रीमैन इंटीग्रल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 54: Line 54:
<math display="block">\left| \left( \sum_{i=0}^{n-1} f(t_i) (x_{i+1}-x_i) \right) - s\right| < \varepsilon.</math>इन दोनों का अर्थ है कि अंततः, किसी भी विभाजन के संबंध में {{mvar|f}} का रीमैन योग {{mvar|s}} के निकट फंस जाता है। चूंकि यह सच है, चाहे हम कितनी भी मांग करें कि रकम फंसी हुई है, हम कहते हैं कि रीमैन का योग {{mvar|s}} में परिवर्तित हो जाता है। ये परिभाषाएँ वास्तव में एक अधिक सामान्य अवधारणा, एक जाल (गणित) का एक विशेष स्थिति है।
<math display="block">\left| \left( \sum_{i=0}^{n-1} f(t_i) (x_{i+1}-x_i) \right) - s\right| < \varepsilon.</math>इन दोनों का अर्थ है कि अंततः, किसी भी विभाजन के संबंध में {{mvar|f}} का रीमैन योग {{mvar|s}} के निकट फंस जाता है। चूंकि यह सच है, चाहे हम कितनी भी मांग करें कि रकम फंसी हुई है, हम कहते हैं कि रीमैन का योग {{mvar|s}} में परिवर्तित हो जाता है। ये परिभाषाएँ वास्तव में एक अधिक सामान्य अवधारणा, एक जाल (गणित) का एक विशेष स्थिति है।


जैसा कि हमने पहले कहा, ये दो परिभाषाएँ समतुल्य हैं। दूसरे शब्दों में, {{mvar|s}} पहली परिभाषा में काम करता है यदि और केवल यदि {{mvar|s}} दूसरी परिभाषा में काम करता है। यह दिखाने के लिए कि पहली परिभाषा का तात्पर्य दूसरी से है, एक {{mvar|ε}} से शुरू करें, और एक {{mvar|δ}} चुनें जो शर्त को पूरा करता है। किसी भी टैग किए गए विभाजन को चुनें जिसका मेश {{mvar|δ}} से कम हो। इसका रीमैन योग {{mvar|ε}} के {{mvar|s}} अन्दर है, और इस विभाजन के किसी भी परिशोधन में मेश से भी {{mvar|δ}} से कम होगा, इसलिए शोधन का रीमैन योग भी {{mvar|ε}} के {{mvar|s}} के अन्दर होगा।
जैसा कि हमने पहले कहा, ये दो परिभाषाएँ समतुल्य हैं। दूसरे शब्दों में, {{mvar|s}} पहली परिभाषा में काम करता है यदि और केवल यदि {{mvar|s}} दूसरी परिभाषा में काम करता है। यह दिखाने के लिए कि पहली परिभाषा का तात्पर्य दूसरी से है, एक {{mvar|ε}} से प्रारंभ करें, और एक {{mvar|δ}} चुनें जो शर्त को पूरा करता है। किसी भी टैग किए गए विभाजन को चुनें जिसका मेश {{mvar|δ}} से कम हो। इसका रीमैन योग {{mvar|ε}} के {{mvar|s}} अन्दर है, और इस विभाजन के किसी भी परिशोधन में मेश से भी {{mvar|δ}} से कम होगा, इसलिए शोधन का रीमैन योग भी {{mvar|ε}} के {{mvar|s}} के अन्दर होगा।


यह दिखाने के लिए कि दूसरी परिभाषा का तात्पर्य पहले से है, [[डार्बौक्स इंटीग्रल]] का उपयोग करना सबसे आसान है। सबसे पहले, दिखाता है कि दूसरी परिभाषा डार्बौक्स इंटीग्रल की परिभाषा के बराबर है; इसके लिए डार्बौक्स इंटीग्रल लेख देखें। अब हम दिखाएंगे कि एक डार्बौक्स इंटीग्रेबल फलन पहली परिभाषा को संतुष्ट करता है। {{mvar|ε}} का समाधान करना, और एक विभाजन {{math|''y''<sub>0</sub>, ..., ''y<sub>m</sub>''}} चुनें, जिससे इस विभाजन के संबंध में निचले और ऊपरी डार्बौक्स योग डार्बौक्स इंटीग्रल के मान {{mvar|s}} के {{math|''ε''/2}} के अंदर हों। मान लीजिये
यह दिखाने के लिए कि दूसरी परिभाषा का तात्पर्य पहले से है, [[डार्बौक्स इंटीग्रल]] का उपयोग करना सबसे आसान है। सबसे पहले, दिखाता है कि दूसरी परिभाषा डार्बौक्स इंटीग्रल की परिभाषा के बराबर है; इसके लिए डार्बौक्स इंटीग्रल लेख देखें। अब हम दिखाएंगे कि एक डार्बौक्स इंटीग्रेबल फलन पहली परिभाषा को संतुष्ट करता है। {{mvar|ε}} का समाधान करना, और एक विभाजन {{math|''y''<sub>0</sub>, ..., ''y<sub>m</sub>''}} चुनें, जिससे इस विभाजन के संबंध में निचले और ऊपरी डार्बौक्स योग डार्बौक्स इंटीग्रल के मान {{mvar|s}} के {{math|''ε''/2}} के अंदर हों। मान लीजिये
Line 80: Line 80:


== उदाहरण ==
== उदाहरण ==
मान लीजिये <math>f:[0,1]\to\R</math> वह कार्य हो जो प्रत्येक बिंदु पर मान 1 लेता है। का कोई रीमैन योग {{mvar|f}} पर {{math|[0, 1]}} का मान 1 होगा, इसलिए रीमैन का अभिन्न अंग है {{mvar|f}} पर {{math|[0, 1]}} 1 है।
मान लीजिये <math>f:[0,1]\to\R</math> एक ऐसा फलन है जो प्रत्येक बिंदु पर मान 1 लेता है। {{math|[0, 1]}} पर {{mvar|f}} के किसी भी रीमैन योग का मान 1 होगा, इसलिए {{math|[0, 1]}} रीमैन पर {{mvar|f}}  का रीमैन इंटीग्रल 1 है।


मान लीजिये <math>I_{\Q}:[0,1]\to\R</math> में परिमेय संख्याओं का सूचक कार्य हो {{math|[0, 1]}}; वह है, <math>I_{\Q}</math> परिमेय संख्याओं पर 1 और अपरिमेय संख्याओं पर 0 का मान लेता है। इस फलन में रीमैन इंटीग्रल नहीं है। इसे साबित करने के लिए, हम दिखाएंगे कि टैग किए गए विभाजन कैसे बनाए जाते हैं, जिनके रीमैन योग मनमाने ढंग से शून्य और एक दोनों के निकट हो जाते हैं।
मान लीजिये <math>I_{\Q}:[0,1]\to\R</math> में परिमेय संख्याओं का सूचक कार्य हो {{math|[0, 1]}}; वह है, <math>I_{\Q}</math> परिमेय संख्याओं पर 1 और अपरिमेय संख्याओं पर 0 का मान लेता है। इस फलन में रीमैन इंटीग्रल नहीं है। इसे सिद्ध करने के लिए, हम दिखाएंगे कि टैग किए गए विभाजन कैसे बनाए जाते हैं, जिनके रीमैन योग स्वैच्छिक विधि से शून्य और एक दोनों के निकट हो जाते हैं।


शुरू करने के लिए, चलो {{math|''x''<sub>0</sub>, ..., ''x<sub>n</sub>''}} और {{math|''t''<sub>0</sub>, ..., ''t''<sub>''n'' − 1</sub>}} एक टैग किया गया विभाजन हो (प्रत्येक {{mvar|t<sub>i</sub>}} के बीच है {{mvar|x<sub>i</sub>}} और {{math|''x''<sub>''i'' + 1</sub>}}). चुनना {{math|''ε'' > 0}}. वह {{mvar|t<sub>i</sub>}} को पहले ही चुना जा चुका है, और हम का मान नहीं बदल सकते {{mvar|f}} उन बिंदुओं पर। किन्तु यदि हम विभाजन को प्रत्येक के चारों ओर छोटे-छोटे टुकड़ों में काटते हैं {{mvar|t<sub>i</sub>}}, हम के प्रभाव को कम कर सकते हैं {{mvar|t<sub>i</sub>}}. फिर, नए टैग्स को ध्यान से चुनकर, हम रीमैन राशि के मूल्य को अन्दर बना सकते हैं {{mvar|ε}} या तो शून्य या एक।
प्रारंभ करने के लिए, मान लीजिये {{math|''x''<sub>0</sub>, ..., ''x<sub>n</sub>''}} और {{math|''t''<sub>0</sub>, ..., ''t''<sub>''n'' − 1</sub>}} को टैग किया गया विभाजन (प्रत्येक {{mvar|t<sub>i</sub>}} के बीच है {{mvar|x<sub>i</sub>}} और {{math|''x''<sub>''i'' + 1</sub>}}) हो। {{math|''ε'' > 0}} को चुनें। {{mvar|t<sub>i</sub>}} को पहले ही चुना जा चुका है, और हम उन बिंदुओं पर {{mvar|f}} का मान नहीं बदल सकते। लेकिन अगर हम विभाजन को प्रत्येक {{mvar|t<sub>i</sub>}} के चारों ओर छोटे-छोटे टुकड़ों में काट दें, तो हम {{mvar|t<sub>i</sub>}} के प्रभाव को कम कर सकते हैं। फिर, नए टैग्स को ध्यान से चुनकर, हम रीमैन योग का मान शून्य या एक के {{mvar|ε}} के अन्दर कर सकते हैं।


हमारा पहला कदम विभाजन को काटना है। वहाँ हैं {{mvar|n}} की {{mvar|t<sub>i</sub>}}, और हम चाहते हैं कि उनका कुल प्रभाव इससे कम हो {{mvar|ε}}. यदि हम उनमें से प्रत्येक को लंबाई से कम के अंतराल तक सीमित रखते हैं {{math|''ε''/''n''}}, फिर प्रत्येक का योगदान {{mvar|t<sub>i</sub>}} से रीमैन योग कम से कम होगा {{math|0 · ''ε''/''n''}} और अधिक से अधिक {{math|1 · ''ε''/''n''}}. इससे कुल योग कम से कम शून्य और अधिक से अधिक बनता है {{mvar|ε}}. तो चलो {{mvar|δ}} से कम धनात्मक संख्या हो {{math|''ε''/''n''}}. यदि ऐसा होता है कि दो {{mvar|t<sub>i</sub>}} अन्दर हैं {{mvar|δ}} एक दूसरे का, चुनें {{mvar|δ}} छोटा। यदि ऐसा होता है कि कुछ {{mvar|t<sub>i</sub>}} अन्दर है {{mvar|δ}} का कुछ {{mvar|x<sub>j</sub>}}, और {{mvar|t<sub>i</sub>}} के बराबर नहीं है {{mvar|x<sub>j</sub>}}, चुनना {{mvar|δ}} छोटा। चूंकि बहुत सारे हैं {{mvar|t<sub>i</sub>}} और {{mvar|x<sub>j</sub>}}, हम हमेशा चुन सकते हैं {{mvar|δ}} पर्याप्त रूप से छोटा।
हमारा पहला कदम विभाजन को काटना है। वहाँ हैं {{mvar|t<sub>i</sub>}} के {{mvar|n}} हैं, और हम चाहते हैं कि उनका कुल प्रभाव {{mvar|ε}} से कम हो। यदि हम उनमें से प्रत्येक को {{math|''ε''/''n''}} से कम लंबाई के अंतराल तक सीमित करते हैं, तो प्रत्येक {{mvar|t<sub>i</sub>}} का रीमैन योग में योगदान कम से कम {{math|0 · ''ε''/''n''}} और अधिकतम {{math|1 · ''ε''/''n''}} होगा। यह कुल योग कम से कम शून्य और अधिकतम {{mvar|ε}} बनाता है। तो मान लीजिये {{mvar|δ}} {{math|''ε''/''n''}} से कम धनात्मक संख्या हो। यदि ऐसा होता है कि दो {{mvar|t<sub>i</sub>}} एक दूसरे के {{mvar|δ}} के अन्दर हैं, तो {{mvar|δ}} छोटा चुनें। यदि ऐसा होता है कि कुछ {{mvar|t<sub>i</sub>}} कुछ {{mvar|x<sub>j</sub>}} के δ के अन्दर है, और {{mvar|t<sub>i</sub>}} {{mvar|x<sub>j</sub>}} के बराबर नहीं है, तो {{mvar|δ}} छोटा चुनें। चूँकि केवल बहुत सारे {{mvar|t<sub>i</sub>}} और {{mvar|x<sub>j</sub>}} हैं, हम हमेशा पर्याप्त रूप से छोटा {{mvar|δ}} चुन सकते हैं।


अब हम प्रत्येक के लिए विभाजन में दो कट जोड़ते हैं {{mvar|t<sub>i</sub>}}. कटौती में से एक पर होगा {{math|''t<sub>i</sub>'' − ''δ''/2}}, और दूसरा पर होगा {{math|''t<sub>i</sub>'' + ''δ''/2}}. यदि इनमें से कोई एक अंतराल [0, 1] छोड़ता है, तो हम इसे छोड़ देते हैं। {{mvar|t<sub>i</sub>}} सबइंटरवल के अनुरूप टैग होगा
अब हम प्रत्येक {{mvar|t<sub>i</sub>}} के लिए विभाजन में दो कट जोड़ते हैं। कटौती में से एक {{math|''t<sub>i</sub>'' − ''δ''/2}} पर होगा, और दूसरा {{math|''t<sub>i</sub>'' + ''δ''/2}} पर होगा। यदि इनमें से कोई एक अंतराल [0, 1] छोड़ता है, तो हम इसे छोड़ देते हैं। {{mvar|t<sub>i</sub>}} सबइंटरवल के अनुरूप टैग होगा
<math display="block">\left [t_i - \frac{\delta}{2}, t_i + \frac{\delta}{2} \right ].</math>
<math display="block">\left [t_i - \frac{\delta}{2}, t_i + \frac{\delta}{2} \right ].</math>
यदि {{mvar|t<sub>i</sub>}} इनमें से किसी एक के ठीक ऊपर है {{mvar|x<sub>j</sub>}}, तो हम करते हैं {{mvar|t<sub>i</sub>}} दोनों अंतरालों के लिए टैग बनें:
यदि {{mvar|t<sub>i</sub>}} सीधे {{mvar|x<sub>j</sub>}}, में से किसी एक के ऊपर है, तो हम {{mvar|t<sub>i</sub>}} को दोनों अंतरालों के लिए टैग होने देते हैं:
<math display="block">\left [t_i - \frac{\delta}{2}, x_j \right ], \quad\text{and}\quad \left [x_j,t_i + \frac{\delta}{2} \right ].</math>
<math display="block">\left [t_i - \frac{\delta}{2}, x_j \right ], \quad\text{and}\quad \left [x_j,t_i + \frac{\delta}{2} \right ].</math>
हमें अभी भी अन्य उपअंतरालों के लिए टैग चुनना है। हम उन्हें दो अलग-अलग विधियों से चुनेंगे। पहली विधि हमेशा एक परिमेय बिंदु चुनना है, जिससे रीमैन का योग जितना संभव हो उतना बड़ा हो। यह कम से कम रीमैन योग का मूल्य बना देगा {{math|1 − ''ε''}}. दूसरी विधि हमेशा एक अपरिमेय बिंदु चुनना है, जिससे रीमैन योग जितना संभव हो उतना छोटा हो। यह रीमैन योग का मूल्य अधिक से अधिक बना देगा {{mvar|ε}}.
हमें अभी भी अन्य उपअंतरालों के लिए टैग चुनना है। हम उन्हें दो अलग-अलग विधियों से चुनेंगे। पहली विधि हमेशा एक परिमेय बिंदु चुनना है, जिससे रीमैन का योग जितना संभव हो उतना बड़ा हो। इससे रीमैन योग का मान कम से कम {{math|1 − ''ε''}} हो जाएगा। दूसरी विधि हमेशा एक अपरिमेय बिंदु चुनना है, जिससे रीमैन योग जितना संभव हो उतना छोटा हो। यह रीमैन योग का मान अधिकतम {{mvar|ε}} बना देगा।


चूंकि हमने एक मनमाना विभाजन से शुरू किया और शून्य या एक के रूप में निकट के रूप में समाप्त हो गया, यह कहना गलत है कि हम अंततः किसी संख्या के पास फंस गए हैं {{mvar|s}}, इसलिए यह फलन रीमैन पूर्णांक नहीं है। हालाँकि, यह Lebesgue अभिन्न है। Lebesgue अर्थ में इसका अभिन्न शून्य है, क्योंकि फलन [[लगभग हर जगह]] शून्य है। किन्तु यह एक ऐसा तथ्य है जो रीमैन इंटीग्रल की पहुंच से परे है।
चूंकि हमने एक मनमाना विभाजन से प्रारंभ किया और शून्य या एक के रूप में निकट के रूप में समाप्त हो गया, यह कहना गलत है कि हम अंततः किसी संख्या के पास फंस गए हैं {{mvar|s}}, इसलिए यह फलन रीमैन पूर्णांक नहीं है। चूँकि, यह लेबेस्ग पूर्णांक है। लेबेस्ग अर्थ में इसका अभिन्न शून्य है, क्योंकि फलन [[लगभग हर जगह]] शून्य है। किन्तु यह एक ऐसा तथ्य है जो रीमैन इंटीग्रल की पहुंच से परे है।


और भी बुरे उदाहरण हैं। <math>I_{\Q}</math> एक रीमैन पूर्णांकीय फलन के समतुल्य है (अर्थात्, लगभग हर जगह समान है), किन्तु ऐसे गैर-रीमैन पूर्णांकीय परिबद्ध कार्य हैं जो किसी भी रीमैन पूर्णांकीय फलन के समतुल्य नहीं हैं। उदाहरण के लिए, चलो {{mvar|C}} स्मिथ-वोल्तेरा-कैंटर सेट हो, और चलो {{math|''I<sub>C</sub>''}} इसका सूचक कार्य हो। क्योंकि {{mvar|C}} [[जॉर्डन माप]] नहीं है, {{math|''I<sub>C</sub>''}} रीमैन पूर्णांक नहीं है। इसके अलावा कोई समारोह नहीं {{mvar|g}} के बराबर {{math|''I<sub>C</sub>''}} रीमैन पूर्णांक है: {{mvar|g}}, पसंद {{math|''I<sub>C</sub>''}}, सघन सेट पर शून्य होना चाहिए, इसलिए पिछले उदाहरण की तरह, किसी भी रीमैन का योग {{mvar|g}}<nowiki> में एक शोधन है जो अन्दर है {{mvar|ε}किसी भी सकारात्मक संख्या के लिए 0 का }</nowiki>{{mvar|ε}}. किन्तु यदि रीमैन का अभिन्न अंग {{mvar|g}} उपस्थित है, तो इसे Lebesgue इंटीग्रल के बराबर होना चाहिए {{math|''I<sub>C</sub>''}}, जो है {{math|1/2}}. इसलिए, {{mvar|g}} रीमैन पूर्णांक नहीं है।
और भी बुरे उदाहरण हैं। <math>I_{\Q}</math> एक रीमैन पूर्णांकीय फलन के समतुल्य (अर्थात्, लगभग हर जगह समान है) है, किन्तु ऐसे गैर-रीमैन पूर्णांकीय परिबद्ध कार्य हैं जो किसी भी रीमैन पूर्णांकीय फलन के समतुल्य नहीं हैं। उदाहरण के लिए, मान लीजिये {{mvar|C}} स्मिथ-वोल्तेरा-कैंटर सेट हो, और मान लीजिये {{math|''I<sub>C</sub>''}} को इसका सूचक फलन हो। क्योंकि {{mvar|C}} [[जॉर्डन माप]] नहीं है, {{math|''I<sub>C</sub>''}} रीमैन पूर्णांक नहीं है। इसके अतिरिक्त {{math|''I<sub>C</sub>''}} के समतुल्य कोई भी फ़ंक्शन {{mvar|g}} रीमैन पूर्णांक नहीं है: {{mvar|g}}, {{math|''I<sub>C</sub>''}}, की तरह, घने सेट पर शून्य होना चाहिए, इसलिए पिछले उदाहरण में, {{mvar|g}} के किसी भी रीमैन योग में एक शोधन है जो किसी भी धनात्मक संख्या के लिए {{mvar|ε}} के अन्दर है। किन्तु यदि रीमैन का अभिन्न अंग {{mvar|g}} उपस्थित है, तो इसे {{math|''I<sub>C</sub>''}}, के लेबेस्ग इंटीग्रल के बराबर होना चाहिए, जो कि {{math|1/2}} है। इसलिए, जी रीमैन पूर्णांक नहीं है।


== समान अवधारणाएँ ==
== समान अवधारणाएँ ==
Line 110: Line 110:
दोबारा, अकेले यह प्रतिबंध कोई समस्या नहीं लगाता है, किन्तु इस तथ्य को देखने के लिए आवश्यक तर्क बाएं हाथ और दाएं हाथ के रीमैन रकम के स्थिति में अधिक कठिन है।
दोबारा, अकेले यह प्रतिबंध कोई समस्या नहीं लगाता है, किन्तु इस तथ्य को देखने के लिए आवश्यक तर्क बाएं हाथ और दाएं हाथ के रीमैन रकम के स्थिति में अधिक कठिन है।


हालांकि, इन प्रतिबंधों का संयोजन, जिससे कोई नियमित रूप से विभाजित अंतराल पर केवल बाएं हाथ या दाएं हाथ के रीमैन रकम का उपयोग कर सके, खतरनाक है। यदि किसी फलन को पहले से ही रीमैन पूर्णांक के रूप में जाना जाता है, तो यह तकनीक समाकलन का सही मान देगी। किन्तु इन शर्तों के तहत सूचक कार्य करता है <math>I_{\Q}</math> पर अभिन्न प्रतीत होगा {{math|[0, 1]}} एक के बराबर इंटीग्रल के साथ: हर सबइंटरवल का हर समापन बिंदु एक परिमेय संख्या होगी, इसलिए फलन का हमेशा परिमेय संख्याओं पर मूल्यांकन किया जाएगा, और इसलिए यह हमेशा एक के बराबर दिखाई देगा। इस परिभाषा के साथ समस्या तब स्पष्ट हो जाती है जब हम अभिन्न को दो भागों में विभाजित करने का प्रयास करते हैं। निम्नलिखित समीकरण धारण करना चाहिए:
चूँकि, इन प्रतिबंधों का संयोजन, जिससे कोई नियमित रूप से विभाजित अंतराल पर केवल बाएं हाथ या दाएं हाथ के रीमैन रकम का उपयोग कर सके, खतरनाक है। यदि किसी फलन को पहले से ही रीमैन पूर्णांक के रूप में जाना जाता है, तो यह तकनीक समाकलन का सही मान देगी। किन्तु इन शर्तों के तहत सूचक कार्य करता है <math>I_{\Q}</math> पर अभिन्न प्रतीत होगा {{math|[0, 1]}} एक के बराबर इंटीग्रल के साथ: हर सबइंटरवल का हर समापन बिंदु एक परिमेय संख्या होगी, इसलिए फलन का हमेशा परिमेय संख्याओं पर मूल्यांकन किया जाएगा, और इसलिए यह हमेशा एक के बराबर दिखाई देगा। इस परिभाषा के साथ समस्या तब स्पष्ट हो जाती है जब हम अभिन्न को दो भागों में विभाजित करने का प्रयास करते हैं। निम्नलिखित समीकरण धारण करना चाहिए:
<math display="block">\int_0^{\sqrt{2}-1} I_\Q(x) \,dx + \int_{\sqrt{2}-1}^1 I_\Q(x) \,dx = \int_0^1 I_\Q(x) \,dx.</math>
<math display="block">\int_0^{\sqrt{2}-1} I_\Q(x) \,dx + \int_{\sqrt{2}-1}^1 I_\Q(x) \,dx = \int_0^1 I_\Q(x) \,dx.</math>
यदि हम नियमित उपविभाजनों और बाएँ हाथ या दाएँ हाथ के रीमैन योग का उपयोग करते हैं, तो बाईं ओर के दो पद शून्य के बराबर हैं, क्योंकि 0 और 1 को छोड़कर प्रत्येक समापन बिंदु अपरिमेय होगा, किन्तु जैसा कि हमने दाईं ओर का शब्द देखा है बराबर 1.
यदि हम नियमित उपविभाजनों और बाएँ हाथ या दाएँ हाथ के रीमैन योग का उपयोग करते हैं, तो बाईं ओर के दो पद शून्य के बराबर हैं, क्योंकि 0 और 1 को छोड़कर प्रत्येक समापन बिंदु अपरिमेय होगा, किन्तु जैसा कि हमने दाईं ओर का शब्द देखा है बराबर 1.


जैसा कि ऊपर परिभाषित किया गया है, रीमैन इंटीग्रल एकीकृत करने से इनकार करके इस समस्या से बचा जाता है <math>I_{\Q}.</math> Lebesgue इंटीग्रल को इस तरह परिभाषित किया गया है कि ये सभी इंटीग्रल 0 हैं।
जैसा कि ऊपर परिभाषित किया गया है, रीमैन इंटीग्रल एकीकृत करने से इनकार करके इस समस्या से बचा जाता है <math>I_{\Q}.</math> लेबेस्ग इंटीग्रल को इस तरह परिभाषित किया गया है कि ये सभी इंटीग्रल 0 हैं।


== गुण ==
== गुण ==
Line 124: Line 124:


== अखंडता ==
== अखंडता ==
[[ कॉम्पैक्ट जगह ]] पर एक [[ परिबद्ध समारोह ]] {{math|[''a'', ''b'']}} रीमैन इंटीग्रेबल है यदि और केवल यदि यह लगभग हर जगह [[निरंतर कार्य]] करता है (लेबेस्ग्यू माप के अर्थ में इसकी असांतत्यता के वर्गीकरण का माप शून्य है)। यह है{{visible anchor|Lebesgue-Vitali  theorem|Lebesgue integrability condition}} (रीमैन पूर्णांकीय कार्यों के लक्षण वर्णन)। यह 1907 में [[Giuseppe Vitali]] और [[Henri Lebesgue]] द्वारा स्वतंत्र रूप से सिद्ध किया गया है, और माप शून्य की धारणा का उपयोग करता है, किन्तु न तो Lebesgue के सामान्य माप या अभिन्न का उपयोग करता है।
[[ कॉम्पैक्ट जगह ]] पर एक [[ परिबद्ध समारोह ]] {{math|[''a'', ''b'']}} रीमैन इंटीग्रेबल है यदि और केवल यदि यह लगभग हर जगह [[निरंतर कार्य]] करता है (लेबेस्ग्यू माप के अर्थ में इसकी असांतत्यता के वर्गीकरण का माप शून्य है)। यह है{{visible anchor|Lebesgue-Vitali  theorem|Lebesgue integrability condition}} (रीमैन पूर्णांकीय कार्यों के लक्षण वर्णन)। यह 1907 में [[Giuseppe Vitali]] और [[Henri Lebesgue|Henri लेबेस्ग]] द्वारा स्वतंत्र रूप से सिद्ध किया गया है, और माप शून्य की धारणा का उपयोग करता है, किन्तु न तो लेबेस्ग के सामान्य माप या अभिन्न का उपयोग करता है।


अभिन्नता की स्थिति को विभिन्न विधियों से सिद्ध किया जा सकता है,<ref name="apostol169">{{harvnb|Apostol|1974|pp=169–172}}</ref><ref>{{Cite journal| issn = 0002-9890| volume = 43| issue = 7| pages = 396–398 | last = Brown| first = A. B.| title = रीमैन इंटिग्रेबिलिटी के लिए लेबेस्ग कंडीशन का प्रमाण| journal = The American Mathematical Monthly| date = September 1936| jstor = 2301737 | doi = 10.2307/2301737}}</ref><ref>Basic real analysis, by Houshang H. Sohrab, section 7.3, Sets of Measure Zero and Lebesgue’s Integrability Condition, [https://books.google.com/books?id=gBPI_oYZoMMC&pg=PA264 pp. 264–271]</ref><ref>''[http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF Introduction to Real Analysis],'' updated April 2010, William F. Trench, 3.5 "A More Advanced Look at the Existence of the Proper Riemann Integral", pp. 171–177</ref> जिनमें से एक नीचे स्केच किया गया है।
अभिन्नता की स्थिति को विभिन्न विधियों से सिद्ध किया जा सकता है,<ref name="apostol169">{{harvnb|Apostol|1974|pp=169–172}}</ref><ref>{{Cite journal| issn = 0002-9890| volume = 43| issue = 7| pages = 396–398 | last = Brown| first = A. B.| title = रीमैन इंटिग्रेबिलिटी के लिए लेबेस्ग कंडीशन का प्रमाण| journal = The American Mathematical Monthly| date = September 1936| jstor = 2301737 | doi = 10.2307/2301737}}</ref><ref>Basic real analysis, by Houshang H. Sohrab, section 7.3, Sets of Measure Zero and Lebesgue’s Integrability Condition, [https://books.google.com/books?id=gBPI_oYZoMMC&pg=PA264 pp. 264–271]</ref><ref>''[http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF Introduction to Real Analysis],'' updated April 2010, William F. Trench, 3.5 "A More Advanced Look at the Existence of the Proper Riemann Integral", pp. 171–177</ref> जिनमें से एक नीचे स्केच किया गया है।
Line 135: Line 135:
One direction can be proven using the [[Oscillation (mathematics)|oscillation]] definition of continuity:<ref>[http://unapologetic.wordpress.com/2009/12/15/lebesgues-condition/ Lebesgue’s Condition], John Armstrong, December 15, 2009, The Unapologetic Mathematician</ref> For every positive {{mvar|ε}}, Let {{math|''X''<sub>''ε''</sub>}} be the set of points in {{math|[''a'', ''b'']}} with oscillation of at least {{mvar|ε}}. Since every point where {{mvar|f}} is discontinuous has a positive oscillation and vice versa, the set of points in {{math|[''a'', ''b'']}}, where {{mvar|f}} is discontinuous is equal to the union over {{math|{''X''<sub>1/''n''</sub>}}} for all natural numbers {{mvar|n}}.
One direction can be proven using the [[Oscillation (mathematics)|oscillation]] definition of continuity:<ref>[http://unapologetic.wordpress.com/2009/12/15/lebesgues-condition/ Lebesgue’s Condition], John Armstrong, December 15, 2009, The Unapologetic Mathematician</ref> For every positive {{mvar|ε}}, Let {{math|''X''<sub>''ε''</sub>}} be the set of points in {{math|[''a'', ''b'']}} with oscillation of at least {{mvar|ε}}. Since every point where {{mvar|f}} is discontinuous has a positive oscillation and vice versa, the set of points in {{math|[''a'', ''b'']}}, where {{mvar|f}} is discontinuous is equal to the union over {{math|{''X''<sub>1/''n''</sub>}}} for all natural numbers {{mvar|n}}.


If this set does not have zero [[Lebesgue measure]], then by [[countable additivity]] of the measure there is at least one such {{mvar|n}} so that {{math|''X''<sub>1/''n''</sub>}} does not have a zero measure. Thus there is some positive number {{mvar|c}} such that every [[countable]] collection of open intervals [[cover (topology)|covering]] {{math|''X''<sub>1/''n''</sub>}} has a total length of at least {{mvar|c}}. In particular this is also true for every such finite collection of intervals. This remains true also for {{math|''X''<sub>1/''n''</sub>}} less a finite number of points (as a finite number of points can always be covered by a finite collection of intervals with arbitrarily small total length).
If this set does not have zero [[Lebesgue measure|लेबेस्ग measure]], then by [[countable additivity]] of the measure there is at least one such {{mvar|n}} so that {{math|''X''<sub>1/''n''</sub>}} does not have a zero measure. Thus there is some positive number {{mvar|c}} such that every [[countable]] collection of open intervals [[cover (topology)|covering]] {{math|''X''<sub>1/''n''</sub>}} has a total length of at least {{mvar|c}}. In particular this is also true for every such finite collection of intervals. This remains true also for {{math|''X''<sub>1/''n''</sub>}} less a finite number of points (as a finite number of points can always be covered by a finite collection of intervals with arbitrarily small total length).


For every [[partition of an interval|partition of {{math|[''a'', ''b'']}}]], consider the set of intervals whose interiors include points from {{math|''X''<sub>1/''n''</sub>}}. These interiors consist of a finite open cover of {{math|''X''<sub>1/''n''</sub>}}, possibly up to a finite number of points (which may fall on interval edges). Thus these intervals have a total length of at least {{mvar|c}}. Since in these points {{mvar|f}} has oscillation of at least {{math|1/''n''}}, the [[infimum and supremum]] of {{mvar|f}} in each of these intervals differ by at least {{math|1/''n''}}. Thus the upper and lower sums of {{mvar|f}} differ by at least {{math|''c''/''n''}}. Since this is true for every partition, {{mvar|f}} is not Riemann integrable.
For every [[partition of an interval|partition of {{math|[''a'', ''b'']}}]], consider the set of intervals whose interiors include points from {{math|''X''<sub>1/''n''</sub>}}. These interiors consist of a finite open cover of {{math|''X''<sub>1/''n''</sub>}}, possibly up to a finite number of points (which may fall on interval edges). Thus these intervals have a total length of at least {{mvar|c}}. Since in these points {{mvar|f}} has oscillation of at least {{math|1/''n''}}, the [[infimum and supremum]] of {{mvar|f}} in each of these intervals differ by at least {{math|1/''n''}}. Thus the upper and lower sums of {{mvar|f}} differ by at least {{math|''c''/''n''}}. Since this is true for every partition, {{mvar|f}} is not Riemann integrable.
Line 143: Line 143:
*For every series of points in {{math|''X''<sub>''ε''</sub>}} that is converging in {{math|[''a'', ''b'']}}, its limit is in {{math|''X''<sub>''ε''</sub>}} as well. This is because every neighborhood of the limit point is also a neighborhood of some point in {{math|''X''<sub>''ε''</sub>}}, and thus {{mvar|f}} has an oscillation of at least {{mvar|ε}} on it. Hence the limit point is in {{math|''X''<sub>''ε''</sub>}}.
*For every series of points in {{math|''X''<sub>''ε''</sub>}} that is converging in {{math|[''a'', ''b'']}}, its limit is in {{math|''X''<sub>''ε''</sub>}} as well. This is because every neighborhood of the limit point is also a neighborhood of some point in {{math|''X''<sub>''ε''</sub>}}, and thus {{mvar|f}} has an oscillation of at least {{mvar|ε}} on it. Hence the limit point is in {{math|''X''<sub>''ε''</sub>}}.


Now, suppose that {{mvar|f}} is continuous [[almost everywhere]]. Then for every {{mvar|ε}}, {{math|''X''<sub>''ε''</sub>}} has zero [[Lebesgue measure]]. Therefore, there is a countable collections of open intervals in {{math|[''a'', ''b'']}} which is an [[open cover]] of {{math|''X''<sub>''ε''</sub>}}, such that the sum over all their lengths is arbitrarily small. [[Compact space#Open cover definition|Since {{math|''X''<sub>''ε''</sub>}} is compact]], there is a finite [[subcover]] – a finite collections of open intervals in {{math|[''a'', ''b'']}} with arbitrarily small total length that together contain all points in {{math|''X''<sub>''ε''</sub>}}. We denote these intervals {{math|{''I''(''ε'')<sub>''i''</sub>}}}, for {{math|1 ≤ ''i'' ≤ ''k''}}, for some natural {{mvar|k}}.
Now, suppose that {{mvar|f}} is continuous [[almost everywhere]]. Then for every {{mvar|ε}}, {{math|''X''<sub>''ε''</sub>}} has zero [[Lebesgue measure|लेबेस्ग measure]]. Therefore, there is a countable collections of open intervals in {{math|[''a'', ''b'']}} which is an [[open cover]] of {{math|''X''<sub>''ε''</sub>}}, such that the sum over all their lengths is arbitrarily small. [[Compact space#Open cover definition|Since {{math|''X''<sub>''ε''</sub>}} is compact]], there is a finite [[subcover]] – a finite collections of open intervals in {{math|[''a'', ''b'']}} with arbitrarily small total length that together contain all points in {{math|''X''<sub>''ε''</sub>}}. We denote these intervals {{math|{''I''(''ε'')<sub>''i''</sub>}}}, for {{math|1 ≤ ''i'' ≤ ''k''}}, for some natural {{mvar|k}}.


The [[complement (set theory)|complement]] of the union of these intervals is itself a union of a finite number of intervals, which we denote {{math|{''J''(''ε'')<sub>''i''</sub>}}} (for {{math|1 ≤ ''i'' ≤ ''k'' − 1}} and possibly for {{math|1=''i'' = ''k'', ''k'' + 1}} as well).
The [[complement (set theory)|complement]] of the union of these intervals is itself a union of a finite number of intervals, which we denote {{math|{''J''(''ε'')<sub>''i''</sub>}}} (for {{math|1 ≤ ''i'' ≤ ''k'' − 1}} and possibly for {{math|1=''i'' = ''k'', ''k'' + 1}} as well).
Line 163: Line 163:
एक बंधे हुए सेट का एक संकेतक फलन रीमैन-इंटीग्रेबल है यदि और केवल यदि सेट जॉर्डन उपाय है। रीमैन इंटीग्रल की व्याख्या [[माप सिद्धांत]] | माप-सैद्धांतिक रूप से जॉर्डन माप के संबंध में इंटीग्रल के रूप में की जा सकती है।
एक बंधे हुए सेट का एक संकेतक फलन रीमैन-इंटीग्रेबल है यदि और केवल यदि सेट जॉर्डन उपाय है। रीमैन इंटीग्रल की व्याख्या [[माप सिद्धांत]] | माप-सैद्धांतिक रूप से जॉर्डन माप के संबंध में इंटीग्रल के रूप में की जा सकती है।


यदि वास्तविक-मूल्यवान फलन अंतराल पर [[मोनोटोन समारोह]] है {{math|[''a'', ''b'']}} यह रीमैन इंटेग्रेबल है, क्योंकि इसकी अनिरंतरता का सेट सबसे अधिक गणना योग्य है, और इसलिए लेबेस्ग का माप शून्य है। यदि एक वास्तविक-मूल्यवान फलन on {{math|[''a'', ''b'']}} रीमैन इंटीग्रेबल है, यह लेबेसेग इंटीग्रल है। अर्थात्, लेबेसेग-अभिन्नता की तुलना में रीमैन-इंटीग्रेबिलिटी एक मजबूत (अर्थात् संतुष्ट करने के लिए अधिक कठिन) स्थिति है। बातचीत पकड़ में नहीं आती; सभी Lebesgue-integrable कार्य रीमैन पूर्णांक नहीं हैं।
यदि वास्तविक-मूल्यवान फलन अंतराल पर [[मोनोटोन समारोह]] है {{math|[''a'', ''b'']}} यह रीमैन इंटेग्रेबल है, क्योंकि इसकी अनिरंतरता का सेट सबसे अधिक गणना योग्य है, और इसलिए लेबेस्ग का माप शून्य है। यदि एक वास्तविक-मूल्यवान फलन on {{math|[''a'', ''b'']}} रीमैन इंटीग्रेबल है, यह लेबेसेग इंटीग्रल है। अर्थात्, लेबेसेग-अभिन्नता की तुलना में रीमैन-इंटीग्रेबिलिटी एक मजबूत (अर्थात् संतुष्ट करने के लिए अधिक कठिन) स्थिति है। बातचीत पकड़ में नहीं आती; सभी लेबेस्ग-integrable कार्य रीमैन पूर्णांक नहीं हैं।


लेबेस्ग्यू-विटाली प्रमेय का अर्थ यह नहीं है कि सभी प्रकार की असंततताओं का बाधा पर समान भार है कि एक वास्तविक-मूल्यवान परिबद्ध फलन रीमैन पर समाकलित हो सकता है। {{math|[''a'', ''b'']}}. वास्तव में, कुछ विच्छिन्नताओं की फलन की रीमैन इंटीग्रैबिलिटी पर बिल्कुल कोई भूमिका नहीं होती है - एक फलन के डिसकंटीन्युटीज़ के डिसकंटीन्युटीज़ के वर्गीकरण का एक परिणाम है।{{cn|date=December 2021}}
लेबेस्ग्यू-विटाली प्रमेय का अर्थ यह नहीं है कि सभी प्रकार की असंततताओं का बाधा पर समान भार है कि एक वास्तविक-मूल्यवान परिबद्ध फलन रीमैन पर समाकलित हो सकता है। {{math|[''a'', ''b'']}}. वास्तव में, कुछ विच्छिन्नताओं की फलन की रीमैन इंटीग्रैबिलिटी पर बिल्कुल कोई भूमिका नहीं होती है - एक फलन के डिसकंटीन्युटीज़ के डिसकंटीन्युटीज़ के वर्गीकरण का एक परिणाम है।{{cn|date=December 2021}}
Line 169: Line 169:
यदि {{math|''f''<sub>''n''</sub>}} एक समान अभिसरण अनुक्रम है {{math|[''a'', ''b'']}} सीमा के साथ {{mvar|f}}, फिर रीमैन सभी की पूर्णांकता {{math|''f''<sub>''n''</sub>}} का तात्पर्य रीमैन की पूर्णांकता से है {{mvar|f}}, और
यदि {{math|''f''<sub>''n''</sub>}} एक समान अभिसरण अनुक्रम है {{math|[''a'', ''b'']}} सीमा के साथ {{mvar|f}}, फिर रीमैन सभी की पूर्णांकता {{math|''f''<sub>''n''</sub>}} का तात्पर्य रीमैन की पूर्णांकता से है {{mvar|f}}, और
<math display="block"> \int_{a}^{b} f\, dx = \int_a^b{\lim_{n \to \infty}{f_n}\, dx} = \lim_{n \to \infty} \int_{a}^{b} f_n\, dx.</math>
<math display="block"> \int_{a}^{b} f\, dx = \int_a^b{\lim_{n \to \infty}{f_n}\, dx} = \lim_{n \to \infty} \int_{a}^{b} f_n\, dx.</math>
हालांकि, [[लेबेस्ग मोनोटोन अभिसरण प्रमेय]] (एक मोनोटोन बिंदुवार सीमा पर) रीमैन इंटीग्रल के लिए नहीं है। इस प्रकार, रीमैन एकीकरण में, अभिन्न चिह्न के तहत सीमा लेना लेबेसेग एकीकरण की तुलना में तार्किक रूप से उचित ठहराना कहीं अधिक कठिन है।<ref>{{cite journal|author=Cunningham|first= Frederick Jr.|title=अभिन्न चिह्न के तहत सीमाएं लेना| journal = Mathematics Magazine | volume = 40 | year = 1967 |issue= 4| pages=179–186 | url=http://www.maa.org/programs/maa-awards/writing-awards/taking-limits-under-the-integral-sign | doi=10.2307/2688673|jstor= 2688673}}</ref>
चूँकि, [[लेबेस्ग मोनोटोन अभिसरण प्रमेय]] (एक मोनोटोन बिंदुवार सीमा पर) रीमैन इंटीग्रल के लिए नहीं है। इस प्रकार, रीमैन एकीकरण में, अभिन्न चिह्न के तहत सीमा लेना लेबेसेग एकीकरण की तुलना में तार्किक रूप से उचित ठहराना कहीं अधिक कठिन है।<ref>{{cite journal|author=Cunningham|first= Frederick Jr.|title=अभिन्न चिह्न के तहत सीमाएं लेना| journal = Mathematics Magazine | volume = 40 | year = 1967 |issue= 4| pages=179–186 | url=http://www.maa.org/programs/maa-awards/writing-awards/taking-limits-under-the-integral-sign | doi=10.2307/2688673|jstor= 2688673}}</ref>




Line 200: Line 200:
यह दर्शाता है कि असीम अंतरालों पर समाकलों के लिए, एक फलन का एकसमान अभिसरण इतना मजबूत नहीं है कि एक समाकल चिह्न के माध्यम से एक सीमा को पारित करने की अनुमति दे सके। यह रीमैन इंटीग्रल को अनुप्रयोगों में अव्यवहारिक बनाता है (भले ही रीमैन इंटीग्रल दोनों पक्षों को सही मान प्रदान करता है), क्योंकि सीमा और रीमैन इंटीग्रल के आदान-प्रदान के लिए कोई अन्य सामान्य मानदंड नहीं है, और इस तरह के मानदंड के बिना इंटीग्रल का अनुमान लगाना मुश्किल है उनके पूर्णांक का अनुमान लगाना।
यह दर्शाता है कि असीम अंतरालों पर समाकलों के लिए, एक फलन का एकसमान अभिसरण इतना मजबूत नहीं है कि एक समाकल चिह्न के माध्यम से एक सीमा को पारित करने की अनुमति दे सके। यह रीमैन इंटीग्रल को अनुप्रयोगों में अव्यवहारिक बनाता है (भले ही रीमैन इंटीग्रल दोनों पक्षों को सही मान प्रदान करता है), क्योंकि सीमा और रीमैन इंटीग्रल के आदान-प्रदान के लिए कोई अन्य सामान्य मानदंड नहीं है, और इस तरह के मानदंड के बिना इंटीग्रल का अनुमान लगाना मुश्किल है उनके पूर्णांक का अनुमान लगाना।


Lebesgue अभिन्न अंग के लिए रीमैन अभिन्न अंग को छोड़ना एक उत्तम मार्ग है। Lebesgue अभिन्न की परिभाषा स्पष्ट रूप से Riemann अभिन्न का सामान्यीकरण नहीं है, किन्तु यह साबित करना कठिन नहीं है कि प्रत्येक Riemann-integrable फलन Lebesgue-integrable है और दो इंटीग्रल के मान सहमत होते हैं जब भी वे दोनों परिभाषित होते हैं। इसके अलावा, एक समारोह {{mvar|f}} एक बंधे हुए अंतराल पर परिभाषित रीमैन-इंटीग्रेबल है यदि और केवल यदि यह घिरा हुआ है और बिंदुओं का सेट जहां {{mvar|f}} विच्छिन्न है लेबेस्गु का माप शून्य है।
लेबेस्ग अभिन्न अंग के लिए रीमैन अभिन्न अंग को छोड़ना एक उत्तम मार्ग है। लेबेस्ग अभिन्न की परिभाषा स्पष्ट रूप से Riemann अभिन्न का सामान्यीकरण नहीं है, किन्तु यह सिद्ध करना कठिन नहीं है कि प्रत्येक Riemann-integrable फलन लेबेस्ग-integrable है और दो इंटीग्रल के मान सहमत होते हैं जब भी वे दोनों परिभाषित होते हैं। इसके अतिरिक्त, एक समारोह {{mvar|f}} एक बंधे हुए अंतराल पर परिभाषित रीमैन-इंटीग्रेबल है यदि और केवल यदि यह घिरा हुआ है और बिंदुओं का सेट जहां {{mvar|f}} विच्छिन्न है लेबेस्गु का माप शून्य है।


एक इंटीग्रल जो वास्तव में रीमैन इंटीग्रल का प्रत्यक्ष सामान्यीकरण है, हेनस्टॉक-कुर्जवील इंटीग्रल है।
एक इंटीग्रल जो वास्तव में रीमैन इंटीग्रल का प्रत्यक्ष सामान्यीकरण है, हेनस्टॉक-कुर्जवील इंटीग्रल है।
Line 209: Line 209:


== एकीकरण के अन्य सिद्धांतों के साथ तुलना ==
== एकीकरण के अन्य सिद्धांतों के साथ तुलना ==
रीमैन इंटीग्रल कई सैद्धांतिक उद्देश्यों के लिए अनुपयुक्त है। रीमैन एकीकरण में कुछ तकनीकी कमियों को रीमैन-स्टील्टजेस इंटीग्रल के साथ दूर किया जा सकता है, और अधिकांश लेबेसेग इंटीग्रल के साथ गायब हो जाते हैं, हालांकि बाद में अनुचित इंटीग्रल का संतोषजनक उपचार नहीं होता है। [[गेज अभिन्न]] लेबेस्ग इंटीग्रल का एक सामान्यीकरण है जो तुरंत रीमैन इंटीग्रल के निकट है।
रीमैन इंटीग्रल कई सैद्धांतिक उद्देश्यों के लिए अनुपयुक्त है। रीमैन एकीकरण में कुछ तकनीकी कमियों को रीमैन-स्टील्टजेस इंटीग्रल के साथ दूर किया जा सकता है, और अधिकांश लेबेसेग इंटीग्रल के साथ गायब हो जाते हैं, चूँकि बाद में अनुचित इंटीग्रल का संतोषजनक उपचार नहीं होता है। [[गेज अभिन्न]] लेबेस्ग इंटीग्रल का एक सामान्यीकरण है जो तुरंत रीमैन इंटीग्रल के निकट है।
ये अधिक सामान्य सिद्धांत अधिक दांतेदार या अत्यधिक दोलन वाले कार्यों के एकीकरण की अनुमति देते हैं जिनके रीमैन इंटीग्रल उपस्थित नहीं हैं; किन्तु सिद्धांत वही मूल्य देते हैं जो रीमैन इंटीग्रल के अस्तित्व में होने पर होता है।
ये अधिक सामान्य सिद्धांत अधिक दांतेदार या अत्यधिक दोलन वाले कार्यों के एकीकरण की अनुमति देते हैं जिनके रीमैन इंटीग्रल उपस्थित नहीं हैं; किन्तु सिद्धांत वही मूल्य देते हैं जो रीमैन इंटीग्रल के अस्तित्व में होने पर होता है।



Revision as of 10:14, 30 March 2023

एक वक्र के अंतर्गत एक क्षेत्र के क्षेत्र के रूप में समाकल।
एक अंतराल के एक नियमित विभाजन पर रीमैन योग का एक क्रम। शीर्ष पर संख्या आयतों का कुल क्षेत्रफल है, जो फलन के अभिन्न अंग में परिवर्तित हो जाती है।
जैसा कि यहां दिखाया गया है, विभाजन को नियमित होने की आवश्यकता नहीं है। सन्निकटन तब तक काम करता है जब तक प्रत्येक उपखंड की चौड़ाई शून्य हो जाती है।

वास्तविक विश्लेषण के रूप में जानी जाने वाली गणित की शाखा में, बर्नहार्ड रीमैन द्वारा बनाई गई रीमैन अभिन्न , एक अंतराल (गणित) पर एक फलन (गणित) के इंटीग्रल की पहली कठोर परिभाषा थी। यह 1854 में गौटिंगेन विश्वविद्यालय में संकाय को प्रस्तुत किया गया था, किन्तु 1868 तक कोई पत्रिका में प्रकाशित नहीं हुआ था।[1] कई कार्यों और व्यावहारिक अनुप्रयोगों के लिए, रीमैन इंटीग्रल का मूल्यांकन कैलकुस के मौलिक प्रमेय द्वारा किया जा सकता है या संख्यात्मक एकीकरण द्वारा अनुमानित किया जा सकता है, या मोंटे कार्लो इंटीग्रेशन का उपयोग करके अनुकरण किया जा सकता है।

अवलोकन

मान लीजिए f अंतराल [a, b] पर एक गैर-ऋणात्मक वास्तविक संख्या-मूल्यवान फलन है, और S को फलन f के ग्राफ़ के नीचे और अंतराल [a, b] के ऊपर समतल का क्षेत्र होने दें। शीर्ष दाईं ओर आकृति देखें। इस क्षेत्र को सेट-बिल्डर संकेतन के रूप में व्यक्त किया जा सकता है

हम S के क्षेत्र को मापने में रुचि रखते है। एक बार जब हम इसे माप लेते हैं, तो हम क्षेत्र को सामान्य विधि से निरूपित करेंगे
रीमैन इंटीग्रल का मूल विचार S क्षेत्र के लिए बहुत ही सरल सन्निकटन का उपयोग करना है। उत्तम से उत्तम सन्निकटन लेकर हम कह सकते हैं कि सीमा में हमें वक्र के नीचे S का क्षेत्रफल मिलता है।

जब f(x) ऋणात्मक मान ले सकता है, तो समाकलन f और x-अक्ष के ग्राफ़ के बीच हस्ताक्षरित क्षेत्र के बराबर होता है: अर्थात, x-अक्ष के ऊपर का क्षेत्र x-अक्ष के नीचे के क्षेत्र को घटा देता है।

परिभाषा

एक अंतराल के विभाजन

एक अंतराल का एक विभाजन [a, b] फॉर्म की संख्याओं का एक परिमित अनुक्रम है

प्रत्येक [xi, xi + 1] को विभाजन का उप-अंतराल कहा जाता है। एक विभाजन के जाल या मानदंड को सबसे लंबे उप-अंतराल की लंबाई के रूप में परिभाषित किया गया है, अर्थात,
एक टैग किया गया विभाजन P(x, t) एक अंतराल का [a, b] प्रत्येक उप-अंतराल के अन्दर एक मानक बिंदु के विकल्प के साथ एक विभाजन है: अर्थात, संख्याएँ t0, ..., tn − 1 साथ ti ∈ [xi, xi + 1] प्रत्येक के लिए i. टैग किए गए विभाजन का जाल सामान्य विभाजन के समान होता है।

मान लीजिए कि दो विभाजन P(x, t) और Q(y, s) दोनों अंतराल [a, b] के विभाजन है। हम कहते हैं कि Q(y, s) P(x, t) का शोधन है यदि प्रत्येक पूर्णांक के लिए i, साथ i ∈ [0, n], एक पूर्णांक r(i) उपस्थित है जैसे कि xi = yr(i) और ऐसा कि कुछ j के लिए j ∈ [r(i), r(i + 1)] के साथ ti = sj। यही है, एक टैग किया गया विभाजन कुछ उप-अंतरालों को तोड़ता है और जहां आवश्यक हो, विभाजन की शुद्धता को परिष्कृत करते हुए मानक बिंदु जोड़ता है।

हम सभी टैग किए गए विभाजनों के सेट को यह कहकर निर्देशित सेट में बदल सकते हैं कि एक टैग किया गया विभाजन दूसरे से अधिक या उसके बराबर है यदि पूर्व उत्तरार्द्ध का परिशोधन है।

रीमैन राशि

मान लीजिये f अंतराल [a, b] पर परिभाषित एक वास्तविक-मूल्यवान फलन हो। रीमैन का योग f टैग किए गए विभाजन के संबंध में x0, ..., xn के साथ साथ t0, ..., tn − 1 है[2]

योग में प्रत्येक शब्द किसी दिए गए बिंदु पर फलन के मान और अंतराल की लंबाई का गुणनफल है। परिणामस्वरुप, प्रत्येक शब्द ऊंचाई f(ti) और चौड़ाई xi + 1xi के साथ एक आयत के (हस्ताक्षरित) क्षेत्र का प्रतिनिधित्व करता है। रीमैन योग सभी आयतों का (हस्ताक्षरित) क्षेत्र है।

बारीकी से संबंधित अवधारणाएँ निम्न और ऊपरी डार्बौक्स योग हैं। ये रीमैन सम्स के समान हैं, किन्तु टैग प्रत्येक उप-अंतराल पर f के निम्नतम और उच्चतम (क्रमशः) द्वारा प्रतिस्थापित किया जाता है:

यदि f निरंतर है, तो टैग न किए गए विभाजन के लिए निचले और ऊपरी डार्बौक्स योग उस विभाजन के रीमैन योग के बराबर होते हैं, जहां टैग को प्रत्येक उपअंतराल पर f का न्यूनतम या अधिकतम (क्रमशः) चुना जाता है। (जब f एक उपअंतराल पर विच्छिन्न होता है, तो ऐसा कोई टैग नहीं हो सकता है जो उस उपअंतराल पर न्यूनतम या उच्चतम को प्राप्त करता हो।) डार्बौक्स अभिन्न, जो रीमैन इंटीग्रल के समान है लेकिन डार्बौक्स रकम पर आधारित है, रीमैन इंटीग्रल के बराबर है।

रीमैन इंटीग्रल

अस्पष्ट रूप से बोलते हुए, रीमैन इंटीग्रल फलन के रीमैन सम की सीमा है क्योंकि विभाजन उत्तम हो जाते हैं। यदि सीमा उपस्थित है तो फलन को पूर्णांक (या अधिक विशेष रूप से रीमैन-पूर्णांक) कहा जाता है। विभाजन को पर्याप्त रूप से ठीक करके रीमैन योग को रीमैन इंटीग्रल के वांछित के रूप में बनाया जा सकता है।[3]

एक महत्वपूर्ण आवश्यकता यह है कि विभाजन का जाल छोटा और छोटा होना चाहिए, जिससे सीमा में यह शून्य हो। यदि ऐसा नहीं होता, तो हमें निश्चित उपअंतरालों पर फलन का अच्छा सन्निकटन नहीं मिल पाता है। वास्तव में, यह एक अभिन्न को परिभाषित करने के लिए पर्याप्त है। विशिष्ट होने के लिए, हम कहते हैं कि f का रीमैन इंटीग्रल s के बराबर है, यदि निम्नलिखित शर्त रखती है:

सभी ε > 0 के लिए, δ > 0 उपस्थित है जैसे कि किसी भी टैग किए गए विभाजन के लिए x0, ..., xn और t0, ..., tn − 1 जिसकी जाली δ से कम है, अपने पास है

दुर्भाग्य से, इस परिभाषा का उपयोग करना बहुत कठिन है। यह रीमैन इंटीग्रल की एक समतुल्य परिभाषा विकसित करने में सहायता करता हैं, जिसके साथ काम करना आसान है। हम इस परिभाषा को अब तुल्यता के प्रमाण के साथ विकसित करते हैं। हमारी नई परिभाषा कहती है कि f का रीमैन समाकलन s के बराबर है, यदि निम्नलिखित शर्तें रखती हैं:

सभी ε > 0 के लिए, टैग किए गए विभाजन y0, ..., ym और r0, ..., rm − 1 उपस्थित हैं जैसे कि किसी टैग किए गए विभाजन के लिए x0, ..., xn और t0, ..., tn − 1 जो y0, ..., ym और r0, ..., rm − 1 का परिशोधन है, हमारे पास है

इन दोनों का अर्थ है कि अंततः, किसी भी विभाजन के संबंध में f का रीमैन योग s के निकट फंस जाता है। चूंकि यह सच है, चाहे हम कितनी भी मांग करें कि रकम फंसी हुई है, हम कहते हैं कि रीमैन का योग s में परिवर्तित हो जाता है। ये परिभाषाएँ वास्तव में एक अधिक सामान्य अवधारणा, एक जाल (गणित) का एक विशेष स्थिति है।

जैसा कि हमने पहले कहा, ये दो परिभाषाएँ समतुल्य हैं। दूसरे शब्दों में, s पहली परिभाषा में काम करता है यदि और केवल यदि s दूसरी परिभाषा में काम करता है। यह दिखाने के लिए कि पहली परिभाषा का तात्पर्य दूसरी से है, एक ε से प्रारंभ करें, और एक δ चुनें जो शर्त को पूरा करता है। किसी भी टैग किए गए विभाजन को चुनें जिसका मेश δ से कम हो। इसका रीमैन योग ε के s अन्दर है, और इस विभाजन के किसी भी परिशोधन में मेश से भी δ से कम होगा, इसलिए शोधन का रीमैन योग भी ε के s के अन्दर होगा।

यह दिखाने के लिए कि दूसरी परिभाषा का तात्पर्य पहले से है, डार्बौक्स इंटीग्रल का उपयोग करना सबसे आसान है। सबसे पहले, दिखाता है कि दूसरी परिभाषा डार्बौक्स इंटीग्रल की परिभाषा के बराबर है; इसके लिए डार्बौक्स इंटीग्रल लेख देखें। अब हम दिखाएंगे कि एक डार्बौक्स इंटीग्रेबल फलन पहली परिभाषा को संतुष्ट करता है। ε का समाधान करना, और एक विभाजन y0, ..., ym चुनें, जिससे इस विभाजन के संबंध में निचले और ऊपरी डार्बौक्स योग डार्बौक्स इंटीग्रल के मान s के ε/2 के अंदर हों। मान लीजिये

यदि r = 0, तब f शून्य फलन है, जो स्पष्ट रूप से डार्बौक्स और रीमैन दोनों अभिन्न शून्य के साथ पूर्णांक है। इसलिए, हम यह मानेंगे कि r > 0. यदि m > 1, है तो हम δ ऐसा चुनते हैं
यदि m = 1, तो हम δ को एक से कम चुनते हैं। टैग किए गए विभाजन x0, ..., xn और t0, ..., tn − 1 को δ से छोटे जाल के साथ चुनें। हमें यह दिखाना होगा कि रीमैन का योग ε के s अन्दर है .

इसे देखने के लिए, एक अंतराल [xi, xi + 1] चुनें। यदि यह अंतराल कुछ [yj, yj + 1] के अन्दर समाहित है, तब

जहाँ mj और Mj क्रमशः, [yj, yj + 1] पर f का निम्नतम और सर्वोच्च है। यदि सभी अंतरालों में यह संपत्ति होती है, तो यह प्रमाण को समाप्त कर देगा, क्योंकि रीमैन राशि में प्रत्येक शब्द डार्बौक्स रकम में संबंधित शब्द से घिरा होगा, और हमने डार्बौक्स रकम को s के पास चुना है। यह वह स्थिति है जब m = 1, तो उस स्थिति में उपपत्ति समाप्त हो जाती है।

इसलिए हम यह मान सकते हैं कि m > 1 है। इस स्थिति में, यह संभव है कि [xi, xi + 1] में से कोई एक [yj, yj + 1]. में निहित नहीं है। इसके अतिरिक्त, यह y0, ..., ym. द्वारा निर्धारित दो अंतरालों में फैल सकता है। (यह तीन अंतरालों को पूरा नहीं कर सकता क्योंकि δ को किसी एक अंतराल की लंबाई से छोटा माना जाता है।) प्रतीकों में, ऐसा हो सकता है

(हम मान सकते हैं कि सभी असमानताएँ सख्त हैं क्योंकि अन्यथा हम पिछले स्थिति में δ की लंबाई पर अपनी धारणा से हैं।) यह अधिकतम m − 1 बार हो सकता है।

इस स्थिति को संभालने के लिए, हम विभाजन x0, ..., xn पर yj + 1 पर उप-विभाजित करके रीमैन योग और डार्बौक्स योग के बीच अंतर का अनुमान लगाएंगे। शब्द f(ti)(xi + 1xi) रीमैन में योग दो शब्दों में विभाजित होता है:

मान लीजिए, सामान्यता के नुकसान के बिना, कि ti ∈ [yj, yj + 1]. तब
इसलिए यह शब्द yj के लिए डार्बौक्स योग में संबंधित शब्द से घिरा है। दूसरे टर्म को बाउंड करने के लिए, ध्यान दें
यह इस प्रकार है कि, कुछ के लिए (वास्तव में कोई भी) t*
i
∈ [yj + 1, xi + 1]
,
चूंकि ऐसा अधिकतम m − 1 बार होता है, रीमैन योग और डार्बौक्स योग के बीच की दूरी अधिकतम ε/2 होती है। इसलिए, रीमैन योग और s के बीच की दूरी अधिक से अधिक ε है।

उदाहरण

मान लीजिये एक ऐसा फलन है जो प्रत्येक बिंदु पर मान 1 लेता है। [0, 1] पर f के किसी भी रीमैन योग का मान 1 होगा, इसलिए [0, 1] रीमैन पर f का रीमैन इंटीग्रल 1 है।

मान लीजिये में परिमेय संख्याओं का सूचक कार्य हो [0, 1]; वह है, परिमेय संख्याओं पर 1 और अपरिमेय संख्याओं पर 0 का मान लेता है। इस फलन में रीमैन इंटीग्रल नहीं है। इसे सिद्ध करने के लिए, हम दिखाएंगे कि टैग किए गए विभाजन कैसे बनाए जाते हैं, जिनके रीमैन योग स्वैच्छिक विधि से शून्य और एक दोनों के निकट हो जाते हैं।

प्रारंभ करने के लिए, मान लीजिये x0, ..., xn और t0, ..., tn − 1 को टैग किया गया विभाजन (प्रत्येक ti के बीच है xi और xi + 1) हो। ε > 0 को चुनें। ti को पहले ही चुना जा चुका है, और हम उन बिंदुओं पर f का मान नहीं बदल सकते। लेकिन अगर हम विभाजन को प्रत्येक ti के चारों ओर छोटे-छोटे टुकड़ों में काट दें, तो हम ti के प्रभाव को कम कर सकते हैं। फिर, नए टैग्स को ध्यान से चुनकर, हम रीमैन योग का मान शून्य या एक के ε के अन्दर कर सकते हैं।

हमारा पहला कदम विभाजन को काटना है। वहाँ हैं ti के n हैं, और हम चाहते हैं कि उनका कुल प्रभाव ε से कम हो। यदि हम उनमें से प्रत्येक को ε/n से कम लंबाई के अंतराल तक सीमित करते हैं, तो प्रत्येक ti का रीमैन योग में योगदान कम से कम 0 · ε/n और अधिकतम 1 · ε/n होगा। यह कुल योग कम से कम शून्य और अधिकतम ε बनाता है। तो मान लीजिये δ ε/n से कम धनात्मक संख्या हो। यदि ऐसा होता है कि दो ti एक दूसरे के δ के अन्दर हैं, तो δ छोटा चुनें। यदि ऐसा होता है कि कुछ ti कुछ xj के δ के अन्दर है, और ti xj के बराबर नहीं है, तो δ छोटा चुनें। चूँकि केवल बहुत सारे ti और xj हैं, हम हमेशा पर्याप्त रूप से छोटा δ चुन सकते हैं।

अब हम प्रत्येक ti के लिए विभाजन में दो कट जोड़ते हैं। कटौती में से एक tiδ/2 पर होगा, और दूसरा ti + δ/2 पर होगा। यदि इनमें से कोई एक अंतराल [0, 1] छोड़ता है, तो हम इसे छोड़ देते हैं। ti सबइंटरवल के अनुरूप टैग होगा

यदि ti सीधे xj, में से किसी एक के ऊपर है, तो हम ti को दोनों अंतरालों के लिए टैग होने देते हैं:
हमें अभी भी अन्य उपअंतरालों के लिए टैग चुनना है। हम उन्हें दो अलग-अलग विधियों से चुनेंगे। पहली विधि हमेशा एक परिमेय बिंदु चुनना है, जिससे रीमैन का योग जितना संभव हो उतना बड़ा हो। इससे रीमैन योग का मान कम से कम 1 − ε हो जाएगा। दूसरी विधि हमेशा एक अपरिमेय बिंदु चुनना है, जिससे रीमैन योग जितना संभव हो उतना छोटा हो। यह रीमैन योग का मान अधिकतम ε बना देगा।

चूंकि हमने एक मनमाना विभाजन से प्रारंभ किया और शून्य या एक के रूप में निकट के रूप में समाप्त हो गया, यह कहना गलत है कि हम अंततः किसी संख्या के पास फंस गए हैं s, इसलिए यह फलन रीमैन पूर्णांक नहीं है। चूँकि, यह लेबेस्ग पूर्णांक है। लेबेस्ग अर्थ में इसका अभिन्न शून्य है, क्योंकि फलन लगभग हर जगह शून्य है। किन्तु यह एक ऐसा तथ्य है जो रीमैन इंटीग्रल की पहुंच से परे है।

और भी बुरे उदाहरण हैं। एक रीमैन पूर्णांकीय फलन के समतुल्य (अर्थात्, लगभग हर जगह समान है) है, किन्तु ऐसे गैर-रीमैन पूर्णांकीय परिबद्ध कार्य हैं जो किसी भी रीमैन पूर्णांकीय फलन के समतुल्य नहीं हैं। उदाहरण के लिए, मान लीजिये C स्मिथ-वोल्तेरा-कैंटर सेट हो, और मान लीजिये IC को इसका सूचक फलन हो। क्योंकि C जॉर्डन माप नहीं है, IC रीमैन पूर्णांक नहीं है। इसके अतिरिक्त IC के समतुल्य कोई भी फ़ंक्शन g रीमैन पूर्णांक नहीं है: g, IC, की तरह, घने सेट पर शून्य होना चाहिए, इसलिए पिछले उदाहरण में, g के किसी भी रीमैन योग में एक शोधन है जो किसी भी धनात्मक संख्या के लिए ε के अन्दर है। किन्तु यदि रीमैन का अभिन्न अंग g उपस्थित है, तो इसे IC, के लेबेस्ग इंटीग्रल के बराबर होना चाहिए, जो कि 1/2 है। इसलिए, जी रीमैन पूर्णांक नहीं है।

समान अवधारणाएँ

रीमैन इंटीग्रल को डार्बौक्स इंटीग्रल के रूप में परिभाषित करना लोकप्रिय है। ऐसा इसलिए है क्योंकि डार्बौक्स इंटीग्रल तकनीकी रूप से सरल है और क्योंकि एक फलन रीमैन-इंटीग्रेबल है यदि और केवल यदि यह डार्बौक्स-इंटीग्रेबल है।

कुछ कलन पुस्तकें सामान्य टैग किए गए विभाजनों का उपयोग नहीं करती हैं, किन्तु स्वयं को विशिष्ट प्रकार के टैग किए गए विभाजनों तक सीमित रखती हैं। यदि विभाजन का प्रकार बहुत अधिक सीमित है, तो कुछ गैर-अभिन्नीकरणीय कार्य समाकलनीय प्रतीत हो सकते हैं।

एक लोकप्रिय प्रतिबंध बाएँ और दाएँ हाथ के रीमैन योगों का उपयोग है। बाएं हाथ के रीमैन योग में, ti = xi सभी के लिए i, और दाहिनी ओर रीमैन राशि में, ti = xi + 1 सभी के लिए i. अकेले यह प्रतिबंध कोई समस्या नहीं लाता है: हम किसी भी विभाजन को इस तरह से परिशोधित कर सकते हैं जो इसे प्रत्येक पर उप-विभाजित करके बाएं हाथ या दाएं हाथ का योग बनाता है। ti. अधिक औपचारिक भाषा में, सभी टैग किए गए विभाजनों के सेट में सभी बाएं हाथ के रीमैन योगों का सेट और सभी दाएं हाथ के रीमैन योगों का सेट कोफिनल (गणित) है।

एक अन्य लोकप्रिय प्रतिबंध एक अंतराल के नियमित उपविभागों का उपयोग है। उदाहरण के लिए, द nवें नियमित उपखंड [0, 1] अंतराल के होते हैं

दोबारा, अकेले यह प्रतिबंध कोई समस्या नहीं लगाता है, किन्तु इस तथ्य को देखने के लिए आवश्यक तर्क बाएं हाथ और दाएं हाथ के रीमैन रकम के स्थिति में अधिक कठिन है।

चूँकि, इन प्रतिबंधों का संयोजन, जिससे कोई नियमित रूप से विभाजित अंतराल पर केवल बाएं हाथ या दाएं हाथ के रीमैन रकम का उपयोग कर सके, खतरनाक है। यदि किसी फलन को पहले से ही रीमैन पूर्णांक के रूप में जाना जाता है, तो यह तकनीक समाकलन का सही मान देगी। किन्तु इन शर्तों के तहत सूचक कार्य करता है पर अभिन्न प्रतीत होगा [0, 1] एक के बराबर इंटीग्रल के साथ: हर सबइंटरवल का हर समापन बिंदु एक परिमेय संख्या होगी, इसलिए फलन का हमेशा परिमेय संख्याओं पर मूल्यांकन किया जाएगा, और इसलिए यह हमेशा एक के बराबर दिखाई देगा। इस परिभाषा के साथ समस्या तब स्पष्ट हो जाती है जब हम अभिन्न को दो भागों में विभाजित करने का प्रयास करते हैं। निम्नलिखित समीकरण धारण करना चाहिए:

यदि हम नियमित उपविभाजनों और बाएँ हाथ या दाएँ हाथ के रीमैन योग का उपयोग करते हैं, तो बाईं ओर के दो पद शून्य के बराबर हैं, क्योंकि 0 और 1 को छोड़कर प्रत्येक समापन बिंदु अपरिमेय होगा, किन्तु जैसा कि हमने दाईं ओर का शब्द देखा है बराबर 1.

जैसा कि ऊपर परिभाषित किया गया है, रीमैन इंटीग्रल एकीकृत करने से इनकार करके इस समस्या से बचा जाता है लेबेस्ग इंटीग्रल को इस तरह परिभाषित किया गया है कि ये सभी इंटीग्रल 0 हैं।

गुण

रैखिकता

रीमैन इंटीग्रल एक रैखिक परिवर्तन है; वह है, यदि f और g रीमैन-इंटीग्रेबल ऑन हैं [a, b] और α और β तब स्थिरांक हैं

क्योंकि किसी फलन का रीमैन इंटीग्रल एक संख्या है, यह रीमैन इंटीग्रल को रीमैन-इंटीग्रेबल फ़ंक्शंस के सदिश स्थल पर एक रैखिक रूप बनाता है।

अखंडता

कॉम्पैक्ट जगह पर एक परिबद्ध समारोह [a, b] रीमैन इंटीग्रेबल है यदि और केवल यदि यह लगभग हर जगह निरंतर कार्य करता है (लेबेस्ग्यू माप के अर्थ में इसकी असांतत्यता के वर्गीकरण का माप शून्य है)। यह हैLebesgue-Vitali theorem (रीमैन पूर्णांकीय कार्यों के लक्षण वर्णन)। यह 1907 में Giuseppe Vitali और Henri लेबेस्ग द्वारा स्वतंत्र रूप से सिद्ध किया गया है, और माप शून्य की धारणा का उपयोग करता है, किन्तु न तो लेबेस्ग के सामान्य माप या अभिन्न का उपयोग करता है।

अभिन्नता की स्थिति को विभिन्न विधियों से सिद्ध किया जा सकता है,[4][5][6][7] जिनमें से एक नीचे स्केच किया गया है।

विशेष रूप से, कोई भी सेट जो कि सबसे अधिक गणनीय सेट पर होता है, में लेबेसेग का माप शून्य होता है, और इस प्रकार एक परिबद्ध कार्य (कॉम्पैक्ट अंतराल पर) केवल परिमित या गणनीय रूप से कई विच्छिन्नताओं के साथ रीमैन पूर्णांक होता है। रीमैन इंटीग्रैबिलिटी ओवर के लिए एक और पर्याप्त मानदंड [a, b], किन्तु जिसमें माप की अवधारणा शामिल नहीं है, प्रत्येक बिंदु पर दाएं हाथ (या बाएं हाथ) की सीमा का अस्तित्व है [a, b) (या (a, b]).[10] एक बंधे हुए सेट का एक संकेतक फलन रीमैन-इंटीग्रेबल है यदि और केवल यदि सेट जॉर्डन उपाय है। रीमैन इंटीग्रल की व्याख्या माप सिद्धांत | माप-सैद्धांतिक रूप से जॉर्डन माप के संबंध में इंटीग्रल के रूप में की जा सकती है।

यदि वास्तविक-मूल्यवान फलन अंतराल पर मोनोटोन समारोह है [a, b] यह रीमैन इंटेग्रेबल है, क्योंकि इसकी अनिरंतरता का सेट सबसे अधिक गणना योग्य है, और इसलिए लेबेस्ग का माप शून्य है। यदि एक वास्तविक-मूल्यवान फलन on [a, b] रीमैन इंटीग्रेबल है, यह लेबेसेग इंटीग्रल है। अर्थात्, लेबेसेग-अभिन्नता की तुलना में रीमैन-इंटीग्रेबिलिटी एक मजबूत (अर्थात् संतुष्ट करने के लिए अधिक कठिन) स्थिति है। बातचीत पकड़ में नहीं आती; सभी लेबेस्ग-integrable कार्य रीमैन पूर्णांक नहीं हैं।

लेबेस्ग्यू-विटाली प्रमेय का अर्थ यह नहीं है कि सभी प्रकार की असंततताओं का बाधा पर समान भार है कि एक वास्तविक-मूल्यवान परिबद्ध फलन रीमैन पर समाकलित हो सकता है। [a, b]. वास्तव में, कुछ विच्छिन्नताओं की फलन की रीमैन इंटीग्रैबिलिटी पर बिल्कुल कोई भूमिका नहीं होती है - एक फलन के डिसकंटीन्युटीज़ के डिसकंटीन्युटीज़ के वर्गीकरण का एक परिणाम है।[citation needed]

यदि fn एक समान अभिसरण अनुक्रम है [a, b] सीमा के साथ f, फिर रीमैन सभी की पूर्णांकता fn का तात्पर्य रीमैन की पूर्णांकता से है f, और

चूँकि, लेबेस्ग मोनोटोन अभिसरण प्रमेय (एक मोनोटोन बिंदुवार सीमा पर) रीमैन इंटीग्रल के लिए नहीं है। इस प्रकार, रीमैन एकीकरण में, अभिन्न चिह्न के तहत सीमा लेना लेबेसेग एकीकरण की तुलना में तार्किक रूप से उचित ठहराना कहीं अधिक कठिन है।[11]


सामान्यीकरण

यूक्लिडियन वेक्टर अंतरिक्ष में मूल्यों के साथ कार्यों के लिए रीमैन इंटीग्रल का विस्तार करना आसान है किसी के लिए n. अभिन्न को घटक-वार परिभाषित किया गया है; दूसरे शब्दों में, यदि f = (f1, ..., fn) तब

विशेष रूप से, चूंकि सम्मिश्र संख्याएं एक वास्तविक सदिश स्थान हैं, यह जटिल मूल्यवान कार्यों के एकीकरण की अनुमति देता है।

रीमैन इंटीग्रल को केवल सीमित अंतरालों पर परिभाषित किया गया है, और यह असीमित अंतरालों तक अच्छी तरह से विस्तारित नहीं होता है। सबसे सरल संभव विस्तार इस तरह के एक अभिन्न अंग को एक सीमा के रूप में परिभाषित करना है, दूसरे शब्दों में, अनुचित अभिन्न के रूप में:

यह परिभाषा इसके साथ कुछ सूक्ष्मताएं रखती है, जैसे तथ्य यह है कि यह कॉची प्रिंसिपल वैल्यू की गणना करने के लिए हमेशा समतुल्य नहीं है
उदाहरण के लिए, साइन समारोह पर विचार करें f(x) = sgn(x) जो 0 पर है x = 0, 1 के लिए x > 0, और -1 के लिए x < 0. समरूपता से,
हमेशा, परवाह किए बिना a. किन्तु वास्तविक रेखा को भरने के लिए एकीकरण के अंतराल के विस्तार के कई विधि हैं, और अन्य विधि अलग-अलग परिणाम उत्पन्न कर सकते हैं; दूसरे शब्दों में, बहुभिन्नरूपी सीमा हमेशा उपस्थित नहीं होती है। हम गणना कर सकते हैं
सामान्य तौर पर, यह अनुचित रीमैन इंटीग्रल अपरिभाषित है। यहां तक ​​कि अंतराल के लिए वास्तविक रेखा तक पहुंचने का एक विधि मानकीकृत करना भी काम नहीं करता है क्योंकि यह परेशान करने वाले प्रतिकूल परिणामों की ओर जाता है। यदि हम सहमत हैं (उदाहरण के लिए) कि अनुचित अभिन्न हमेशा होना चाहिए
फिर अनुवाद का अभिन्न अंग f(x − 1) -2 है, इसलिए यह परिभाषा बदलाव के तहत अपरिवर्तनीय नहीं है, एक बेहद अवांछनीय संपत्ति है। वास्तव में, न केवल इस फलन में एक अनुचित रीमैन इंटीग्रल नहीं है, इसका लेबेसेग इंटीग्रल भी अपरिभाषित है (यह बराबर है) ∞ − ∞).

दुर्भाग्य से, अनुचित रीमैन इंटीग्रल पर्याप्त शक्तिशाली नहीं है। सबसे गंभीर समस्या यह है कि कार्यों की सीमा के साथ अनुचित रीमैन इंटीग्रल को कम्यूट करने के लिए कोई व्यापक रूप से लागू प्रमेय नहीं हैं। फूरियर श्रृंखला जैसे अनुप्रयोगों में, फलन के सन्निकटन के इंटीग्रल का उपयोग करके फलन के इंटीग्रल को अनुमानित करने में सक्षम होना महत्वपूर्ण है। उचित रीमैन इंटीग्रल के लिए, एक मानक प्रमेय बताता है कि यदि fn कार्यों का एक क्रम है जो समान रूप से अभिसरण करता है f कॉम्पैक्ट सेट पर [a, b], तब

वास्तविक रेखा जैसे गैर-कॉम्पैक्ट अंतराल पर, यह गलत है। उदाहरण के लिए, ले लो fn(x) होना n−1 पर [0, n] और शून्य कहीं और। सभी के लिए n अपने पास:
क्रम (fn) समान रूप से शून्य फलन में परिवर्तित हो जाता है, और स्पष्ट रूप से शून्य फलन का अभिन्न अंग शून्य होता है। फलस्वरूप,
यह दर्शाता है कि असीम अंतरालों पर समाकलों के लिए, एक फलन का एकसमान अभिसरण इतना मजबूत नहीं है कि एक समाकल चिह्न के माध्यम से एक सीमा को पारित करने की अनुमति दे सके। यह रीमैन इंटीग्रल को अनुप्रयोगों में अव्यवहारिक बनाता है (भले ही रीमैन इंटीग्रल दोनों पक्षों को सही मान प्रदान करता है), क्योंकि सीमा और रीमैन इंटीग्रल के आदान-प्रदान के लिए कोई अन्य सामान्य मानदंड नहीं है, और इस तरह के मानदंड के बिना इंटीग्रल का अनुमान लगाना मुश्किल है उनके पूर्णांक का अनुमान लगाना।

लेबेस्ग अभिन्न अंग के लिए रीमैन अभिन्न अंग को छोड़ना एक उत्तम मार्ग है। लेबेस्ग अभिन्न की परिभाषा स्पष्ट रूप से Riemann अभिन्न का सामान्यीकरण नहीं है, किन्तु यह सिद्ध करना कठिन नहीं है कि प्रत्येक Riemann-integrable फलन लेबेस्ग-integrable है और दो इंटीग्रल के मान सहमत होते हैं जब भी वे दोनों परिभाषित होते हैं। इसके अतिरिक्त, एक समारोह f एक बंधे हुए अंतराल पर परिभाषित रीमैन-इंटीग्रेबल है यदि और केवल यदि यह घिरा हुआ है और बिंदुओं का सेट जहां f विच्छिन्न है लेबेस्गु का माप शून्य है।

एक इंटीग्रल जो वास्तव में रीमैन इंटीग्रल का प्रत्यक्ष सामान्यीकरण है, हेनस्टॉक-कुर्जवील इंटीग्रल है।

रीमैन इंटीग्रल को सामान्य बनाने का एक अन्य विधि कारकों को बदलना है xk + 1xk रीमैन योग की परिभाषा में कुछ और; मोटे तौर पर बोलना, यह एकीकरण के अंतराल को लंबाई की एक अलग धारणा देता है। यह रिमेंन-स्टील्टजेस इंटीग्रल द्वारा लिया गया दृष्टिकोण है।

बहुभिन्नरूपी कैलकुलस में, रीमैन फ़्रॉम फ़ंक्शंस के लिए इंटीग्रल करता है एकाधिक अभिन्न हैं।

एकीकरण के अन्य सिद्धांतों के साथ तुलना

रीमैन इंटीग्रल कई सैद्धांतिक उद्देश्यों के लिए अनुपयुक्त है। रीमैन एकीकरण में कुछ तकनीकी कमियों को रीमैन-स्टील्टजेस इंटीग्रल के साथ दूर किया जा सकता है, और अधिकांश लेबेसेग इंटीग्रल के साथ गायब हो जाते हैं, चूँकि बाद में अनुचित इंटीग्रल का संतोषजनक उपचार नहीं होता है। गेज अभिन्न लेबेस्ग इंटीग्रल का एक सामान्यीकरण है जो तुरंत रीमैन इंटीग्रल के निकट है। ये अधिक सामान्य सिद्धांत अधिक दांतेदार या अत्यधिक दोलन वाले कार्यों के एकीकरण की अनुमति देते हैं जिनके रीमैन इंटीग्रल उपस्थित नहीं हैं; किन्तु सिद्धांत वही मूल्य देते हैं जो रीमैन इंटीग्रल के अस्तित्व में होने पर होता है।

शैक्षिक सेटिंग्स में, डार्बौक्स इंटीग्रल एक सरल परिभाषा प्रदान करता है जिसके साथ काम करना आसान होता है; इसका उपयोग रीमैन इंटीग्रल को पेश करने के लिए किया जा सकता है। डार्बौक्स इंटीग्रल को तब परिभाषित किया जाता है जब रीमैन इंटीग्रल होता है, और हमेशा एक ही परिणाम देता है। इसके विपरीत, गेज इंटीग्रल रीमैन इंटीग्रल का एक सरल किन्तु अधिक शक्तिशाली सामान्यीकरण है और इसने कुछ शिक्षकों को इस बात की वकालत करने के लिए प्रेरित किया है कि इसे प्रारंभिक कैलकुलस पाठ्यक्रमों में रीमैन इंटीग्रल को बदलना चाहिए।[12]


यह भी देखें

टिप्पणियाँ

  1. The Riemann integral was introduced in Bernhard Riemann's paper "Über die Darstellbarkeit einer Function durch eine trigonometrische Reihe" (On the representability of a function by a trigonometric series; i.e., when can a function be represented by a trigonometric series). This paper was submitted to the University of Göttingen in 1854 as Riemann's Habilitationsschrift (qualification to become an instructor). It was published in 1868 in Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen (Proceedings of the Royal Philosophical Society at Göttingen), vol. 13, pages 87-132. (Available online here.) For Riemann's definition of his integral, see section 4, "Über den Begriff eines bestimmten Integrals und den Umfang seiner Gültigkeit" (On the concept of a definite integral and the extent of its validity), pages 101–103.
  2. Krantz, Steven G. (2005). वास्तविक विश्लेषण और नींव. Boca Raton, Fla.: Chapman & Hall/CRC. p. 173. ISBN 1-58488-483-5. OCLC 56214595.
  3. Taylor, Michael E. (2006). सिद्धांत और एकीकरण को मापें. American Mathematical Society. p. 1. ISBN 9780821872468.
  4. Apostol 1974, pp. 169–172
  5. Brown, A. B. (September 1936). "रीमैन इंटिग्रेबिलिटी के लिए लेबेस्ग कंडीशन का प्रमाण". The American Mathematical Monthly. 43 (7): 396–398. doi:10.2307/2301737. ISSN 0002-9890. JSTOR 2301737.
  6. Basic real analysis, by Houshang H. Sohrab, section 7.3, Sets of Measure Zero and Lebesgue’s Integrability Condition, pp. 264–271
  7. Introduction to Real Analysis, updated April 2010, William F. Trench, 3.5 "A More Advanced Look at the Existence of the Proper Riemann Integral", pp. 171–177
  8. Lebesgue’s Condition, John Armstrong, December 15, 2009, The Unapologetic Mathematician
  9. Jordan Content Integrability Condition, John Armstrong, December 9, 2009, The Unapologetic Mathematician
  10. Metzler, R. C. (1971). "रीमैन इंटिग्रेबिलिटी पर". The American Mathematical Monthly. 78 (10): 1129–1131. doi:10.2307/2316325. ISSN 0002-9890. JSTOR 2316325.
  11. Cunningham, Frederick Jr. (1967). "अभिन्न चिह्न के तहत सीमाएं लेना". Mathematics Magazine. 40 (4): 179–186. doi:10.2307/2688673. JSTOR 2688673.
  12. "कैलकुलस बुक्स के लेखकों के लिए एक खुला पत्र". Retrieved 27 February 2014.


संदर्भ

  • Shilov, G. E., and Gurevich, B. L., 1978. Integral, Measure, and Derivative: A Unified Approach, Richard A. Silverman, trans. Dover Publications. ISBN 0-486-63519-8.
  • Apostol, Tom (1974), Mathematical Analysis, Addison-Wesley


बाहरी संबंध