाता है <math>\Omega</math> microstates, प्रत्येक द्वारा लेबल किया गया <math>i</math>, और कब्जे की संभावना है <math>p_i</math>, और ऊर्जा <math>E_i</math>. यदि माइक्रोस्टेट प्रकृति में क्वांटम-मैकेनिकल हैं, तो ये माइक्रोस्टेट [[क्वांटम सांख्यिकीय यांत्रिकी]] द्वारा परिभाषित असतत सेट बनाते हैं, और <math>E_i</math> प्रणाली का [[ऊर्जा स्तर]] है। | ||
===आंतरिक ऊर्जा=== | ===आंतरिक ऊर्जा=== | ||
मैक्रोस्टेट की आंतरिक ऊर्जा | मैक्रोस्टेट की आंतरिक ऊर्जा प्रणाली की ऊर्जा के सभी माइक्रोस्टेट्स पर औसत है | ||
:<math>U \,:=\, \langle E\rangle \,=\, \sum\limits_{i=1}^\Omega p_i \, E_i</math> | :<math>U \,:=\, \langle E\rangle \,=\, \sum\limits_{i=1}^\Omega p_i \, E_i</math> | ||
यह ऊष्मप्रवैगिकी के प्रथम नियम से जुड़ी ऊर्जा की धारणा का | यह ऊष्मप्रवैगिकी के प्रथम नियम से जुड़ी ऊर्जा की धारणा का सूक्ष्म कथन है। | ||
=== एंट्रॉपी === | === एंट्रॉपी === | ||
Line 23: | Line 23: | ||
माइक्रोस्टेट की संख्या के साथ <math>\Omega = 1/p_i</math>. एंट्रॉपी का यह रूप विएना में [[लुडविग बोल्ट्जमैन]] के ग्रेवस्टोन पर दिखाई देता है। | माइक्रोस्टेट की संख्या के साथ <math>\Omega = 1/p_i</math>. एंट्रॉपी का यह रूप विएना में [[लुडविग बोल्ट्जमैन]] के ग्रेवस्टोन पर दिखाई देता है। | ||
[[ऊष्मप्रवैगिकी का दूसरा नियम]] बताता है कि समय के साथ | [[ऊष्मप्रवैगिकी का दूसरा नियम]] बताता है कि समय के साथ पृथक प्रणाली की एन्ट्रापी कैसे बदलती है। [[ऊष्मप्रवैगिकी का तीसरा नियम]] इस परिभाषा के अनुरूप है, क्योंकि शून्य एन्ट्रॉपी का अर्थ है कि प्रणाली का मैक्रोस्टेट माइक्रोस्टेट तक कम हो जाता है। | ||
=== [[गर्मी]] और काम === | === [[गर्मी]] और काम === | ||
यदि हम | यदि हम प्रणाली की अंतर्निहित क्वांटम प्रकृति को ध्यान में रखते हैं तो गर्मी और काम को अलग किया जा सकता है। | ||
बंद प्रणाली (पदार्थ का कोई हस्तांतरण नहीं) के लिए, सांख्यिकीय यांत्रिकी में गर्मी प्रणाली पर अव्यवस्थित, सूक्ष्म क्रिया से जुड़ा ऊर्जा हस्तांतरण है, जो प्रणाली के क्वांटम ऊर्जा स्तरों के कब्जे की संख्या में छलांग के साथ जुड़ा हुआ है, मूल्यों में बदलाव के बिना स्वयं ऊर्जा स्तरों की।<ref name=Reif/> | |||
कार्य (ऊष्मप्रवैगिकी) प्रणाली पर | कार्य (ऊष्मप्रवैगिकी) प्रणाली पर आदेशित, मैक्रोस्कोपिक क्रिया से जुड़ा ऊर्जा हस्तांतरण है। यदि यह क्रिया बहुत धीमी गति से कार्य करती है, तो क्वांटम यांत्रिकी के रुद्धोष्म प्रमेय का अर्थ है कि यह प्रणाली के ऊर्जा स्तरों के बीच छलांग नहीं लगाएगा। इस मामले में, प्रणाली की आंतरिक ऊर्जा केवल प्रणाली के ऊर्जा स्तरों में बदलाव के कारण बदलती है।<ref name=Reif/> | ||
ऊष्मा और कार्य की सूक्ष्म, क्वांटम परिभाषाएँ निम्नलिखित हैं: | ऊष्मा और कार्य की सूक्ष्म, क्वांटम परिभाषाएँ निम्नलिखित हैं: | ||
Line 38: | Line 38: | ||
ताकि | ताकि | ||
:<math>~dU = \delta W + \delta Q.</math> | :<math>~dU = \delta W + \delta Q.</math> | ||
ऊष्मा और कार्य की उपरोक्त दो परिभाषाएँ सांख्यिकीय यांत्रिकी की उन कुछ अभिव्यक्तियों में से हैं जहाँ क्वांटम मामले में परिभाषित थर्मोडायनामिक मात्राएँ शास्त्रीय सीमा में कोई समान परिभाषा नहीं पाती हैं। इसका कारण यह है कि शास्त्रीय माइक्रोस्टेट्स को | ऊष्मा और कार्य की उपरोक्त दो परिभाषाएँ सांख्यिकीय यांत्रिकी की उन कुछ अभिव्यक्तियों में से हैं जहाँ क्वांटम मामले में परिभाषित थर्मोडायनामिक मात्राएँ शास्त्रीय सीमा में कोई समान परिभाषा नहीं पाती हैं। इसका कारण यह है कि शास्त्रीय माइक्रोस्टेट्स को सटीक संबद्ध क्वांटम माइक्रोस्टेट के संबंध में परिभाषित नहीं किया गया है, जिसका अर्थ है कि जब कार्य प्रणाली के क्लासिकल माइक्रोस्टेट्स के बीच वितरण के लिए उपलब्ध कुल ऊर्जा को बदलता है, तो माइक्रोस्टेट्स के ऊर्जा स्तर (ऐसा बोलने के लिए) करते हैं इस परिवर्तन का पालन न करें। | ||
== फेज स्पेस में माइक्रोस्टेट == | == फेज स्पेस में माइक्रोस्टेट == | ||
=== शास्त्रीय [[चरण स्थान]] === | === शास्त्रीय [[चरण स्थान]] === | ||
स्वतंत्रता की एफ डिग्री (भौतिकी और रसायन विज्ञान) की | स्वतंत्रता की एफ डिग्री (भौतिकी और रसायन विज्ञान) की शास्त्रीय प्रणाली का वर्णन 2F आयामी चरण स्थान के संदर्भ में कहा जा सकता है, जिसके समन्वय अक्षों में F [[सामान्यीकृत निर्देशांक]] q समिलित हैं।<sub>i</sub>प्रणाली का, और इसका F सामान्यीकृत संवेग p<sub>i</sub>. ऐसी प्रणाली का माइक्रोस्टेट चरण स्थान में बिंदु द्वारा निर्दिष्ट किया जाएगा। लेकिन स्वतंत्रता की बड़ी संख्या वाली प्रणाली के लिए इसकी सटीक माइक्रोस्टेट सामान्यतःमहत्वपूर्ण नहीं होती है। तो चरण स्थान को आकार h की कोशिकाओं में विभाजित किया जा सकता है<sub>0</sub>= डीक्यू<sub>i</sub>पी<sub>i</sub>, प्रत्येक को माइक्रोस्टेट के रूप में माना जाता है। अब माइक्रोस्टेट असतत और गणनीय हैं<ref>{{Cite web| url=https://web.stanford.edu/~peastman/statmech/statisticaldescription.html| title=The Statistical Description of Physical Systems}}</ref> और आंतरिक ऊर्जा U का अब सटीक मान नहीं है, लेकिन U और U+δU के बीच है <math display="inline">\delta U\ll U</math>. | ||
माइक्रोस्टेट्स Ω की संख्या जो | माइक्रोस्टेट्स Ω की संख्या जो बंद प्रणाली पर कब्जा कर सकती है, उसके चरण स्थान की मात्रा के समानुपाती होती है: <math display="block">\Omega(U)=\frac{1}{h_0^\mathcal{F}}\int\ \mathbf{1}_{\delta U}(H(x)-U) \prod_{i=1}^\mathcal{F}dq_i dp_i</math> कहाँ <math display="inline">\mathbf{1}_{\delta U}(H(x)-U)</math> संकेतक कार्य है। यह 1 है अगर हैमिल्टन फ़ंक्शन H(x) बिंदु x = (q,p) पर चरण स्थान में U और U+ δU और 0 के बीच है यदि नहीं। अटल <math display="inline">{1}/{h_0^\mathcal{F}}</math> Ω(U) को आयाम रहित बनाता है। आदर्श गैस के लिए है <math>\Omega (U)\propto\mathcal{F}U^{\frac{\mathcal{F}}{2}-1}\delta U</math>.<ref>{{Cite book|title=सैद्धांतिक भौतिकी|last=Bartelmann |first=Matthias |publisher=Springer Spektrum|year=2015|isbn=978-3-642-54617-4|pages=1142–1145}}</ref> | ||
इस विवरण में, कण अलग-अलग हैं। यदि दो कणों की स्थिति और संवेग का आदान-प्रदान किया जाता है, तो नए राज्य को चरण स्थान में | इस विवरण में, कण अलग-अलग हैं। यदि दो कणों की स्थिति और संवेग का आदान-प्रदान किया जाता है, तो नए राज्य को चरण स्थान में अलग बिंदु द्वारा दर्शाया जाएगा। इस मामले में बिंदु माइक्रोस्टेट का प्रतिनिधित्व करेगा। यदि M कणों का उपसमुच्चय दूसरे से अप्रभेद्य है, तो M! इन कणों के संभावित क्रमपरिवर्तन या संभावित आदान-प्रदान को ल माइक्रोस्टेट के हिस्से के रूप में गिना जाएगा। थर्मोडायनामिक प्रणाली पर बाधाओं में संभावित माइक्रोस्टेट्स का सेट भी परिलक्षित होता है। | ||
उदाहरण के लिए, कुल ऊर्जा यू के साथ एन कणों की | उदाहरण के लिए, कुल ऊर्जा यू के साथ एन कणों की साधारण गैस के मामले में मात्रा वी के घन में निहित है, जिसमें गैस का नमूना किसी अन्य नमूने से प्रयोगात्मक तरीकों से अलग नहीं किया जा सकता है, माइक्रोस्टेट में उपरोक्त समिलित होगा -उल्लेखित एन! चरण स्थान में बिंदु, और माइक्रोस्टेट्स के सेट को बॉक्स के अंदर झूठ बोलने के लिए सभी स्थिति निर्देशांक के लिए विवश किया जाएगा, और त्रिज्या यू के संवेग निर्देशांक में हाइपरस्फेरिकल सतह पर झूठ बोलने के लिए संवेग। यदि दूसरी ओर, प्रणाली में समिलित हैं दो अलग-अलग गैसों का मिश्रण, जिनमें से नमूने दूसरे से अलग किए जा सकते हैं, ए और बी कहते हैं, तो माइक्रोस्टेट्स की संख्या बढ़ जाती है, क्योंकि दो बिंदु जिनमें ए और बी कण चरण अंतरिक्ष में बदले जाते हैं, अब का हिस्सा नहीं हैं वही माइक्रोस्टेट। दो समान कण फिर भी, उदाहरण के लिए, उनके स्थान के आधार पर अलग-अलग हो सकते हैं। ([[विन्यास एन्ट्रापी]] देखें।) यदि बॉक्स में समान कण होते हैं, और संतुलन पर होता है, और विभाजन डाला जाता है, तो वॉल्यूम को आधे में विभाजित किया जाता है, बॉक्स में कण अब दूसरे बॉक्स में मौजूद कणों से भिन्न होते हैं। चरण स्थान में, प्रत्येक बॉक्स में N/2 कण अब मात्रा V/2 तक सीमित हैं, और उनकी ऊर्जा U/2 तक सीमित है, और ल माइक्रोस्टेट का वर्णन करने वाले बिंदुओं की संख्या बदल जाएगी: चरण स्थान विवरण नहीं है वही। | ||
इसका [[गिब्स विरोधाभास]] और [[सही बोल्ट्जमैन गिनती]] दोनों में निहितार्थ है। बोल्ट्जमैन की गिनती के संबंध में, यह फेज स्पेस में बिंदुओं की बहुलता है जो प्रभावी रूप से माइक्रोस्टेट्स की संख्या को कम करती है और एंट्रॉपी को व्यापक बनाती है। गिब्स विरोधाभास के संबंध में, महत्वपूर्ण परिणाम यह है कि विभाजन के सम्मिलन के परिणामस्वरूप माइक्रोस्टेट्स की संख्या में वृद्धि (और इस प्रकार एन्ट्रापी में वृद्धि) माइक्रोस्टेट्स की संख्या में कमी से मेल खाती है (और इस प्रकार कमी) एंट्रोपी) प्रत्येक कण के लिए उपलब्ध आयतन में कमी के परिणामस्वरूप शून्य का शुद्ध एन्ट्रापी परिवर्तन होता है। | इसका [[गिब्स विरोधाभास]] और [[सही बोल्ट्जमैन गिनती]] दोनों में निहितार्थ है। बोल्ट्जमैन की गिनती के संबंध में, यह फेज स्पेस में बिंदुओं की बहुलता है जो प्रभावी रूप से माइक्रोस्टेट्स की संख्या को कम करती है और एंट्रॉपी को व्यापक बनाती है। गिब्स विरोधाभास के संबंध में, महत्वपूर्ण परिणाम यह है कि विभाजन के सम्मिलन के परिणामस्वरूप माइक्रोस्टेट्स की संख्या में वृद्धि (और इस प्रकार एन्ट्रापी में वृद्धि) माइक्रोस्टेट्स की संख्या में कमी से मेल खाती है (और इस प्रकार कमी) एंट्रोपी) प्रत्येक कण के लिए उपलब्ध आयतन में कमी के परिणामस्वरूप शून्य का शुद्ध एन्ट्रापी परिवर्तन होता है। |
Revision as of 23:12, 18 March 2023
This article needs additional citations for verification. (December 2008) (Learn how and when to remove this template message) |
सांख्यिकीय यांत्रिकी में, माइक्रोस्टेट थर्मोडायनामिक प्रणाली का विशिष्ट सूक्ष्म विन्यास है जो प्रणाली अपने थर्मल उतार-चढ़ाव के दौरान निश्चित संभावना के साथ कब्जा कर सकता है। इसके विपरीत, प्रणाली का मैक्रोस्टेट इसके मैक्रोस्कोपिक गुणों को संदर्भित करता है, जैसे कि इसका तापमान, दबाव, आयतन और घनत्व।[1] सांख्यिकीय यांत्रिकी पर उपचार[2][3] मैक्रोस्टेट को निम्नानुसार परिभाषित करें: ऊर्जा के मूल्यों का विशेष सेट, कणों की संख्या, और पृथक थर्मोडायनामिक प्रणाली की मात्रा को इसके विशेष मैक्रोस्टेट को निर्दिष्ट करने के लिए कहा जाता है। इस विवरण में, माइक्रोस्टेट विभिन्न संभावित तरीकों के रूप में प्रकट होते हैं, प्रणाली विशेष मैक्रोस्टेट को प्राप्त कर सकता है।
मैक्रोस्टेट को सभी माइक्रोस्टेट्स के निश्चित सांख्यिकीय पहनावा (गणितीय भौतिकी) में संभावित राज्यों के संभाव्यता वितरण की विशेषता है। यह वितरण निश्चित माइक्रोस्टेट में प्रणाली को शोध की संभावना का वर्णन करता है। थर्मोडायनामिक सीमा में, मैक्रोस्कोपिक प्रणाली द्वारा अपने उतार-चढ़ाव के दौरान देखे गए सभी माइक्रोस्टेट्स में समान मैक्रोस्कोपिक गुण होते हैं।
ऊष्मप्रवैगिकी अवधारणाओं की सूक्ष्म परिभाषाएँ
सांख्यिकीय यांत्रिकी प्रणाली के अनुभवजन्य थर्मोडायनामिक गुणों को माइक्रोस्टेट्स के समूह के सांख्यिकीय वितरण से जोड़ता है। प्रणाली के सभी मैक्रोस्कोपिक थर्मोडायनामिक गुणों की गणना विभाजन फ़ंक्शन (सांख्यिकीय यांत्रिकी) से की जा सकती है जो योग करती है इसके सभी माइक्रोस्टेट्स।
किसी भी समय प्रणाली को समूह में वितरित किया जाता है microstates, प्रत्येक द्वारा लेबल किया गया , और कब्जे की संभावना है , और ऊर्जा . यदि माइक्रोस्टेट प्रकृति में क्वांटम-मैकेनिकल हैं, तो ये माइक्रोस्टेट क्वांटम सांख्यिकीय यांत्रिकी द्वारा परिभाषित असतत सेट बनाते हैं, और प्रणाली का ऊर्जा स्तर है।
आंतरिक ऊर्जा
मैक्रोस्टेट की आंतरिक ऊर्जा प्रणाली की ऊर्जा के सभी माइक्रोस्टेट्स पर औसत है
यह ऊष्मप्रवैगिकी के प्रथम नियम से जुड़ी ऊर्जा की धारणा का सूक्ष्म कथन है।
एंट्रॉपी
विहित पहनावा के अधिक सामान्य मामले के लिए, पूर्ण एन्ट्रापी विशेष रूप से माइक्रोस्टेट्स की संभावनाओं पर निर्भर करती है और इसे परिभाषित किया जाता है
कहाँ बोल्ट्जमैन स्थिरांक है। माइक्रोकैनोनिकल पहनावा के लिए, केवल उन माइक्रोस्टेट्स से मिलकर जो मैक्रोस्टेट की ऊर्जा के बराबर ऊर्जा के साथ होते हैं, यह सरल करता है
माइक्रोस्टेट की संख्या के साथ . एंट्रॉपी का यह रूप विएना में लुडविग बोल्ट्जमैन के ग्रेवस्टोन पर दिखाई देता है।
ऊष्मप्रवैगिकी का दूसरा नियम बताता है कि समय के साथ पृथक प्रणाली की एन्ट्रापी कैसे बदलती है। ऊष्मप्रवैगिकी का तीसरा नियम इस परिभाषा के अनुरूप है, क्योंकि शून्य एन्ट्रॉपी का अर्थ है कि प्रणाली का मैक्रोस्टेट माइक्रोस्टेट तक कम हो जाता है।
गर्मी और काम
यदि हम प्रणाली की अंतर्निहित क्वांटम प्रकृति को ध्यान में रखते हैं तो गर्मी और काम को अलग किया जा सकता है।
बंद प्रणाली (पदार्थ का कोई हस्तांतरण नहीं) के लिए, सांख्यिकीय यांत्रिकी में गर्मी प्रणाली पर अव्यवस्थित, सूक्ष्म क्रिया से जुड़ा ऊर्जा हस्तांतरण है, जो प्रणाली के क्वांटम ऊर्जा स्तरों के कब्जे की संख्या में छलांग के साथ जुड़ा हुआ है, मूल्यों में बदलाव के बिना स्वयं ऊर्जा स्तरों की।[2]
कार्य (ऊष्मप्रवैगिकी) प्रणाली पर आदेशित, मैक्रोस्कोपिक क्रिया से जुड़ा ऊर्जा हस्तांतरण है। यदि यह क्रिया बहुत धीमी गति से कार्य करती है, तो क्वांटम यांत्रिकी के रुद्धोष्म प्रमेय का अर्थ है कि यह प्रणाली के ऊर्जा स्तरों के बीच छलांग नहीं लगाएगा। इस मामले में, प्रणाली की आंतरिक ऊर्जा केवल प्रणाली के ऊर्जा स्तरों में बदलाव के कारण बदलती है।[2]
ऊष्मा और कार्य की सूक्ष्म, क्वांटम परिभाषाएँ निम्नलिखित हैं:
ताकि
ऊष्मा और कार्य की उपरोक्त दो परिभाषाएँ सांख्यिकीय यांत्रिकी की उन कुछ अभिव्यक्तियों में से हैं जहाँ क्वांटम मामले में परिभाषित थर्मोडायनामिक मात्राएँ शास्त्रीय सीमा में कोई समान परिभाषा नहीं पाती हैं। इसका कारण यह है कि शास्त्रीय माइक्रोस्टेट्स को सटीक संबद्ध क्वांटम माइक्रोस्टेट के संबंध में परिभाषित नहीं किया गया है, जिसका अर्थ है कि जब कार्य प्रणाली के क्लासिकल माइक्रोस्टेट्स के बीच वितरण के लिए उपलब्ध कुल ऊर्जा को बदलता है, तो माइक्रोस्टेट्स के ऊर्जा स्तर (ऐसा बोलने के लिए) करते हैं इस परिवर्तन का पालन न करें।
फेज स्पेस में माइक्रोस्टेट
शास्त्रीय चरण स्थान
स्वतंत्रता की एफ डिग्री (भौतिकी और रसायन विज्ञान) की शास्त्रीय प्रणाली का वर्णन 2F आयामी चरण स्थान के संदर्भ में कहा जा सकता है, जिसके समन्वय अक्षों में F सामान्यीकृत निर्देशांक q समिलित हैं।iप्रणाली का, और इसका F सामान्यीकृत संवेग pi. ऐसी प्रणाली का माइक्रोस्टेट चरण स्थान में बिंदु द्वारा निर्दिष्ट किया जाएगा। लेकिन स्वतंत्रता की बड़ी संख्या वाली प्रणाली के लिए इसकी सटीक माइक्रोस्टेट सामान्यतःमहत्वपूर्ण नहीं होती है। तो चरण स्थान को आकार h की कोशिकाओं में विभाजित किया जा सकता है0= डीक्यूiपीi, प्रत्येक को माइक्रोस्टेट के रूप में माना जाता है। अब माइक्रोस्टेट असतत और गणनीय हैं[4] और आंतरिक ऊर्जा U का अब सटीक मान नहीं है, लेकिन U और U+δU के बीच है .
माइक्रोस्टेट्स Ω की संख्या जो बंद प्रणाली पर कब्जा कर सकती है, उसके चरण स्थान की मात्रा के समानुपाती होती है:
उदाहरण के लिए, कुल ऊर्जा यू के साथ एन कणों की साधारण गैस के मामले में मात्रा वी के घन में निहित है, जिसमें गैस का नमूना किसी अन्य नमूने से प्रयोगात्मक तरीकों से अलग नहीं किया जा सकता है, माइक्रोस्टेट में उपरोक्त समिलित होगा -उल्लेखित एन! चरण स्थान में बिंदु, और माइक्रोस्टेट्स के सेट को बॉक्स के अंदर झूठ बोलने के लिए सभी स्थिति निर्देशांक के लिए विवश किया जाएगा, और त्रिज्या यू के संवेग निर्देशांक में हाइपरस्फेरिकल सतह पर झूठ बोलने के लिए संवेग। यदि दूसरी ओर, प्रणाली में समिलित हैं दो अलग-अलग गैसों का मिश्रण, जिनमें से नमूने दूसरे से अलग किए जा सकते हैं, ए और बी कहते हैं, तो माइक्रोस्टेट्स की संख्या बढ़ जाती है, क्योंकि दो बिंदु जिनमें ए और बी कण चरण अंतरिक्ष में बदले जाते हैं, अब का हिस्सा नहीं हैं वही माइक्रोस्टेट। दो समान कण फिर भी, उदाहरण के लिए, उनके स्थान के आधार पर अलग-अलग हो सकते हैं। (विन्यास एन्ट्रापी देखें।) यदि बॉक्स में समान कण होते हैं, और संतुलन पर होता है, और विभाजन डाला जाता है, तो वॉल्यूम को आधे में विभाजित किया जाता है, बॉक्स में कण अब दूसरे बॉक्स में मौजूद कणों से भिन्न होते हैं। चरण स्थान में, प्रत्येक बॉक्स में N/2 कण अब मात्रा V/2 तक सीमित हैं, और उनकी ऊर्जा U/2 तक सीमित है, और ल माइक्रोस्टेट का वर्णन करने वाले बिंदुओं की संख्या बदल जाएगी: चरण स्थान विवरण नहीं है वही।
इसका गिब्स विरोधाभास और सही बोल्ट्जमैन गिनती दोनों में निहितार्थ है। बोल्ट्जमैन की गिनती के संबंध में, यह फेज स्पेस में बिंदुओं की बहुलता है जो प्रभावी रूप से माइक्रोस्टेट्स की संख्या को कम करती है और एंट्रॉपी को व्यापक बनाती है। गिब्स विरोधाभास के संबंध में, महत्वपूर्ण परिणाम यह है कि विभाजन के सम्मिलन के परिणामस्वरूप माइक्रोस्टेट्स की संख्या में वृद्धि (और इस प्रकार एन्ट्रापी में वृद्धि) माइक्रोस्टेट्स की संख्या में कमी से मेल खाती है (और इस प्रकार कमी) एंट्रोपी) प्रत्येक कण के लिए उपलब्ध आयतन में कमी के परिणामस्वरूप शून्य का शुद्ध एन्ट्रापी परिवर्तन होता है।
यह भी देखें
- क्वांटम सांख्यिकीय यांत्रिकी
- स्वतंत्रता की डिग्री (भौतिकी और रसायन विज्ञान)
- एर्गोडिक परिकल्पना
- फेज स्पेस
संदर्भ
- ↑ Macrostates and Microstates Archived 2012-03-05 at the Wayback Machine
- ↑ 2.0 2.1 2.2 Reif, Frederick (1965). सांख्यिकीय और तापीय भौतिकी के मूल सिद्धांत. McGraw-Hill. pp. 66–70. ISBN 978-0-07-051800-1.
- ↑ Pathria, R K (1965). सांख्यिकीय यांत्रिकी. Butterworth-Heinemann. p. 10. ISBN 0-7506-2469-8.
- ↑ "The Statistical Description of Physical Systems".
- ↑ Bartelmann, Matthias (2015). सैद्धांतिक भौतिकी. Springer Spektrum. pp. 1142–1145. ISBN 978-3-642-54617-4.