सेंटीमीटर-ग्राम-सैकिण्ड इकाई प्रणाली: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 41: Line 41:
|access-date= 2012-04-08}}</ref>
|access-date= 2012-04-08}}</ref>


कई सीजीएस इकाइयों के आकार व्यावहारिक उद्देश्यों के लिए असुविधाजनक सिद्ध हुए। उदाहरण के लिए, कई दैनिक वस्तुएं सैकड़ों या हजारों सेंटीमीटर दीर्घ होती हैं, जैसे कि मनुष्य, कक्ष [[और]] भवन होते है। इस प्रकार सीजीएस प्रणाली को विज्ञान के क्षेत्र के बाह्य कभी भी व्यापक उपयोग नहीं मिला। 1880 के दशक में प्रारंभ हुआ और 20 वीं शताब्दी के मध्य तक, सीजीएस धीरे-धीरे एमकेएस (माप-किलोग्राम-सेकंड) प्रणाली द्वारा वैज्ञानिक उद्देश्यों के लिए अंतरराष्ट्रीय स्तर पर स्थानांतरित हो गया, जो परिणामस्वरूप आधुनिक एसआई मानक में विकसित हुआ।
कई सीजीएस इकाइयों के आकार प्रायोगिक उद्देश्यों के लिए असुविधाजनक सिद्ध हुए। उदाहरण के लिए, कई दैनिक वस्तुएं सैकड़ों या हजारों सेंटीमीटर दीर्घ होती हैं, जैसे कि मनुष्य, कक्ष [[और]] भवन होते है। इस प्रकार सीजीएस प्रणाली को विज्ञान के क्षेत्र के बाह्य कभी भी व्यापक उपयोग नहीं मिला। 1880 के दशक में प्रारंभ हुआ और 20 वीं शताब्दी के मध्य तक, सीजीएस धीरे-धीरे एमकेएस (माप-किलोग्राम-सेकंड) प्रणाली द्वारा वैज्ञानिक उद्देश्यों के लिए अंतरराष्ट्रीय स्तर पर स्थानांतरित हो गया, जो परिणामस्वरूप आधुनिक एसआई मानक में विकसित हुआ।


1940 के दशक में एमकेएस मानक और 1960 के दशक में एसआई मानक के अंतर्राष्ट्रीय स्वीकरण के पश्चात से, सीजीएस इकाइयों के प्रावैधिक उपयोग में धीरे-धीरे विश्व भर में गिरावट आई है। एसआई इकाइयाँ मुख्य रूप से अभियान्त्रिकी अनुप्रयोगों और भौतिकी शिक्षाओं में उपयोग किया जाती हैं, जबकि गॉसियन सीजीएस इकाइयों सामान्यतः सैद्धांतिक भौतिकी में किया जाता हैं, जो सूक्ष्म प्रणालियों, सापेक्षिक विद्युतगतिकी और [[खगोल भौतिकी]] का वर्णन करता हैं।<ref name="Jack" /><ref>{{cite web |last1=Weisstein |first1=Eric W. |title=तटरक्षक पोत|url=https://scienceworld.wolfram.com/physics/cgs.html |website=Eric Weisstein's World of Physics |language=en}}</ref> सीजीएस इकाइयां आज अधिकांश वैज्ञानिक पत्रिकाओं,{{ref needed|date=फ़रवरी 2021}} पाठ्यपुस्तक प्रकाशकों,{{ref needed|date=फ़रवरी 2021}} या मानक निकायों की गृह शैलियों द्वारा स्वीकार नहीं की जाती हैं, हालांकि वे सामान्यतः खगोलीय पत्रिकाओं जैसे [[द एस्ट्रोफिजिकल जर्नल|खगोलभौतिकी पत्रिकाओं]] में उपयोग की जाती हैं। सीजीएस इकाइयों का निरंतर उपयोग चुंबकत्व और संबंधित क्षेत्रों में प्रचलित है क्योंकि B और H क्षेत्रों में मुक्त स्थानों में समान इकाइयाँ हैं{{citation needed|reason=बी और एच की इकाइयों की समानता एक प्राथमिक प्रेरक होने की संभावना नहीं है, जबकि सरासर जड़ता (किसी के प्रशिक्षण से चिपके रहना) एक प्रमुख कारक होने की संभावना है।|date=दिसम्बर 2022}} और प्रकाशित मापों को सीजीएस से एमकेएस में परिवर्तित करते समय अस्पष्टता की संभावना है।<ref>{{cite journal|last1=Bennett|first1=L. H.|last2=Page|first2=C. H.|last3=Swartzendruber|first3=L. J.|title=चुंबकत्व में इकाइयों पर टिप्पणियाँ|journal=Journal of Research of the National Bureau of Standards|date=January–February 1978|volume=83|issue=1|pages=9&ndash;12|pmid=34565970| doi=10.6028/jres.083.002|pmc=6752159|doi-access=free}}</ref>
1940 के दशक में एमकेएस मानक और 1960 के दशक में एसआई मानक के अंतर्राष्ट्रीय स्वीकरण के पश्चात से, सीजीएस इकाइयों के प्रावैधिक उपयोग में धीरे-धीरे विश्व भर में गिरावट आई है। एसआई इकाइयाँ मुख्य रूप से अभियान्त्रिकी अनुप्रयोगों और भौतिकी शिक्षाओं में उपयोग किया जाती हैं, जबकि गॉसियन सीजीएस इकाइयों सामान्यतः सैद्धांतिक भौतिकी में किया जाता हैं, जो सूक्ष्म प्रणालियों, सापेक्षिक विद्युतगतिकी और [[खगोल भौतिकी]] का वर्णन करता हैं।<ref name="Jack" /><ref>{{cite web |last1=Weisstein |first1=Eric W. |title=तटरक्षक पोत|url=https://scienceworld.wolfram.com/physics/cgs.html |website=Eric Weisstein's World of Physics |language=en}}</ref> सीजीएस इकाइयां आज अधिकांश वैज्ञानिक पत्रिकाओं,{{ref needed|date=फ़रवरी 2021}} पाठ्यपुस्तक प्रकाशकों,{{ref needed|date=फ़रवरी 2021}} या मानक निकायों की गृह शैलियों द्वारा स्वीकार नहीं की जाती हैं, हालांकि वे सामान्यतः खगोलीय पत्रिकाओं जैसे [[द एस्ट्रोफिजिकल जर्नल|खगोलभौतिकी पत्रिकाओं]] में उपयोग की जाती हैं। सीजीएस इकाइयों का निरंतर उपयोग चुंबकत्व और संबंधित क्षेत्रों में प्रचलित है क्योंकि B और H क्षेत्रों में मुक्त स्थानों में समान इकाइयाँ हैं{{citation needed|reason=बी और एच की इकाइयों की समानता एक प्राथमिक प्रेरक होने की संभावना नहीं है, जबकि सरासर जड़ता (किसी के प्रशिक्षण से चिपके रहना) एक प्रमुख कारक होने की संभावना है।|date=दिसम्बर 2022}} और प्रकाशित मापों को सीजीएस से एमकेएस में परिवर्तित करते समय अस्पष्टता की संभावना है।<ref>{{cite journal|last1=Bennett|first1=L. H.|last2=Page|first2=C. H.|last3=Swartzendruber|first3=L. J.|title=चुंबकत्व में इकाइयों पर टिप्पणियाँ|journal=Journal of Research of the National Bureau of Standards|date=January–February 1978|volume=83|issue=1|pages=9&ndash;12|pmid=34565970| doi=10.6028/jres.083.002|pmc=6752159|doi-access=free}}</ref>
Line 50: Line 50:
यांत्रिकी में, सीजीएस और एसआई प्रणालियों में मात्राओं को समान रूप से परिभाषित किया जाता है। दो प्रणालियाँ केवल तीन मूल मात्रकों (क्रमशः सेंटीमीटर विपरीत माप और ग्राम विपरीत किलोग्राम) के पैमानों में भिन्न होती हैं, दोनों प्रणालियों में तृतीय इकाई (सेकंड) समान होती है।
यांत्रिकी में, सीजीएस और एसआई प्रणालियों में मात्राओं को समान रूप से परिभाषित किया जाता है। दो प्रणालियाँ केवल तीन मूल मात्रकों (क्रमशः सेंटीमीटर विपरीत माप और ग्राम विपरीत किलोग्राम) के पैमानों में भिन्न होती हैं, दोनों प्रणालियों में तृतीय इकाई (सेकंड) समान होती है।


सीजीएस और एसआई में यांत्रिकी की मूल मात्रकों के मध्य सीधा पत्राचार होता है। चूँकि यांत्रिकी के नियमों को व्यक्त करने वाले सूत्र दोनों प्रणालियों में समान हैं और चूंकि दोनों प्रणालियाँ सुसंगत हैं, मूल मात्रकों के संदर्भ में सभी सुसंगत व्युत्पन्न इकाइयों की परिभाषाएँ दोनों प्रणालियों में समान हैं और व्युत्पन्न इकाइयों का एक स्पष्ट पत्राचार है:
सीजीएस और एसआई में यांत्रिकी की मूल मात्रकों के मध्य सीधा सामंजस्य होता है। चूँकि यांत्रिकी के नियमों को व्यक्त करने वाले सूत्र दोनों प्रणालियों में समान हैं और चूंकि दोनों प्रणालियाँ सुसंगत हैं, मूल मात्रकों के संदर्भ में सभी सुसंगत व्युत्पन्न इकाइयों की परिभाषाएँ दोनों प्रणालियों में समान हैं और व्युत्पन्न इकाइयों का एक स्पष्ट सामंजस्य है:


*<math>v = \frac{dx}{dt}</math>([[वेग]] की परिभाषा)
*<math>v = \frac{dx}{dt}</math>([[वेग]] की परिभाषा)
Line 117: Line 117:
सीजीएस और एसआई प्रणालियों में विद्युत [[चुंबकत्व]] इकाइयों से संबंधित रूपांतरण कारकों को विद्युत चुंबकत्व के भौतिक नियमों को व्यक्त करने वाले सूत्रों में अंतर द्वारा और अधिक जटिल बना दिया जाता है, जैसा कि इकाइयों की प्रत्येक प्रणाली द्वारा, विशेष रूप से इन सूत्रों में दिखाई देने वाले स्थिरांक की प्रकृति में ग्रहण किया जाता है। यह दो प्रणालियों के निर्माण की विधियों में मूलभूत अंतर को दर्शाता है:
सीजीएस और एसआई प्रणालियों में विद्युत [[चुंबकत्व]] इकाइयों से संबंधित रूपांतरण कारकों को विद्युत चुंबकत्व के भौतिक नियमों को व्यक्त करने वाले सूत्रों में अंतर द्वारा और अधिक जटिल बना दिया जाता है, जैसा कि इकाइयों की प्रत्येक प्रणाली द्वारा, विशेष रूप से इन सूत्रों में दिखाई देने वाले स्थिरांक की प्रकृति में ग्रहण किया जाता है। यह दो प्रणालियों के निर्माण की विधियों में मूलभूत अंतर को दर्शाता है:
* एसआई में, [[विद्युत प्रवाह]] की इकाई, [[ एम्पेयर |एम्पेयर]] (A) को ऐतिहासिक रूप से इस तरह परिभाषित किया गया था कि चुंबकीय बल दो अनंततः लंबे, पतले, समानांतर तारों से 1 मीटर की दूरी पर और 1 एम्पियर की धारा ले जाने के कारण ठीक {{val|2|e=-7|u=[[newton (unit)|N]]/[[metre|m]]}} होते है। इस परिभाषा के परिणामस्वरूप आगे के अनुभागों में वर्णित सीजीएस-ईएमयू प्रणाली के साथ सभी एसआई विद्युत चुम्बकीय इकाइयां संख्यात्मक रूप से सुसंगत (10 के कुछ पूर्णांक घातो के कारकों के अधीन) होती हैं। एम्पीयर एसआई प्रणाली की एक आधार इकाई है, जिसकी स्थिति मीटर, किलोग्राम और सेकंड के समान है। इस प्रकार मीटर और न्यूटन के साथ एम्पीयर की परिभाषा में संबंध की अवहेलना की जाती है और एम्पीयर को अन्य मूल मात्रकों के किसी भी संयोजन के विमीय समकक्ष के रूप में नहीं माना जाता है। परिणामस्वरूप, एसआई में विद्युत चुम्बकीय नियमों के विद्युत चुम्बकीय इकाइयों को शूद्ध गतिक इकाइयों से संबंधित करने के लिए आनुपातिकता के एक अतिरिक्त स्थिरांक ([[वैक्यूम पारगम्यता|निर्वात पारगम्यता]] देखें) की आवश्यकता होती है। (आनुपातिकता का यह स्थिरांक एम्पीयर की उपरोक्त परिभाषा से स्पष्टतः व्युत्पन्न होता है)। अन्य सभी विद्युत और चुंबकीय इकाइयाँ सबसे मूलभूत सामान्य परिभाषाओं का उपयोग करते हुए इन चार मूल मात्रकों से प्राप्त होती हैं: उदाहरण के लिए, आवेश (भौतिकी) q को धारा I को समय ''t'' से गुणा करके परिभाषित किया गया है। <math display="block">q = I \, t,</math> जिसके परिणामस्वरूप विद्युत आवेश की इकाई, [[कूलम्ब|कूलॉम]] (C) को 1 C = 1 A⋅s के रूप में परिभाषित किया जाता है।
* एसआई में, [[विद्युत प्रवाह]] की इकाई, [[ एम्पेयर |एम्पेयर]] (A) को ऐतिहासिक रूप से इस तरह परिभाषित किया गया था कि चुंबकीय बल दो अनंततः लंबे, पतले, समानांतर तारों से 1 मीटर की दूरी पर और 1 एम्पियर की धारा ले जाने के कारण ठीक {{val|2|e=-7|u=[[newton (unit)|N]]/[[metre|m]]}} होते है। इस परिभाषा के परिणामस्वरूप आगे के अनुभागों में वर्णित सीजीएस-ईएमयू प्रणाली के साथ सभी एसआई विद्युत चुम्बकीय इकाइयां संख्यात्मक रूप से सुसंगत (10 के कुछ पूर्णांक घातो के कारकों के अधीन) होती हैं। एम्पीयर एसआई प्रणाली की एक आधार इकाई है, जिसकी स्थिति मीटर, किलोग्राम और सेकंड के समान है। इस प्रकार मीटर और न्यूटन के साथ एम्पीयर की परिभाषा में संबंध की अवहेलना की जाती है और एम्पीयर को अन्य मूल मात्रकों के किसी भी संयोजन के विमीय समकक्ष के रूप में नहीं माना जाता है। परिणामस्वरूप, एसआई में विद्युत चुम्बकीय नियमों के विद्युत चुम्बकीय इकाइयों को शूद्ध गतिक इकाइयों से संबंधित करने के लिए आनुपातिकता के एक अतिरिक्त स्थिरांक ([[वैक्यूम पारगम्यता|निर्वात पारगम्यता]] देखें) की आवश्यकता होती है। (आनुपातिकता का यह स्थिरांक एम्पीयर की उपरोक्त परिभाषा से स्पष्टतः व्युत्पन्न होता है)। अन्य सभी विद्युत और चुंबकीय इकाइयाँ सबसे मूलभूत सामान्य परिभाषाओं का उपयोग करते हुए इन चार मूल मात्रकों से प्राप्त होती हैं: उदाहरण के लिए, आवेश (भौतिकी) q को धारा I को समय ''t'' से गुणा करके परिभाषित किया गया है। <math display="block">q = I \, t,</math> जिसके परिणामस्वरूप विद्युत आवेश की इकाई, [[कूलम्ब|कूलॉम]] (C) को 1 C = 1 A⋅s के रूप में परिभाषित किया जाता है।
* सीजीएस प्रणाली प्रकार नई आधार मात्राओं और इकाइयों को प्रस्तुत करने से परिहार करता है और इसके स्थान पर भौतिक नियमों को व्यक्त करके सभी विद्युत चुम्बकीय मात्राओं को परिभाषित करता है जो विद्युत चुम्बकीय घटनाओं को केवल आयाम रहित स्थिरांक के साथ यांत्रिकी से संबंधित करता है और इसलिए इन मात्राओं के लिए सभी इकाइयां स्पष्टतः सेंटीमीटर, ग्राम और सेकंड से प्राप्त होती हैं।
* सीजीएस प्रणाली प्रकार नई आधार मात्राओं और इकाइयों को प्रस्तुत करने से परिवर्जन करता है और इसके स्थान पर भौतिक नियमों को व्यक्त करके सभी विद्युत चुम्बकीय मात्राओं को परिभाषित करता है जो विद्युत चुम्बकीय घटनाओं को केवल आयाम रहित स्थिरांक के साथ यांत्रिकी से संबंधित करता है और इसलिए इन मात्राओं के लिए सभी इकाइयां स्पष्टतः सेंटीमीटर, ग्राम और सेकंड से प्राप्त होती हैं।


=== विद्युत चुंबकत्व में सीजीएस इकाइयों की वैकल्पिक व्युत्पत्ति ===
=== विद्युत चुंबकत्व में सीजीएस इकाइयों की वैकल्पिक व्युत्पत्ति ===
Line 142: Line 142:
* द्वितीय नियम परिमित लंबाई dl की विद्युत धारा ''I'' और सदिश '''r''' द्वारा विस्थापित बिंदु पर स्थिर चुंबकीय क्षेत्र B के निर्माण का वर्णन करता है, जिसे बायोट-सावर्ट नियम के रूप में जाना जाता है:
* द्वितीय नियम परिमित लंबाई dl की विद्युत धारा ''I'' और सदिश '''r''' द्वारा विस्थापित बिंदु पर स्थिर चुंबकीय क्षेत्र B के निर्माण का वर्णन करता है, जिसे बायोट-सावर्ट नियम के रूप में जाना जाता है:
:: <math> d\mathbf{B} = \alpha_{\rm B}\frac{I d\mathbf{l} \times \mathbf{\hat r}}{r^2}\;,</math> जहां ''r'' और <math>\mathbf{\hat r}</math> क्रमशः सदिश r की दिशा में  लंबाई और इकाई सदिश हैं।
:: <math> d\mathbf{B} = \alpha_{\rm B}\frac{I d\mathbf{l} \times \mathbf{\hat r}}{r^2}\;,</math> जहां ''r'' और <math>\mathbf{\hat r}</math> क्रमशः सदिश r की दिशा में  लंबाई और इकाई सदिश हैं।
उपरोक्त एम्पीयर के बल नियम को प्राप्त करने के लिए इन दो नियमों का उपयोग किया जा सकता है, जिसके परिणामस्वरूप संबंध है: <math>k_{\rm A} = \alpha_{\rm L} \cdot \alpha_{\rm B}\;</math>. इसलिए, यदि आवेश की इकाई एम्पीयर के बल नियम पर आधारित है जैसे कि <math>k_{\rm A} = 1</math>, समायोजन द्वारा चुंबकीय क्षेत्र की इकाई प्राप्त करना स्वाभाविक है <math>\alpha_{\rm L} = \alpha_{\rm B}=1\;</math>. हालाँकि, यदि ऐसा नहीं है, तो एक विकल्प बनाना होगा कि ऊपर दिए गए दो नियमों में से कौन सा [[चुंबकीय क्षेत्र]] की इकाई को प्राप्त करने के लिए अधिक सुविधाजनक आधार है।
उपरोक्त एम्पीयर के बल नियम को प्राप्त करने के लिए इन दो नियमों का उपयोग किया जा सकता है, जिसके परिणामस्वरूप संबंध: <math>k_{\rm A} = \alpha_{\rm L} \cdot \alpha_{\rm B}\;</math>है। इसलिए, यदि आवेश की इकाई एम्पीयर के बल नियम पर आधारित है जैसे कि <math>k_{\rm A} = 1</math>, समायोजन <math>\alpha_{\rm L} = \alpha_{\rm B}=1\;</math>द्वारा चुंबकीय क्षेत्र की इकाई प्राप्त करना स्वाभाविक है। हालाँकि, यदि ऐसा नहीं है, तो एक विकल्प निर्मित करना होगा कि ऊपर दिए गए दो नियमों में से कौन सा [[चुंबकीय क्षेत्र]] की इकाई को प्राप्त करने के लिए अधिक सुविधाजनक आधार है।


इसके अतिरिक्त, अगर हम निर्वात के अतिरिक्त किसी अन्य माध्यम में [[विद्युत विस्थापन क्षेत्र]] डी और चुंबकीय क्षेत्र एच का वर्णन करना चाहते हैं, तो हमें स्थिरांक '' ε '' को भी परिभाषित करना होगा।<sub>0</sub> और μ<sub>0</sub>, जो क्रमशः निर्वात पारगम्यता और [[चुंबकीय स्थिरांक]] हैं। <!-- इन दो मूल्यों से संबंधित है <math>\sqrt{\mu_0\epsilon_0}=\alpha_{\rm B} / c</math>. //इस कथन को हटा दिया - सिद्ध करना असम्भव प्रतीत होता है ! --> तो हमारे पास हैं<ref name=Jack/>(सामान्यतः) <math>\mathbf{D} = \epsilon_0 \mathbf{E} + \lambda \mathbf{P}</math> और <math>\mathbf{H} = \mathbf{B} / \mu_0 - \lambda^\prime \mathbf{M}</math>, जहां पी और एम [[ध्रुवीकरण घनत्व]] और चुंबकीयकरण सदिश हैं। '''P''' और  '''M''' की इकाइयां सामान्यतः इतनी चयन की जाती हैं कि कारक '' λ '' और '' λ '' '' युक्तिकरण स्थिरांक केसमान होते हैं <math>4 \pi k_{\rm C} \epsilon_0</math> और <math>4 \pi \alpha_{\rm B} / (\mu_0 \alpha_{\rm L})</math>, क्रमश। यदि युक्तिकरण स्थिरांक समान हैं, तब <math>c^2 = 1 / (\epsilon_0 \mu_0 \alpha_{\rm L}^2)</math>. यदि वे एक के समान हैं, तो प्रणाली को युक्तिसंगत कहा जाता है:<ref>{{cite book
इसके अतिरिक्त, यदि हम [[विद्युत विस्थापन क्षेत्र]] '''D''' और चुंबकीय क्षेत्र '''H''' को निर्वात के अतिरिक्त किसी अन्य माध्यम में वर्णित करना चाहते हैं, तो हमें स्थिरांक ''ε<sub>0</sub> और μ<sub>0</sub>'' को भी परिभाषित करने की आवश्यकता है, जो क्रमशः निर्वात पारगम्यता और [[चुंबकीय स्थिरांक|पारगम्यता]] हैं। <!-- इन दो मूल्यों से संबंधित है <math>\sqrt{\mu_0\epsilon_0}=\alpha_{\rm B} / c</math>. //इस कथन को हटा दिया - सिद्ध करना असम्भव प्रतीत होता है ! --> तो हमारे पास हैं<ref name=Jack/>(सामान्यतः) <math>\mathbf{D} = \epsilon_0 \mathbf{E} + \lambda \mathbf{P}</math> और <math>\mathbf{H} = \mathbf{B} / \mu_0 - \lambda^\prime \mathbf{M}</math>, जहां '''P''' और '''M''' [[ध्रुवीकरण घनत्व]] और चुंबकीयकरण सदिश हैं। '''P''' और  '''M''' की इकाइयां सामान्यतः इतनी चयन की जाती हैं कि कारक ''λ ''और ''λ′ युक्तिकरण स्थिरांक क्रमशः <math>4 \pi k_{\rm C} \epsilon_0</math> और <math>4 \pi \alpha_{\rm B} / (\mu_0 \alpha_{\rm L})</math>के समान होते हैं। यदि युक्तिकरण स्थिरांक समान हैं, तब <math>c^2 = 1 / (\epsilon_0 \mu_0 \alpha_{\rm L}^2)</math> हैं।  यदि वे एक के समान हैं, तो प्रणाली को युक्तिसंगत कहा जाता है:<ref>{{cite book
| author = Cardarelli, F.
| author = Cardarelli, F.
| year = 2004
| year = 2004
Line 154: Line 154:
| url= https://archive.org/details/encyclopaediaofs0000card
| url= https://archive.org/details/encyclopaediaofs0000card
| url-access = registration
| url-access = registration
}}</ref> [[गोलाकार ज्यामिति]] की प्रणालियों के नियमों में 4π के गुणक होते हैं (उदाहरण के लिए, बिंदु आवेश), बेलनाकार ज्यामिति के कारक - 2π के कारक (उदाहरण के लिए, [[तार]]), और तलीय ज्यामिति के नियमों में π का ​​कोई कारक नहीं होता है (उदाहरण के लिए, समानांतर- प्लेट [[ संधारित्र ]])। हालांकि, मूल सीजीएस प्रणाली ने λ = λ' = 4π, या, समकक्ष रूप से उपयोग किया, <math>k_{\rm C} \epsilon_0 = \alpha_{\rm B} / (\mu_0 \alpha_{\rm L}) = 1</math>. इसलिए, सीजीएस (नीचे वर्णित) के गॉसियन, ईएसयू और ईएमयू उप प्रणाली को युक्तिसंगत नहीं बनाया गया है।''
}}</ref> [[गोलाकार ज्यामिति|गोलीय ज्यामिति]] की प्रणालियों के नियमों में 4π के गुणक होते हैं (उदाहरण के लिए, बिंदु आवेश), बेलनाकार ज्यामिति के - 2π के गुणक (उदाहरण के लिए, [[तार]]) और तलीय ज्यामिति के नियमों में π का ​​कोई गुणक नहीं होता है (उदाहरण के लिए, समानांतर- पट्ट [[ संधारित्र |संधारित्र]] )। हालांकि, मूल सीजीएस प्रणाली ने λ = λ' = 4π, या समतुल्य रूप <math>k_{\rm C} \epsilon_0 = \alpha_{\rm B} / (\mu_0 \alpha_{\rm L}) = 1</math> से उपयोग किया। इसलिए, सीजीएस (नीचे वर्णित) के गॉसियन, ईएसयू और ईएमयू उप प्रणाली को युक्तिसंगत नहीं बनाया गया है।''


===विद्युत चुंबकत्व के लिए सीजीएस प्रणाली के विभिन्न विस्तार ===
===विद्युत चुंबकत्व के लिए सीजीएस प्रणाली के विभिन्न विस्तार ===
नीचे दी गई तालिका कुछ सामान्य सीजीएस उपप्रणालियों में उपयोग किए गए उपरोक्त स्थिरांकों के मान दर्शाती है:
नीचे दी गई तालिका कुछ सामान्य सीजीएस उप प्रणालियों में उपयोग किए गए उपरोक्त स्थिरांकों के मान दर्शाती है:


{| class="wikitable" style="text-align: center;"
{| class="wikitable" style="text-align: center;"
Line 173: Line 173:
| [[SI|एसआई]] || <math>\frac{1}{4\pi\epsilon_0}</math> || <math>\frac{\mu_0}{4\pi}</math> || <math>\epsilon_0</math>||<math>\mu_0</math>||<math>\frac{\mu_0}{4\pi}</math> || 1 || 1 || 1
| [[SI|एसआई]] || <math>\frac{1}{4\pi\epsilon_0}</math> || <math>\frac{\mu_0}{4\pi}</math> || <math>\epsilon_0</math>||<math>\mu_0</math>||<math>\frac{\mu_0}{4\pi}</math> || 1 || 1 || 1
|}
|}
इसके अतिरिक्त, जैक्सन में उपरोक्त स्थिरांक के निम्नलिखित पत्राचार पर ध्यान दें<ref name=Jack/>और लेउंग:<ref name=leu/>::<math>k_{\rm C}=k_1=k_{\rm E}</math>
इसके अतिरिक्त, जैक्सन और लेउंग में उपरोक्त स्थिरांक के निम्नलिखित सामंजस्य पर ध्यान दें<ref name=Jack/>:<ref name=leu/>
::<math>k_{\rm C}=k_1=k_{\rm E}</math>
::<math>\alpha_{\rm B}=\alpha\cdot k_2=k_{\rm B}</math>
::<math>\alpha_{\rm B}=\alpha\cdot k_2=k_{\rm B}</math>
::<math>k_{\rm A}=k_2=k_{\rm E}/c^2</math>
::<math>k_{\rm A}=k_2=k_{\rm E}/c^2</math>
::<math>\alpha_{\rm L}=k_3=k_{\rm F}</math>
::<math>\alpha_{\rm L}=k_3=k_{\rm F}</math>
इन प्रकारों में से, केवल गाऊसी और हीविसाइड-लोरेन्ट्स प्रणाली में <math>\alpha_{\rm L}</math> के समान <math>c^{-1}</math> 1 के बजाय होती। परिणामस्वरूप, सदिश <math>\vec E</math> और <math>\vec B</math> निर्वात में संचरण वाली एक [[विद्युत चुम्बकीय तरंग]] की इकाइयाँ समान होती हैं और सीजीएस के इन दो प्रकारों में परिमाण में समान होती हैं।
इन प्रकारों में से, केवल गाऊसी और हीविसाइड-लोरेन्ट्स प्रणाली में <math>c^{-1}</math> 1 के बजाय <math>\alpha_{\rm L}</math> के समान होती हैं। परिणामस्वरूप, सदिश <math>\vec E</math> और <math>\vec B</math> निर्वात में संचरित [[विद्युत चुम्बकीय तरंग]] की इकाइयाँ समान होती हैं और सीजीएस के इन दो प्रकारों में परिमाण में समान होती हैं।


इनमें से प्रत्येक प्रणाली में आवेश आदि नामक मात्रा एक अलग मात्रा हो सकती है; वे यहाँ एक अधिलेख द्वारा प्रतिष्ठित हैं। प्रत्येक प्रणाली की संगत मात्रा एक आनुपातिकता स्थिरांक के माध्यम से संबंधित होती है।
इनमें से प्रत्येक प्रणाली में आवेश आदि नामक मात्रा एक भिन्न मात्रा हो सकती है; वे यहाँ एक अधिलेख द्वारा प्रतिष्ठित हैं। प्रत्येक प्रणाली की संगत मात्रा एक आनुपातिकता स्थिरांक के माध्यम से संबंधित होती है।


इनमें से प्रत्येक प्रणाली में मैक्सवेल के समीकरणों को इस प्रकार लिखा जा सकता है:<ref name=Jack/><ref name=leu>{{cite journal  
इनमें से प्रत्येक प्रणाली में मैक्सवेल के समीकरणों को इस प्रकार लिखा जा सकता है:<ref name=Jack/><ref name=leu>{{cite journal  
Line 234: Line 235:


=== स्थिरवैद्युत इकाई (ESU) ===
=== स्थिरवैद्युत इकाई (ESU) ===
सीजीएस प्रणाली, (CGS-ESU) के स्थिरवैद्युत इकाइयों के प्रकार में, आवेश को उस मात्रा के रूप में परिभाषित किया जाता है जो [[आनुपातिकता (गणित)]] के बिना कूलॉम के नियम के एक रूप का पालन करता है (और धारा को प्रति इकाई समय आवेश के रूप में परिभाषित किया जाता है):
सीजीएस प्रणाली, (CGS-ESU) के स्थिरवैद्युत इकाइयों के प्रकारों में, आवेश को उस मात्रा के रूप में परिभाषित किया जाता है जो [[आनुपातिकता (गणित)|गुणन स्थिरांक]] के बिना कूलॉम के नियम के एक रूप का पालन करता है (और धारा को प्रति इकाई समय आवेश के रूप में परिभाषित किया जाता है):
:<math>F={q^\text{ESU}_1 q^\text{ESU}_2 \over r^2} .</math>
:<math>F={q^\text{ESU}_1 q^\text{ESU}_2 \over r^2} </math>
आवेश की ईएसयू इकाई, फ्रेंकलिन (Fr), जिसे स्टेटकूलॉम्ब या ईएसयू आवेश के रूप में भी जाना जाता है, इसलिए इस प्रकार परिभाषित किया गया है:<ref name=cardsgc>{{cite book
आवेश की ईएसयू इकाई, फ्रेंकलिन (Fr), जिसे स्टैटकूलोम या ईएसयू आवेश के रूप में भी जाना जाता है, इसलिए इस प्रकार परिभाषित किया गया है:<ref name=cardsgc>{{cite book
| author = Cardarelli, F.
| author = Cardarelli, F.
| year = 2004
| year = 2004
Line 246: Line 247:
| url= https://archive.org/details/encyclopaediaofs0000card
| url= https://archive.org/details/encyclopaediaofs0000card
| url-access = registration
| url-access = registration
}}</ref> {{quote|text=1 [[सेंटीमीटर]] की दूरी पर स्थित दो समान बिंदु आवेशों में से प्रत्येक को 1 फ्रैंकलिन कहा जाता है यदि उनके बीच स्थिर वैद्युत बल 1 [[डाइन]] है।}} इसलिए, सीजीएस-ईएसयू में, एक फ्रैंकलिन डाइन के सेंटीमीटर गुणा वर्गमूल केसमान है:
}}</ref> {{quote|text=1 [[सेंटीमीटर]] की दूरी पर स्थित दो समान बिंदु आवेशों में से प्रत्येक को 1 फ्रैंकलिन कहा जाता है यदि उनके बीच स्थिर वैद्युत बल 1 [[डाइन]] है।}}
 
इसलिए, सीजीएस-ईएसयू में, एक फ्रैंकलिन डाइन के सेंटीमीटर गुणा वर्गमूल के समान है:
: <math>\mathrm{1\,Fr = 1\,statcoulomb = 1\,esu\; charge = 1\,dyne^{1/2}{\cdot}cm=1\,g^{1/2}{\cdot}cm^{3/2}{\cdot}s^{-1}} .</math>
: <math>\mathrm{1\,Fr = 1\,statcoulomb = 1\,esu\; charge = 1\,dyne^{1/2}{\cdot}cm=1\,g^{1/2}{\cdot}cm^{3/2}{\cdot}s^{-1}} .</math>
धारा की इकाई को इस प्रकार परिभाषित किया गया है:
धारा की इकाई को इस प्रकार परिभाषित किया गया है:
: <math>\mathrm{1\,Fr/s = 1\,statampere = 1\,esu\; current = 1\,dyne^{1/2}{\cdot}cm{\cdot}s^{-1}=1\,g^{1/2}{\cdot}cm^{3/2}{\cdot}s^{-2}} .</math>
: <math>\mathrm{1\,Fr/s = 1\,statampere = 1\,esu\; current = 1\,dyne^{1/2}{\cdot}cm{\cdot}s^{-1}=1\,g^{1/2}{\cdot}cm^{3/2}{\cdot}s^{-2}} .</math>
सीजीएस-ईएसयू प्रणाली में, आवेश q का आयाम  M<sup>1/2</sup>L<sup>3/2</sup>T<sup>−1</sup> के समान होता है।
सीजीएस-ईएसयू प्रणाली में, आवेश q का आयाम  M<sup>1/2</sup>L<sup>3/2</sup>T<sup>−1</sup> है।


सीजीएस-ईएसयू प्रणाली की अन्य इकाइयों में स्टेट्ऐम्पियर (1 statC/s) और [[statvolt|स्टैटवोल्ट]] (1 [[erg]]/statC) सम्मिलित हैं।
सीजीएस-ईएसयू प्रणाली की अन्य इकाइयों में स्टेट्ऐम्पियर (1 statC/s) और [[statvolt|स्टैटवोल्ट]] (1 [[erg]]/statC) सम्मिलित हैं।


सीजीएस-ईएसयू में, सभी विद्युत और चुंबकीय मात्राएँ लंबाई, द्रव्यमान और समय के संदर्भ में आयामी रूप से अभिव्यक्त होती हैं, और किसी का भी स्वतंत्र आयाम नहीं होता है। विद्युत चुंबकत्व की इकाइयों की ऐसी प्रणाली, जिसमें द्रव्यमान, लंबाई और समय के यांत्रिक आयामों के संदर्भ में सभी विद्युत और चुंबकीय मात्राओं के आयाम अभिव्यक्त होते हैं, पारंपरिक रूप से एक 'पूर्ण प्रणाली' कहलाती है।<ref name="Fenna 2002">{{cite book |last1=Fenna |first1=Donald |title=वज़न, माप और इकाइयों का एक शब्दकोश|date=2002 |publisher=Oxford University Press |isbn=978-0-19-107898-9 |url=https://books.google.com/books?id=uBk9DAAAQBAJ |language=en}}</ref><sup>:[https://books.google.com/books?id=uBk9DAAAQBAJ&dq=%22absolute%20system%20electromagnetics%22&pg=PT49 3]</sup>
सीजीएस-ईएसयू में, सभी विद्युत और चुंबकीय मात्राएँ लंबाई, द्रव्यमान और समय के संदर्भ में आयामी रूप से अभिव्यक्त होती हैं और किसी का भी स्वतंत्र आयाम नहीं होता है। विद्युत चुंबकत्व की इकाइयों की ऐसी प्रणाली, जिसमें द्रव्यमान, लंबाई और समय के यांत्रिक आयामों के संदर्भ में सभी विद्युत और चुंबकीय मात्राओं के आयाम अभिव्यक्त होते हैं, पारंपरिक रूप से एक 'विशिष्ट प्रणाली' कहलाती है।<ref name="Fenna 2002">{{cite book |last1=Fenna |first1=Donald |title=वज़न, माप और इकाइयों का एक शब्दकोश|date=2002 |publisher=Oxford University Press |isbn=978-0-19-107898-9 |url=https://books.google.com/books?id=uBk9DAAAQBAJ |language=en}}</ref><sup>:[https://books.google.com/books?id=uBk9DAAAQBAJ&dq=%22absolute%20system%20electromagnetics%22&pg=PT49 3]</sup>


==== इकाई प्रतीक ====
==== इकाई प्रतीक ====
सीजीएस-ईएसयू प्रणाली में सभी विद्युत चुम्बकीय इकाइयां जिन्हें स्वयं के नाम नहीं दिए गए हैं, उन्हें संबंधित एसआई नाम के साथ एक संलग्न पूर्वयोजन स्टेट के साथ या एक अलग संक्षिप्त नाम ईएसयू के साथ और इसी तरह संबंधित प्रतीकों के साथ नाम दिया गया है।<ref name=cardsgc/>
सीजीएस-ईएसयू प्रणाली में सभी विद्युत चुम्बकीय इकाइयां जिन्हें स्वयं के नाम नहीं दिए गए हैं, उन्हें संलग्न पूर्वयोजन स्टेट या एक भिन्न संक्षिप्त नाम "esu" और इसी प्रकार संबंधित प्रतीकों के साथ संबंधित SI नाम के रूप में नामित किया गया है।।<ref name=cardsgc/>




==={{anchor|EMU}}विद्युत चुम्बकीय इकाइयां (ईएमयू)===
==={{anchor|ईएमयू}}विद्युत चुम्बकीय इकाइयां (EMU)===
सीजीएस प्रणाली के एक अन्य संस्करण में, विद्युत् चुम्बकीय मात्रक (EMU), धारा को दो पतले, समानांतर, अपरिमित रूप से लंबे तारों के मध्य उपस्थित बल के माध्यम से परिभाषित किया जाता है, और आवेश को तब समय से गुणा करके परिभाषित किया जाता है। (इस दृष्टिकोण का उपयोग अंततः एम्पीयर की एसआई इकाई को भी परिभाषित करने के लिए किया गया था)। ईएमयू सीजीएस उप प्रणाली में, यह एम्पीयर बल स्थिरांक <math>k_{\rm A} = 1</math> समायोजन करके किया जाता है, ताकि एम्पीयर के बल नियम में केवल 2 एक स्पष्ट आनुपातिकता (गणित) के रूप में सम्मिलित हो।
सीजीएस प्रणाली के एक अन्य संस्करण में, विद्युत् चुम्बकीय मात्रक (EMU), धारा को दो पतले, समानांतर, अपरिमित रूप से लंबे तारों के मध्य उपस्थित बल के माध्यम से परिभाषित किया जाता है और आवेश को तब समय से गुणा करके परिभाषित किया जाता है। (इस दृष्टिकोण का उपयोग अंततः एम्पीयर की एसआई इकाई को भी परिभाषित करने के लिए किया गया था)। ईएमयू सीजीएस उप प्रणाली में, यह एम्पीयर बल स्थिरांक <math>k_{\rm A} = 1</math> समायोजन करके किया जाता है, ताकि एम्पीयर के बल नियम में केवल 2 एक स्पष्ट गुणक के रूप में हो।


धारा, बायोट (बीआई) की ईएमयू इकाई, जिसे [[उन्हें मुझे दे दो|ऐबेंपियर]] या ईएमयू धारा भी कहा जाता है, को निम्नानुसार परिभाषित किया गया है:<ref name=cardsgc/>
धारा, बायोट ('''Bi''') की ईएमयू इकाई, जिसे [[उन्हें मुझे दे दो|ऐबेंपियर]] या ईएमयू धारा के रूप में भी जाना जाता है, इनको निम्नानुसार परिभाषित किया गया है:<ref name=cardsgc/>
{{quote|text='''बायोट''' वह स्थिर धारा है, जिसे अगर अनंत लंबाई के, नगण्य वृत्ताकार अनुप्रस्थ काट के दो सीधे समानांतर चालकों में बनाए रखा जाए, और एक [[सेंटीमीटर]] को [[निर्वात]] में रखा जाए, तो उत्पादन होगा इन चालकों के मध्य लंबाई के दो [[डाइन]] प्रति सेंटीमीटर के समान बल होता है।}}
{{quote|text='''बायोट''' वह स्थिर धारा है, जिसे यदि अनंत लंबाई के, नगण्य वृत्ताकार अनुप्रस्थ काट के दो सीधे समानांतर चालकों में बनाए रखा जाए और [[निर्वात]] में एक [[सेंटीमीटर]] को अलग रखा जाए, तो इन चालकों के मध्य लंबाई के दो [[डाइन]] प्रति सेंटीमीटर के समान बल उत्पन्न होगा।}}


इसलिए, विद्युत् चुम्बकीय सीजीएस इकाइयों में, एक बायोट डाइन के एक वर्गमूल के समान होता है:
इसलिए, विद्युत् चुम्बकीय सीजीएस इकाइयों में, एक बायोट डाइन के एक वर्गमूल के समान होता है:
Line 271: Line 274:
: <math>\mathrm{1\,Bi{\cdot}s = 1\,abcoulomb = 1\,emu\, charge= 1\,dyne^{1/2}{\cdot}s=1\,g^{1/2}{\cdot}cm^{1/2}}</math>.
: <math>\mathrm{1\,Bi{\cdot}s = 1\,abcoulomb = 1\,emu\, charge= 1\,dyne^{1/2}{\cdot}s=1\,g^{1/2}{\cdot}cm^{1/2}}</math>.


सीजीएस-ईएमयू प्रणाली में विमीय रूप से, आवेश ''q'' इसलिए  M<sup>1/2</sup>L<sup>1/2</sup> के समान है इसलिए, सीजीएस-ईएमयू प्रणाली में न तो आवेश और न ही धारा एक स्वतंत्र भौतिक मात्रा है।
सीजीएस-ईएमयू प्रणाली में विमीय रूप से, आवेश ''q'' इसलिए  M<sup>1/2</sup>L<sup>1/2</sup> के समतुल्य है। इसलिए, सीजीएस-ईएमयू प्रणाली में न तो आवेश और न ही धारा एक स्वतंत्र भौतिक मात्रा है।


==== ईएमयू संकेतन ====
==== ईएमयू संकेतन ====
Line 278: Line 281:


=== ईएसयू और ईएमयू इकाइयों के मध्य संबंध ===
=== ईएसयू और ईएमयू इकाइयों के मध्य संबंध ===
सीजीएस के ESU और EMU उप प्रणाली मूलभूत संबंध से जुड़े हुए हैं <math>k_{\rm C} / k_{\rm A} = c^2</math> (ऊपर देखें), जहां सी = {{val|29979245800}} ≈ {{val|3|e=10}} प्रति सेकंड सेंटीमीटर में निर्वात में प्रकाश की गति है। इसलिए, संबंधित प्राथमिक विद्युत और चुंबकीय इकाइयों (जैसे धारा, आवेश, वोल्टता, आदि - मात्राओं का अनुपात जो सीधे कूलॉम के नियम या एम्पीयर के बल नियम में प्रवेश करते हैं) का अनुपात या तो ''c''<sup>−1</sup> या ''c के समान है'':<ref name=cardsgc/>:<math>\mathrm{\frac{1\,statcoulomb}{1\,abcoulomb}}=
सीजीएस के ईएसयू और ईएमयू उप प्रणाली मूलभूत संबंध <math>k_{\rm C} / k_{\rm A} = c^2</math> से जुड़े हुए हैं (ऊपर देखें), जहां ''c'' = {{val|29979245800}} ≈ {{val|3|e=10}} प्रति सेकंड सेंटीमीटर में निर्वात में प्रकाश की गति है। इसलिए, संबंधित प्राथमिक विद्युत और चुंबकीय इकाइयों (जैसे धारा, आवेश, वोल्टता, आदि - जो सीधे कूलॉम के नियम या एम्पीयर के बल नियम में प्रवेश करते हैं) के अनुपात में या तो ''c''<sup>−1</sup> या ''c के समान है'':<ref name=cardsgc/>:<math>\mathrm{\frac{1\,statcoulomb}{1\,abcoulomb}}=
\mathrm{\frac{1\,statampere}{1\,abampere}}=c^{-1}</math>
\mathrm{\frac{1\,statampere}{1\,abampere}}=c^{-1}</math>


Line 286: Line 289:
इनसे प्राप्त इकाइयों में c की उच्च घातो के समान अनुपात हो सकते हैं, उदाहरण के लिए:
इनसे प्राप्त इकाइयों में c की उच्च घातो के समान अनुपात हो सकते हैं, उदाहरण के लिए:
:<math>\mathrm{\frac{1\,statohm}{1\,abohm}}=
:<math>\mathrm{\frac{1\,statohm}{1\,abohm}}=
\mathrm{\frac{1\,statvolt}{1\,abvolt}}\times\mathrm{\frac{1\,abampere}{1\,statampere}}=c^2</math>.
\mathrm{\frac{1\,statvolt}{1\,abvolt}}\times\mathrm{\frac{1\,abampere}{1\,statampere}}=c^2</math>


=== व्यावहारिक सीजीएस इकाइयां ===
=== प्रायोगिक सीजीएस इकाइयां ===
व्यावहारिक सीजीएस प्रणाली एक संकर प्रणाली है जो [[ वाल्ट |वाल्ट]] और एम्पीयर को क्रमशः वोल्टता और धारा की इकाइयों के रूप में उपयोग करती है। ऐसा करने से esu और emu प्रणाली में उत्पन्न होने वाली असुविधाजनक बड़ी और छोटी विद्युत इकाइयों से बचा जाता है। यह प्रणाली एक समय में विद्युत अभियान्त्रिकी द्वारा व्यापक रूप से उपयोग की जाती थी क्योंकि 1881 की अंतर्राष्ट्रीय विद्युत व्यवस्थापिका सभा द्वारा वोल्ट और एम्पीयर को अंतर्राष्ट्रीय मानक इकाइयों के रूप में अपनाया गया था।<ref>{{cite book |first=Paul |last=Tunbridge |title=Lord Kelvin: His Influence on Electrical Measurements and Units |pages=34–40 |publisher=IET |year=1992 |isbn=0-86341-237-8 }}</ref> साथ ही वोल्ट और एम्पीयर, फैराड (धारिता), [[ओम]] (प्रतिरोध), कूलॉम (विद्युत आवेश), और [[हेनरी (यूनिट)|हेनरी (इकाई)]] (अधिष्ठापन) का भी व्यावहारिक प्रणाली में उपयोग किया जाता है और एसआई इकाइयों के समान ही हैं। चुंबकीय इकाइयाँ emu प्रणाली की हैं।<ref>{{cite book |first=Heinz E. |last=Knoepfel |title=Magnetic Fields: A Comprehensive Theoretical Treatise for Practical Use |url=https://archive.org/details/magneticfieldsco00knoe |url-access=limited |page=[https://archive.org/details/magneticfieldsco00knoe/page/n559 543] |publisher=Wiley |year=2000 |isbn=3-527-61742-6 }}</ref>
प्रायोगिक सीजीएस प्रणाली एक संकर प्रणाली है जो [[ वाल्ट |वाल्ट]] और एम्पीयर को क्रमशः वोल्टता और धारा की इकाइयों के रूप में उपयोग करती है। ऐसा करने से esu और emu प्रणाली में उत्पन्न होने वाली असुविधाजनक बड़ी और छोटी विद्युत इकाइयों से परिवर्जन किया जा सकता है। यह प्रणाली एक समय में विद्युत अभियान्त्रिकी द्वारा व्यापक रूप से उपयोग की जाती थी क्योंकि 1881 की अंतर्राष्ट्रीय विद्युत व्यवस्थापिका सभा द्वारा वोल्ट और एम्पीयर को अंतर्राष्ट्रीय मानक इकाइयों के रूप में अधिगृहीत किया गया था।<ref>{{cite book |first=Paul |last=Tunbridge |title=Lord Kelvin: His Influence on Electrical Measurements and Units |pages=34–40 |publisher=IET |year=1992 |isbn=0-86341-237-8 }}</ref> साथ ही साथ वोल्ट और एम्पीयर, फैराड (धारिता), [[ओम]] (प्रतिरोध), कूलॉम (विद्युत आवेश), और [[हेनरी (यूनिट)|हेनरी (इकाई)]] (अधिष्ठापन) का भी प्रायोगिक प्रणाली में उपयोग किया जाता है और एसआई इकाइयों के समान ही हैं। चुंबकीय इकाइयाँ emu प्रणाली की हैं।<ref>{{cite book |first=Heinz E. |last=Knoepfel |title=Magnetic Fields: A Comprehensive Theoretical Treatise for Practical Use |url=https://archive.org/details/magneticfieldsco00knoe |url-access=limited |page=[https://archive.org/details/magneticfieldsco00knoe/page/n559 543] |publisher=Wiley |year=2000 |isbn=3-527-61742-6 }}</ref>


विद्युत इकाइयाँ, वोल्ट और एम्पीयर के अतिरिक्त, इस आवश्यकता से निर्धारित होती हैं कि कोई भी समीकरण जिसमें केवल विद्युत और कीनेमेटिकल मात्राएँ सम्मिलित हैं जो SI में मान्य हैं, प्रणाली में भी मान्य होनी चाहिए। उदाहरण के लिए, चूंकि विद्युत क्षेत्र की क्षमता वोल्टता प्रति इकाई लंबाई है, इसकी इकाई वोल्ट प्रति सेंटीमीटर है, जो एसआई इकाई का सौ गुना है।
विद्युत इकाइयाँ, वोल्ट और एम्पीयर के अतिरिक्त, इस आवश्यकता से निर्धारित होती हैं कि कोई भी समीकरण जिसमें केवल विद्युत और शुद्धगतिकीय मात्राएँ सम्मिलित हैं जो SI में मान्य हैं और प्रणाली में भी मान्य होनी चाहिए। उदाहरण के लिए, चूंकि विद्युत क्षेत्र की क्षमता वोल्टता प्रति इकाई लंबाई है, इसकी इकाई वोल्ट प्रति सेंटीमीटर है, जो एसआई इकाई का सौ गुना है।


प्रणाली विद्युत रूप से युक्तिसंगत और चुंबकीय रूप से अयुक्तियुक्त है; अर्थात, {{nowrap|1=''λ'' = 1}} और {{nowrap|1=''λ''&prime; = 4π}}, परन्तु λ के लिए उपरोक्त सूत्र अमान्य है। विद्युत और चुंबकीय इकाइयों की अंतर्राष्ट्रीय प्रणाली एक निकट से संबंधित प्रणाली है,<ref>{{cite book
प्रणाली विद्युत रूप से युक्तिसंगत और चुंबकीय रूप से अयुक्तियुक्त है; अर्थात, {{nowrap|1=''λ'' = 1}} और {{nowrap|1=''λ''&prime; = 4π}}, परन्तु λ के लिए उपरोक्त सूत्र अमान्य है। विद्युत और चुंबकीय इकाइयों की अंतर्राष्ट्रीय प्रणाली एक निकट से संबंधित प्रणाली है,<ref>{{cite book
Line 300: Line 303:
|year = 1916
|year = 1916
|publisher = U.S. Government Printing Office
|publisher = U.S. Government Printing Office
|location = Washington, D.C.}}</ref> जिसमें द्रव्यमान की एक अलग इकाई है ताकि λ' के लिए सूत्र अमान्य हो। द्रव्यमान की इकाई को उन संदर्भों से दस की घातो के प्रगमन के लिए चयन किया गया था जिसमें उन्हें आपत्तिजनक माना गया था (उदाहरण के लिए, {{nowrap|1=''P'' = ''VI''}} और {{nowrap|1=''F'' = ''qE''}}). अनिवार्य रूप से, दस की घात अन्य संदर्भों में फिर से प्रकट हुईं, परन्तु इसका प्रभाव क्रमशः कार्य और शक्ति की इकाइयों को परिचित जूल और वाट बनाना था।
|location = Washington, D.C.}}</ref> जिसमें द्रव्यमान की एक अलग इकाई है ताकि λ' के लिए सूत्र अमान्य हो। द्रव्यमान की इकाई को उन संदर्भों से दस की घातो के प्रगमन के लिए चयन किया गया था जिसमें उन्हें अनुचित माना गया था (जैसे, {{nowrap|1=''P'' = ''VI''}} और {{nowrap|1=''F'' = ''qE''}})। निस्सन्देह, दस की घात अन्य संदर्भों में पुनः प्रकट हुईं, परन्तु इसका प्रभाव क्रमशः कार्य और शक्ति की इकाइयों को परिचित जूल और वाट बनाना था।


एम्पीयर-वर्तन प्रणाली का निर्माण इसी तरह से चुंबकत्व वाहक बल और चुंबकीय क्षेत्र की क्षमता को विद्युत मात्रा मानकर किया जाता है और चुंबकीय ध्रुव शक्ति और चुंबकीयकरण की इकाइयों को 4π से विभाजित करके प्रणाली को युक्तिसंगत बनाया जाता है। पहली दो मात्राओं की इकाइयाँ क्रमशः एम्पीयर और एम्पीयर प्रति सेंटीमीटर हैं। चुंबकीय पारगम्यता की इकाई emu प्रणाली की है, और चुंबकीय संवैधानिक समीकरण हैं {{nowrap|1='''B''' = (4''π''/10)''&mu;'''''H'''}} और {{nowrap|1='''B''' = (4''π''/10)''&mu;''<sub>0</sub>'''H''' + ''&mu;''<sub>0</sub>'''M'''}}. चुंबकीय परिपथ के लिए ओम के नियम की वैधता सुनिश्चित करने के लिए चुंबकीय प्रतिच्छेदन को एक संकर इकाई प्रदान की जाती है।
एम्पीयर-वर्तन प्रणाली का निर्माण इसी तरह से चुंबकत्व वाहक बल और चुंबकीय क्षेत्र की क्षमता को विद्युत मात्रा मानकर किया जाता है और चुंबकीय ध्रुव शक्ति और चुंबकीयकरण की इकाइयों को 4π से विभाजित करके प्रणाली को युक्तिसंगत बनाया जाता है। प्रथम दो मात्राओं की इकाइयाँ क्रमशः एम्पीयर और एम्पीयर प्रति सेंटीमीटर हैं। चुंबकीय पारगम्यता की इकाई emu प्रणाली की है और चुंबकीय रचक समीकरण {{nowrap|1='''B''' = (4''π''/10)''&mu;'''''H'''}} और {{nowrap|1='''B''' = (4''π''/10)''&mu;''<sub>0</sub>'''H''' + ''&mu;''<sub>0</sub>'''M'''}} हैं। चुंबकीय परिपथ के लिए ओम के नियम की प्रामाण्य सुनिश्चित करने के लिए चुंबकीय प्रतिष्टम्भ को एक संकर इकाई प्रदान की जाती है।


=== अन्य संस्करण ===
=== अन्य संस्करण ===
Line 317: Line 320:
== विभिन्न सीजीएस प्रणालियों में विद्युत चुम्बकीय इकाइयां ==
== विभिन्न सीजीएस प्रणालियों में विद्युत चुम्बकीय इकाइयां ==
{| class="wikitable"
{| class="wikitable"
|+ विद्युत चुम्बकीय में SI इकाइयों का ESU, EMU और CGS के गॉसियन उप प्रणाली में रूपांतरण<ref name=cardsgc/>
|+ विद्युत चुम्बकीय में SI इकाइयों का ईएसयू, ईएमयू और सीजीएस के गॉसियन उप प्रणाली में रूपांतरण<ref name=cardsgc/>
! परिमाण
! परिमाण
! प्रतीक !! SI मात्रक !! ईएसयू मात्रक !! [[Gaussian units|गॉसियन मात्रक]] !! ईएमयू  मात्रक
! प्रतीक !! SI मात्रक !! ईएसयू मात्रक !! [[Gaussian units|गॉसियन मात्रक]] !! ईएमयू  मात्रक
Line 366: Line 369:
| style="text-align:center;"|''L''||1 [[Henry (unit)|H]] || colspan="2" | ≘ (10<sup>9</sup> ''c''<sup>−2</sup>) statH (s<sup>2</sup>/cm) || ≘ (10<sup>9</sup>) [[Abhenry|abH]]
| style="text-align:center;"|''L''||1 [[Henry (unit)|H]] || colspan="2" | ≘ (10<sup>9</sup> ''c''<sup>−2</sup>) statH (s<sup>2</sup>/cm) || ≘ (10<sup>9</sup>) [[Abhenry|abH]]
|}
|}
इस तालिका में,  ''c'' = {{val|29979245800}} प्रति सेकंड सेंटीमीटर की इकाइयों में व्यक्त किए जाने पर निर्वात में प्रकाश की गति का आयाम रहित संख्यात्मक मान है। प्रतीक ≘ का उपयोग = के बजाय एक अनुस्मारक के रूप में किया जाता है कि मात्राएँ समान हैं परन्तु सामान्य रूप से समान नहीं हैं, यहाँ तक कि सीजीएस परिवर्त्य के मध्य भी। उदाहरण के लिए, तालिका की अगली-से-अंतिम पंक्ति के अनुसार, यदि किसी संधारित्र की SI में 1 F की धारिता है, तो उसकी धारिता (10<sup>−9</sup> ''c''<sup>2</sup>) ईएसयू में सेमी; परन्तु 1 F को (10) से परिवर्तित करना गलत है10<sup>−9</sup> ''c''<sup>2</sup>) सेमी एक समीकरण या सूत्र के भीतर। (यह चेतावनी सीजीएस में विद्युत चुंबकत्व इकाइयों का एक विशेष गुण है। इसके विपरीत, उदाहरण के लिए, समीकरण या सूत्र के भीतर 1 माप को 100 सेंटीमीटर से परिवर्तित करना सदैव सही होता है।)
इस तालिका में,  ''c'' = {{val|29979245800}} प्रति सेकंड सेंटीमीटर की इकाइयों में व्यक्त किए जाने पर निर्वात में प्रकाश की गति का आयाम रहित संख्यात्मक मान है। प्रतीक ≘ का उपयोग = के स्थान पर एक अनुस्मारक के रूप में किया जाता है कि मात्राएँ समान हैं परन्तु सामान्य रूप से समान नहीं हैं, यहाँ तक कि सीजीएस परिवर्त्य के मध्य भी समान नहीं हैं। उदाहरण के लिए, तालिका की आगामी-से-अंतिम पंक्ति के अनुसार, यदि किसी संधारित्र की SI में 1 F की धारिता है, तो इसकी ईएसयू में धारिता (10<sup>−9</sup> ''c''<sup>2</sup>) सेमी की धारिता है; परन्तु किसी समीकरण या सूत्र में 1 F को (10<sup>−9</sup> ''c''<sup>2</sup>) सेमी से परिवर्तित करना अनुचित है (यह चेतावनी सीजीएस में विद्युत चुंबकत्व इकाइयों का एक विशेष गुण है। इसके विपरीत, उदाहरण के लिए, समीकरण या सूत्र के भीतर 1 मीटर को 100 सेमी से परिवर्तित करना सदैव उचित होता है।)


कोई [[कूलम्ब स्थिरांक|कूलॉम स्थिरांक]] ''k''<sub>C</sub> के SI मान के विषय में विचार कर सकता है जैसा:
[[कूलम्ब स्थिरांक|कूलॉम स्थिरांक]] ''k''<sub>C</sub> के SI मान के विषय में कोई विचार कर सकता है: जैसे
:<math>k_{\rm C}=\frac{1}{4\pi\epsilon_0}=\frac{\mu_0 (c/100)^2}{4\pi}=10^{-7}~\mathrm{N/A^2} \cdot 10^{-4} \cdot c^2 = 10^{-11}~\mathrm{N} \cdot c^2/\mathrm{A^2}</math>
:<math>k_{\rm C}=\frac{1}{4\pi\epsilon_0}=\frac{\mu_0 (c/100)^2}{4\pi}=10^{-7}~\mathrm{N/A^2} \cdot 10^{-4} \cdot c^2 = 10^{-11}~\mathrm{N} \cdot c^2/\mathrm{A^2}</math>
यह बताता है कि क्यों SI से ESU रूपांतरणों में ''c''<sup>2</sup> के कारक सम्मिलित हैं से ESU इकाइयों का महत्वपूर्ण सरलीकरण होता है, जैसे 1 statE = 1 cm और 1 statΩ = 1 s/cm: यह इस तथ्य का परिणाम है कि ESU प्रणाली में k<sub>C</sub> = 1. उदाहरण के लिए, एक सेंटीमीटर की धारिता निर्वात में 1 सेंटीमीटर त्रिज्या के गोले की धारिता है। ESU सीजीएस प्रणाली में त्रिज्या R और r के दो संकेंद्रित क्षेत्रों के मध्य धारिता C है:
यह स्पष्ट करता है कि क्यों SI से ईएसयू रूपांतरणों में ''c''<sup>2</sup> के गुणक सम्मिलित हैं, ईएसयू इकाइयों का महत्वपूर्ण सरलीकरण की ओर ले जाते हैं, जैसे कि 1 statE = 1 सेमी और 1 statΩ = 1 s/सेमी: यह इस तथ्य का परिणाम ईएसयू प्रणाली में k<sub>C</sub> = 1 है। उदाहरण के लिए, एक सेंटीमीटर की धारिता निर्वात में 1 सेंटीमीटर त्रिज्या के गोले की धारिता है। ईएसयू सीजीएस प्रणाली में त्रिज्या R और r के दो संकेंद्रित क्षेत्रों के मध्य धारिता C है:
: <math>\frac{1}{\frac{1}{r}-\frac{1}{R}}</math>.
: <math>\frac{1}{\frac{1}{r}-\frac{1}{R}}</math>.
R के अनंत तक जाने की सीमा लेने पर हम C को r के समान देखते हैं।
R के अनंत तक जाने की सीमा लेने पर हम C को r के समान देखते हैं।
Line 376: Line 379:
== सीजीएस इकाइयों में भौतिक स्थिरांक ==
== सीजीएस इकाइयों में भौतिक स्थिरांक ==
{| class="wikitable"
{| class="wikitable"
|+ Commonly used physical constants in सीजीएस units<ref name="textbook">{{Cite book | year=1978 |author1=A.P. French |author2=Edwind F. Taylor | title= An Introduction to Quantum Physics | publisher=W.W. Norton & Company}}</ref>
|+ सीजीएस इकाइयों में सामान्यतः उपयोग होने वाले भौतिक स्थिरांक<ref name="textbook">{{Cite book | year=1978 |author1=A.P. French |author2=Edwind F. Taylor | title= An Introduction to Quantum Physics | publisher=W.W. Norton & Company}}</ref>
! स्थिरांक
! स्थिरांक
! प्रतीक
! प्रतीक
Line 432: Line 435:


== लाभ या हानि ==
== लाभ या हानि ==
जबकि कुछ सीजीएस उपप्रणालियों में मात्राओं के मध्य कुछ संबंध व्यक्त करने वाले सूत्रों में निरंतर गुणांक की अनुपस्थिति कुछ गणनाओं को सरल बनाती है, इसका हानि यह है कि कभी-कभी सीजीएस में इकाइयों को प्रयोग के माध्यम से परिभाषित करना कठिन होता है। इसके अतिरिक्त, अद्वितीय इकाई नामों की कमी एक महान भ्रम की ओर ले जाती है: इस प्रकार 15 ईमू का अर्थ या तो 15 [[abvolt]], या 15 ईमू इकाई [[विद्युत द्विध्रुवीय क्षण]], या 15 ईमू इकाई चुंबकीय संवेदनशीलता, कभी-कभी (परन्तु सदैव नहीं) प्रति ग्राम, या प्रति हो सकता है। [[तिल (इकाई)]]। दूसरी ओर, एसआई धारा की एक इकाई, एम्पीयर से प्रारंभ होता है, जो प्रयोग के माध्यम से निर्धारित करना आसान है, परन्तु विद्युत चुम्बकीय समीकरणों में अतिरिक्त गुणांक की आवश्यकता होती है। विशिष्ट नामित इकाइयों की अपनी प्रणाली के साथ, एसआई उपयोग में किसी भी भ्रम को भी दूर करता है: 1 एम्पीयर एक निर्दिष्ट मात्रा का एक निश्चित मान है, और इसलिए 1 हेनरी (इकाई), 1 ओम और 1 वोल्ट हैं।
जबकि कुछ सीजीएस उपप्रणालियों में मात्राओं के मध्य कुछ संबंध व्यक्त करने वाले सूत्रों में निरंतर गुणांक की अनुपस्थिति कुछ गणनाओं को सरल बनाती है, इसकी हानि यह है कि कभी-कभी सीजीएस में इकाइयों को प्रयोग के माध्यम से परिभाषित करना कठिन होता है। इसके अतिरिक्त, अद्वितीय इकाई नामों की कमी एक विख्यात अस्तव्यस्तता की ओर ले जाती है: इस प्रकार "15 emu" का अर्थ या तो 15 [[abvolt|एबीवोल्ट]], या 15 emu इकाई [[विद्युत द्विध्रुवीय क्षण|विद्युत द्विध्रुव आघूर्ण]], या 15 emu इकाई चुंबकीय संवेदनशीलता, कभी-कभी (परन्तु सदैव नहीं) प्रति ग्राम, या प्रति हो सकती है। [[तिल (इकाई)]]। दूसरी ओर, एसआई धारा की एक इकाई, एम्पीयर से प्रारंभ होती है, जो प्रयोग के माध्यम से निर्धारित करना सरल है, परन्तु विद्युत चुम्बकीय समीकरणों में अतिरिक्त गुणांक की आवश्यकता होती है। विशिष्ट नामित इकाइयों की अपनी प्रणालियों के साथ, एसआई उपयोग में किसी भी अस्तव्यस्तता को भी दूर करता है: 1 एम्पीयर एक निर्दिष्ट मात्रा का एक निश्चित मान है और इसलिए 1 हेनरी (इकाई), 1 ओम और 1 वोल्ट हैं।


गॉसियन इकाइयों का एक लाभ सीजीएस-गाऊसी प्रणाली यह है कि विद्युत और चुंबकीय क्षेत्रों की इकाइयाँ समान होती हैं, 4πε<sub>0</sub> 1 द्वारा प्रतिस्थापित किया जाता है, और [[मैक्सवेल समीकरण]]ों में दिखाई देने वाला एकमात्र आयामी स्थिरांक c, प्रकाश की गति है। हीविसाइड-लोरेन्ट्स प्रणाली में ये गुण भी हैं (ε के साथ)<sub>0</sub> 1 केसमान), परन्तु यह एक तर्कसंगत प्रणाली है (जैसा कि एसआई है) जिसमें शुल्क और क्षेत्र इस तरह से परिभाषित किए गए हैं कि सूत्रों में दिखाई देने वाले 4π के कम कारक हैं, और यह हीविसाइड-लोरेन्ट्स इकाइयों में है जो मैक्सवेल समीकरण अपना सरलतम रूप लेते हैं।
गॉसियन इकाइयों का एक लाभ सीजीएस-गाऊसी प्रणाली यह है कि विद्युत और चुंबकीय क्षेत्रों की इकाइयाँ समान होती हैं, 4πε<sub>0</sub> को 1 से परिवर्तित कर दिया जाता है और [[मैक्सवेल समीकरण|मैक्सवेल समीकरणों]] में दिखाई देने वाला एकमात्र आयामी स्थिरांक c, प्रकाश की गति है। हीविसाइड-लोरेन्ट्स प्रणाली में ये गुण भी हैं (''ε''<sub>0</sub> के साथ 1 के समान), परन्तु यह एक "युक्तिसंगत" प्रणाली है (जैसा कि एसआई है) जिसमें आवेश और क्षेत्र इस तरह से परिभाषित किए गए हैं कि सूत्रों में दिखाई देने वाले 4π के कम गुणक हैं और यह हीविसाइड-लोरेन्ट्स इकाइयों में है कि मैक्सवेल समीकरण अपना सरलतम रूप लेते हैं।


एसआई, और अन्य तर्कसंगत प्रणालियों में (उदाहरण के लिए, हीविसाइड-लोरेन्ट्स इकाइयां | हीविसाइड-लोरेन्ट्स), धारा की इकाई को इस तरह चयन किया गया था कि आवेशित क्षेत्रों से संबंधित विद्युत चुम्बकीय समीकरणों में 4π होते हैं, जो धारा और सीधे तारों के कॉइल से संबंधित होते हैं उनमें 2π होते हैं और जो व्यवहार करते हैं आवेश सतहों के साथ पूर्णतया π की कमी है, जो [[विद्युत अभियन्त्रण]] में अनुप्रयोगों के लिए सबसे सुविधाजनक विकल्प था। हालाँकि, आधुनिक [[कैलकुलेटर]] और [[निजी कंप्यूटर|व्यक्तिगत परिकलक]] ने इस लाभ को समाप्त कर दिया है। कुछ क्षेत्रों में जहां क्षेत्रों से संबंधित सूत्र सामान्य हैं (उदाहरण के लिए, खगोल भौतिकी में), यह तर्क दिया गया है{{by whom|date=July 2014}} कि गैर-तर्कसंगत सीजीएस प्रणाली सांकेतिक रूप से कुछ अधिक सुविधाजनक हो सकती है।
एसआई, और अन्य युक्तिसंगत प्रणालियों (उदाहरण के लिए, हीविसाइड-लोरेन्ट्स) में, धारा की इकाई को इस में चयन किया गया था कि आवेशित क्षेत्रों से संबंधित विद्युत चुम्बकीय समीकरणों में 4π होते हैं, जो धारा और सीधे तारों की कुण्डली से संबंधित होते हैं उनमें 2π होते हैं और आवेश सतहों से व्यवहार में पूर्णतया से π की कमी है, जो [[विद्युत अभियन्त्रण]] में अनुप्रयोगों के लिए सबसे सुविधाजनक विकल्प था। हालाँकि, आधुनिक [[कैलकुलेटर]] और [[निजी कंप्यूटर|व्यक्तिगत परिकलक]] ने इस लाभ को समाप्त कर दिया है। कुछ क्षेत्रों में जहां क्षेत्रों से संबंधित सूत्र सामान्य हैं (उदाहरण के लिए, खगोल भौतिकी में), यह तर्क दिया गया है{{by whom|date=July 2014}} कि गैर-तर्कसंगत सीजीएस प्रणाली सांकेतिक रूप से कुछ अधिक सुविधाजनक हो सकती है।


प्राकृतिक इकाइयों की कुछ प्रणाली के माध्यम से स्थिरांक को समाप्त करके, SI या सीजीएस से भी आगे सूत्रों को सरल बनाने के लिए विशिष्ट इकाई प्रणालियों का उपयोग किया जाता है। उदाहरण के लिए, [[कण भौतिकी]] में एक प्रणाली का उपयोग किया जाता है, जहां प्रत्येक मात्रा ऊर्जा की केवल एक इकाई द्वारा व्यक्त की जाती है, [[इलेक्ट्रॉन वोल्ट]], लंबाई, समय के साथ, और इसी तरह प्रकाश की गति और प्लांक स्थिरांक के कारकों को सम्मिलित करके इलेक्ट्रानवोल्ट में परिवर्तित किया जाता है| समानीत प्लांक स्थिरांक ħ. यह इकाई प्रणाली कण भौतिकी में गणना के लिए सुविधाजनक है, परन्तु इसे अन्य संदर्भों में अव्यावहारिक माना जाएगा।
प्राकृतिक इकाइयों की कुछ प्रणाली के माध्यम से स्थिरांक को समाप्त करके, SI या सीजीएस से भी आगे सूत्रों को सरल बनाने के लिए विशिष्ट इकाई प्रणालियों का उपयोग किया जाता है। उदाहरण के लिए, [[कण भौतिकी]] में एक प्रणाली का उपयोग किया जाता है, जहां प्रत्येक मात्रा ऊर्जा की केवल एक इकाई द्वारा व्यक्त की जाती है, [[इलेक्ट्रॉन वोल्ट]], लंबाई, समय के साथ, और इसी तरह प्रकाश की गति और प्लांक स्थिरांक के कारकों को सम्मिलित करके इलेक्ट्रानवोल्ट में परिवर्तित किया जाता है| समानीत प्लांक स्थिरांक ħ. यह इकाई प्रणाली कण भौतिकी में गणना के लिए सुविधाजनक है, परन्तु इसे अन्य संदर्भों में अव्यावहारिक माना जाएगा।

Revision as of 23:39, 8 April 2023

इकाइयों की सेंटीमीटर-ग्राम-सेकंड प्रणाली (संक्षिप्त सीजीएस या सीजीएस) मापीय पद्धति का एक प्रकार है जो सेंटीमीटर पर लंबाई, ग्राम द्रव्यमान और सेकंड समय की इकाई के रूप में होती है। सभी सीजीएस यांत्रिकी इकाइयाँ स्पष्ट रूप से इन तीन मूल मात्रकों से प्राप्त होती हैं, परन्तु कई अलग-अलग विधियाँ हैं जिनमें सीजीएस प्रणाली को विद्युत चुंबकत्व को आच्छादित करने के लिए विस्तारित किया गया था।[1][2][3]

सीजीएस प्रणाली को बड़े पैमाने एमकेएस पद्धति द्वारा मीटर, किलोग्राम और सेकंड पर आधारित किया गया है, जिसे परिणामस्वरूप विस्तारित और अंतर्राष्ट्रीय प्रणाली इकाइयों (SI) द्वारा प्रतिस्थापित किया गया था। विज्ञान और अभियान्त्रिकी के कई क्षेत्रों में, एसआई उपयोग में इकाइयों की एकमात्र प्रणाली है, परन्तु कुछ ऐसे उपक्षेत्र हैं जहां सीजीएस प्रचलित है।

विशुद्ध रूप से यांत्रिक प्रणालियों (लंबाई, द्रव्यमान, बल, ऊर्जा, दाब और इसी प्रकार की इकाइयों को सम्मिलित करते हुए) के मापन में, सीजीएस और एसआई के मध्य के अंतर सरल और तुच्छ हैं; इकाई रूपांतरण कारक सभी दस की घाते हैं, 100 सेमी = 1 मी और 1000 ग्राम = 1 किग्रा हैं। उदाहरण के लिए, बल की सीजीएस इकाई डाएन है जिसे 1 g⋅cm/s2 के रूप में परिभाषित किया गया है, इसलिए बल की SI इकाई, न्यूटन (1 kg⋅m/s2), 100000 डाइन के समान है।

जबकि विद्युत चुम्बकीय घटनाओं (आवेश, विद्युत और चुंबकीय क्षेत्र, वोल्टता, और इसी प्रकार की इकाइयों को सम्मिलित करते हुए) के मापन में, सीजीएस और एसआई के मध्य परिवर्तित करना अधिक सूक्ष्म है। विद्युत चुंबकत्व के भौतिक नियमों के सूत्र (जैसे मैक्सवेल के समीकरण) एक ऐसा रूप लेते हैं जो इस तथ्य पर निर्भर करता है कि किस प्रणाली की इकाइयों का उपयोग किया जा रहा है, क्योंकि विद्युत चुम्बकीय मात्रा को एसआई और सीजीएस में अलग-अलग परिभाषित किया गया है। इसके अतिरिक्त, सीजीएस के भीतर, विद्युत चुम्बकीय मात्रा को परिभाषित करने के लिए कई प्रशंसनीय विधियाँ हैं, जो गॉसियन इकाइयों, ईएसयू, ईएमयू और हीविसाइड-लोरेन्ट्स इकाइयों सहित विभिन्न "उप-प्रणालियों" के लिए अग्रणी हैं। इन विकल्पों में, गॉसियन इकाइयां आज सबसे सामान्य हैं और सीजीएस इकाइयां प्रायः सीजीएस-गॉसियन इकाइयों को संदर्भित करने का उद्धिष्ट रखती हैं।

इतिहास

सीजीएस प्रणाली 1832 में जर्मन गणितज्ञ कार्ल फ्रेडरिक गॉस द्वारा लंबाई, द्रव्यमान और समय की तीन मौलिक इकाइयों पर पूर्ण इकाइयों की एक प्रणाली के आधार पर एक प्रस्ताव पर वापस जाती है।[4] गॉस ने मिलीमीटर, मिलीग्राम और सेकंड की इकाइयों को चयन किया।[5] 1873 में, विज्ञान की उन्नति के लिए ब्रिटिश संगठन की एक समिति, जिसमें भौतिक विज्ञानी जेम्स क्लर्क मैक्सवेल और विलियम थॉमसन सम्मिलित थे, उन्होंने सेंटीमीटर, ग्राम और सेकंड को मौलिक इकाइयों के रूप में अपनाने और इनमें सभी व्युत्पन्न विद्युत चुम्बकीय इकाइयों को व्यक्त करने की संस्तुत की। पूर्वलग्न C.G.S की इकाई ... का उपयोग करते हुए।[6]

कई सीजीएस इकाइयों के आकार प्रायोगिक उद्देश्यों के लिए असुविधाजनक सिद्ध हुए। उदाहरण के लिए, कई दैनिक वस्तुएं सैकड़ों या हजारों सेंटीमीटर दीर्घ होती हैं, जैसे कि मनुष्य, कक्ष और भवन होते है। इस प्रकार सीजीएस प्रणाली को विज्ञान के क्षेत्र के बाह्य कभी भी व्यापक उपयोग नहीं मिला। 1880 के दशक में प्रारंभ हुआ और 20 वीं शताब्दी के मध्य तक, सीजीएस धीरे-धीरे एमकेएस (माप-किलोग्राम-सेकंड) प्रणाली द्वारा वैज्ञानिक उद्देश्यों के लिए अंतरराष्ट्रीय स्तर पर स्थानांतरित हो गया, जो परिणामस्वरूप आधुनिक एसआई मानक में विकसित हुआ।

1940 के दशक में एमकेएस मानक और 1960 के दशक में एसआई मानक के अंतर्राष्ट्रीय स्वीकरण के पश्चात से, सीजीएस इकाइयों के प्रावैधिक उपयोग में धीरे-धीरे विश्व भर में गिरावट आई है। एसआई इकाइयाँ मुख्य रूप से अभियान्त्रिकी अनुप्रयोगों और भौतिकी शिक्षाओं में उपयोग किया जाती हैं, जबकि गॉसियन सीजीएस इकाइयों सामान्यतः सैद्धांतिक भौतिकी में किया जाता हैं, जो सूक्ष्म प्रणालियों, सापेक्षिक विद्युतगतिकी और खगोल भौतिकी का वर्णन करता हैं।[7][8] सीजीएस इकाइयां आज अधिकांश वैज्ञानिक पत्रिकाओं,[citation needed] पाठ्यपुस्तक प्रकाशकों,[citation needed] या मानक निकायों की गृह शैलियों द्वारा स्वीकार नहीं की जाती हैं, हालांकि वे सामान्यतः खगोलीय पत्रिकाओं जैसे खगोलभौतिकी पत्रिकाओं में उपयोग की जाती हैं। सीजीएस इकाइयों का निरंतर उपयोग चुंबकत्व और संबंधित क्षेत्रों में प्रचलित है क्योंकि B और H क्षेत्रों में मुक्त स्थानों में समान इकाइयाँ हैं[citation needed] और प्रकाशित मापों को सीजीएस से एमकेएस में परिवर्तित करते समय अस्पष्टता की संभावना है।[9]

ईकाई ग्राम और सेंटीमीटर एसआई प्रणाली के भीतर गैर-सुसंगत इकाइयों के रूप में उपयोगी रहते हैं, जैसा कि किसी भी अन्य मापीय पूर्वलग्न एसआई इकाइयों के साथ होता है।

यांत्रिकी में सीजीएस इकाइयों की परिभाषा

यांत्रिकी में, सीजीएस और एसआई प्रणालियों में मात्राओं को समान रूप से परिभाषित किया जाता है। दो प्रणालियाँ केवल तीन मूल मात्रकों (क्रमशः सेंटीमीटर विपरीत माप और ग्राम विपरीत किलोग्राम) के पैमानों में भिन्न होती हैं, दोनों प्रणालियों में तृतीय इकाई (सेकंड) समान होती है।

सीजीएस और एसआई में यांत्रिकी की मूल मात्रकों के मध्य सीधा सामंजस्य होता है। चूँकि यांत्रिकी के नियमों को व्यक्त करने वाले सूत्र दोनों प्रणालियों में समान हैं और चूंकि दोनों प्रणालियाँ सुसंगत हैं, मूल मात्रकों के संदर्भ में सभी सुसंगत व्युत्पन्न इकाइयों की परिभाषाएँ दोनों प्रणालियों में समान हैं और व्युत्पन्न इकाइयों का एक स्पष्ट सामंजस्य है:

  • (वेग की परिभाषा)
  • (न्यूटन की गति का द्वितीय नियम)
  • (कार्य के संदर्भ में परिभाषित ऊर्जा)
  • (दाब प्रति इकाई क्षेत्र बल के रूप में परिभाषित किया गया है)
  • (गतिशील श्यानता प्रति इकाई वेग प्रवणता अपरूपण प्रतिबल के रूप में परिभाषित किया गया है)।

इस प्रकार, उदाहरण के लिए, दाब की सीजीएस इकाई, बैरी, लंबाई, द्रव्यमान और समय की सीजीएस मूल मात्रकों से उसी प्रकार संबंधित है जैसे दाब की एसआई इकाई, पास्कल, लंबाई की एसआई मूल मात्रकों, द्रव्यमान और समय से संबंधित है।

दाब की 1 इकाई = बल की 1 इकाई/(लंबाई की 1 इकाई)2 = द्रव्यमान की 1 इकाई/(लंबाई की 1 इकाई⋅(समय की 1 इकाई)2)
1 Ba = 1 ग्राम/(cm⋅s2)
1 Pa = 1 किग्रा/(m⋅s2).

एसआई मूल मात्रकों, या इसके विपरीत के संदर्भो में एक सीजीएस व्युत्पन्न इकाई को व्यक्त करने के लिए दो प्रणालियों से संबंधित मापक्रम कारकों के संयोजन की आवश्यकता होती है:

1 Ba = 1 ग्राम/(cm⋅s2) = 10−3 किग्रा / (10−2 m⋅s2) = 10−1 किग्रा/(m⋅s2) = 10−1 Pa

यांत्रिकी में सीजीएस इकाइयों की परिभाषाएं और रूपांतरण कारक

परिमाण परिमाण का प्रतीक सीजीएस इकाई का नाम इकाई का प्रतीक इकाई परिभाषा एसआई इकाइयों में
लंबाई, स्थिति L, x सेंटीमीटर cm 1/100 मीटर 10−2 m
द्रव्यमान m gram g 1/1000 सेंटीमीटर 10−3 kg
समय t सेकंड s 1 सेकंड 1 s
संवेग v सेंटीमीटर प्रति सेकंड cm/s cm/s 10−2 m/s
त्वरण a गैल Gal cm/s2 10−2 m/s2
बल F डाइन dyn g⋅cm/s2 10−5 N
कार्य शक्ति E एर्ग erg g⋅cm2/s2 10−7 J
ऊर्जा P एर्ग प्रति सेकंड erg/s g⋅cm2/s3 10−7 W
दाब p बैरी Ba g/(cm⋅s2) 10−1 Pa
गतिक श्यानता μ संतुलन P g/(cm⋅s) 10−1 Pa⋅s
शुद्धगतिक श्यानता ν स्टोक्स St cm2/s 10−4 m2/s
तरंग संख्या k केसर cm−1[10] या K cm−1 100 m−1


विद्युत चुंबकत्व में सीजीएस इकाइयों की व्युत्पत्ति

विद्युत चुम्बकीय इकाइयों के लिए सीजीएस दृष्टिकोण

सीजीएस और एसआई प्रणालियों में विद्युत चुंबकत्व इकाइयों से संबंधित रूपांतरण कारकों को विद्युत चुंबकत्व के भौतिक नियमों को व्यक्त करने वाले सूत्रों में अंतर द्वारा और अधिक जटिल बना दिया जाता है, जैसा कि इकाइयों की प्रत्येक प्रणाली द्वारा, विशेष रूप से इन सूत्रों में दिखाई देने वाले स्थिरांक की प्रकृति में ग्रहण किया जाता है। यह दो प्रणालियों के निर्माण की विधियों में मूलभूत अंतर को दर्शाता है:

  • एसआई में, विद्युत प्रवाह की इकाई, एम्पेयर (A) को ऐतिहासिक रूप से इस तरह परिभाषित किया गया था कि चुंबकीय बल दो अनंततः लंबे, पतले, समानांतर तारों से 1 मीटर की दूरी पर और 1 एम्पियर की धारा ले जाने के कारण ठीक 2×10−7 N/m होते है। इस परिभाषा के परिणामस्वरूप आगे के अनुभागों में वर्णित सीजीएस-ईएमयू प्रणाली के साथ सभी एसआई विद्युत चुम्बकीय इकाइयां संख्यात्मक रूप से सुसंगत (10 के कुछ पूर्णांक घातो के कारकों के अधीन) होती हैं। एम्पीयर एसआई प्रणाली की एक आधार इकाई है, जिसकी स्थिति मीटर, किलोग्राम और सेकंड के समान है। इस प्रकार मीटर और न्यूटन के साथ एम्पीयर की परिभाषा में संबंध की अवहेलना की जाती है और एम्पीयर को अन्य मूल मात्रकों के किसी भी संयोजन के विमीय समकक्ष के रूप में नहीं माना जाता है। परिणामस्वरूप, एसआई में विद्युत चुम्बकीय नियमों के विद्युत चुम्बकीय इकाइयों को शूद्ध गतिक इकाइयों से संबंधित करने के लिए आनुपातिकता के एक अतिरिक्त स्थिरांक (निर्वात पारगम्यता देखें) की आवश्यकता होती है। (आनुपातिकता का यह स्थिरांक एम्पीयर की उपरोक्त परिभाषा से स्पष्टतः व्युत्पन्न होता है)। अन्य सभी विद्युत और चुंबकीय इकाइयाँ सबसे मूलभूत सामान्य परिभाषाओं का उपयोग करते हुए इन चार मूल मात्रकों से प्राप्त होती हैं: उदाहरण के लिए, आवेश (भौतिकी) q को धारा I को समय t से गुणा करके परिभाषित किया गया है।
    जिसके परिणामस्वरूप विद्युत आवेश की इकाई, कूलॉम (C) को 1 C = 1 A⋅s के रूप में परिभाषित किया जाता है।
  • सीजीएस प्रणाली प्रकार नई आधार मात्राओं और इकाइयों को प्रस्तुत करने से परिवर्जन करता है और इसके स्थान पर भौतिक नियमों को व्यक्त करके सभी विद्युत चुम्बकीय मात्राओं को परिभाषित करता है जो विद्युत चुम्बकीय घटनाओं को केवल आयाम रहित स्थिरांक के साथ यांत्रिकी से संबंधित करता है और इसलिए इन मात्राओं के लिए सभी इकाइयां स्पष्टतः सेंटीमीटर, ग्राम और सेकंड से प्राप्त होती हैं।

विद्युत चुंबकत्व में सीजीएस इकाइयों की वैकल्पिक व्युत्पत्ति

लंबाई, समय और द्रव्यमान के विद्युत चुम्बकीय संबंध कई समान रूप से आकर्षक पद्धतियों से प्राप्त किए जा सकते हैं। उनमें से दो आवेशों पर देखे गए बलों पर निर्भर करते हैं। दो मूलभूत नियम विद्युत आवेश या इसके परिवर्तन की दर (विद्युत धारा) को यांत्रिक मात्रा जैसे बल से संबंधित करते हैं (प्रतीत होता है कि वे एक-दूसरे से स्वतंत्र हैं)। उन्हें [7] प्रणाली-स्वतंत्र रूप में निम्नानुसार लिखा जा सकता है:

  • प्रथम कूलॉम का नियम, है, जो विद्युत आवेशों और के मध्य स्थिरवैद्युत बल F का वर्णन करता है, जिसे दूरी d द्वारा पृथक्‍कृत जाता है। यहाँ एक स्थिरांक है जो इस तथ्य पर निर्भर करता है कि आवेश की इकाई आधार इकाइयों से कैसे प्राप्त की जाती है।
  • द्वितीय एम्पीयर का बल नियम, है, जो अनंत लंबाई के दो सीधे समानांतर तारों में प्रवाही वाली धाराओं I और I' के मध्य चुंबकीय बल F प्रति इकाई लंबाई L का वर्णन करता है, जो दूरी d से पृथक्‍कृत होता है जो कि तार व्यास से बहुत अधिक है। उपरान्त और , स्थिरांक यह इस तथ्य पर भी निर्भर करता है कि आवेश की इकाई मूल मात्रकों से कैसे प्राप्त की जाती है।

मैक्सवेल का विद्युत चुंबकत्व का सिद्धांत इन दोनों नियमों को एक दूसरे से संबंधित करता है। यह प्रकट करता है कि आनुपातिकता स्थिरांक का अनुपात और का अत्यावश्यक पालन करना चाहिए जहाँ c निर्वात में प्रकाश की गति है। इसलिए, यदि कोई समायोजन करके कूलॉम के नियम से आवेश की इकाई प्राप्त करता है, तो एम्पीयर के बल नियम में एक कारक होगा। वैकल्पिक रूप से, समायोजन या द्वारा एम्पीयर के बल नियम से धारा की इकाई और इसलिए आवेश की इकाई प्राप्त करना है, कूलॉम के नियम में एक स्थिर कारक का नेतृत्व करेगा।

वास्तव में, सीजीएस प्रणाली के उपयोगकर्ताओं द्वारा इन दोनों परस्पर अनन्य दृष्टिकोणों का अभ्यास किया गया है, जिससे सीजीएस की दो स्वतंत्र और पारस्परिक रूप से अनन्य शाखाएं नीचे उपखंडों में वर्णित हैं। हालाँकि, लंबाई, द्रव्यमान और समय की इकाइयों से विद्युत चुम्बकीय इकाइयों का चयन करने की स्वतंत्रता आवेश की परिभाषा तक सीमित नहीं है। जबकि विद्युत क्षेत्र एक गतिमान विद्युत आवेश पर इसके द्वारा किए गए कार्य से संबंधित हो सकता है, चुंबकीय बल सदैव गतिमान आवेश के वेग के लंबवत होता है और इस प्रकार किसी भी आवेश पर चुंबकीय क्षेत्र द्वारा किया गया कार्य सदैव शून्य होता है। यह चुंबकत्व के दो नियमों के मध्य एक विकल्प की ओर ले जाता है, प्रत्येक चुंबकीय क्षेत्र को यांत्रिक मात्रा और विद्युत आवेश से संबंधित करता है:

  • प्रथम नियम वेग v के साथ आवेश q पर चुंबकीय क्षेत्र B द्वारा उत्पादित लोरेन्ट्स बल का वर्णन करता है:
  • द्वितीय नियम परिमित लंबाई dl की विद्युत धारा I और सदिश r द्वारा विस्थापित बिंदु पर स्थिर चुंबकीय क्षेत्र B के निर्माण का वर्णन करता है, जिसे बायोट-सावर्ट नियम के रूप में जाना जाता है:
जहां r और क्रमशः सदिश r की दिशा में लंबाई और इकाई सदिश हैं।

उपरोक्त एम्पीयर के बल नियम को प्राप्त करने के लिए इन दो नियमों का उपयोग किया जा सकता है, जिसके परिणामस्वरूप संबंध: है। इसलिए, यदि आवेश की इकाई एम्पीयर के बल नियम पर आधारित है जैसे कि , समायोजन द्वारा चुंबकीय क्षेत्र की इकाई प्राप्त करना स्वाभाविक है। हालाँकि, यदि ऐसा नहीं है, तो एक विकल्प निर्मित करना होगा कि ऊपर दिए गए दो नियमों में से कौन सा चुंबकीय क्षेत्र की इकाई को प्राप्त करने के लिए अधिक सुविधाजनक आधार है।

इसके अतिरिक्त, यदि हम विद्युत विस्थापन क्षेत्र D और चुंबकीय क्षेत्र H को निर्वात के अतिरिक्त किसी अन्य माध्यम में वर्णित करना चाहते हैं, तो हमें स्थिरांक ε0 और μ0 को भी परिभाषित करने की आवश्यकता है, जो क्रमशः निर्वात पारगम्यता और पारगम्यता हैं। तो हमारे पास हैं[7](सामान्यतः) और , जहां P और M ध्रुवीकरण घनत्व और चुंबकीयकरण सदिश हैं। P और M की इकाइयां सामान्यतः इतनी चयन की जाती हैं कि कारक λ और λ′ युक्तिकरण स्थिरांक क्रमशः और के समान होते हैं। यदि युक्तिकरण स्थिरांक समान हैं, तब हैं। यदि वे एक के समान हैं, तो प्रणाली को युक्तिसंगत कहा जाता है:[11] गोलीय ज्यामिति की प्रणालियों के नियमों में 4π के गुणक होते हैं (उदाहरण के लिए, बिंदु आवेश), बेलनाकार ज्यामिति के - 2π के गुणक (उदाहरण के लिए, तार) और तलीय ज्यामिति के नियमों में π का ​​कोई गुणक नहीं होता है (उदाहरण के लिए, समानांतर- पट्ट संधारित्र )। हालांकि, मूल सीजीएस प्रणाली ने λ = λ' = 4π, या समतुल्य रूप से उपयोग किया। इसलिए, सीजीएस (नीचे वर्णित) के गॉसियन, ईएसयू और ईएमयू उप प्रणाली को युक्तिसंगत नहीं बनाया गया है।

विद्युत चुंबकत्व के लिए सीजीएस प्रणाली के विभिन्न विस्तार

नीचे दी गई तालिका कुछ सामान्य सीजीएस उप प्रणालियों में उपयोग किए गए उपरोक्त स्थिरांकों के मान दर्शाती है:

प्रणाली
स्थिरवैद्युत[7] सीजीएस
(ईएसयू, ईएसयू, या स्टेट-)
1 c−2 1 c−2 c−2 1 4π 4π
विद्युत् चुंबकीय[7] सीजीएस
(ईएमयू, एमु, या एबी-)
c2 1 c−2 1 1 1 4π 4π
गाउसी[7] सीजीएस 1 c−1 1 1 c−2 c−1 4π 4π
हैविसाइड–लोरेन्ट्स[7] सीजीएस 1 1 c−1 1 1
एसआई 1 1 1

इसके अतिरिक्त, जैक्सन और लेउंग में उपरोक्त स्थिरांक के निम्नलिखित सामंजस्य पर ध्यान दें[7]:[12]

इन प्रकारों में से, केवल गाऊसी और हीविसाइड-लोरेन्ट्स प्रणाली में 1 के बजाय के समान होती हैं। परिणामस्वरूप, सदिश और निर्वात में संचरित विद्युत चुम्बकीय तरंग की इकाइयाँ समान होती हैं और सीजीएस के इन दो प्रकारों में परिमाण में समान होती हैं।

इनमें से प्रत्येक प्रणाली में आवेश आदि नामक मात्रा एक भिन्न मात्रा हो सकती है; वे यहाँ एक अधिलेख द्वारा प्रतिष्ठित हैं। प्रत्येक प्रणाली की संगत मात्रा एक आनुपातिकता स्थिरांक के माध्यम से संबंधित होती है।

इनमें से प्रत्येक प्रणाली में मैक्सवेल के समीकरणों को इस प्रकार लिखा जा सकता है:[7][12]

प्रणाली
सीजीएस-ईएसयू
सीजीएस-ईएमयू
सीजीएस-गाउसी
सीजीएस-हैविसाइड–लोरेन्ट्स
एसआई

स्थिरवैद्युत इकाई (ESU)

सीजीएस प्रणाली, (CGS-ESU) के स्थिरवैद्युत इकाइयों के प्रकारों में, आवेश को उस मात्रा के रूप में परिभाषित किया जाता है जो गुणन स्थिरांक के बिना कूलॉम के नियम के एक रूप का पालन करता है (और धारा को प्रति इकाई समय आवेश के रूप में परिभाषित किया जाता है):

आवेश की ईएसयू इकाई, फ्रेंकलिन (Fr), जिसे स्टैटकूलोम या ईएसयू आवेश के रूप में भी जाना जाता है, इसलिए इस प्रकार परिभाषित किया गया है:[13]

1 सेंटीमीटर की दूरी पर स्थित दो समान बिंदु आवेशों में से प्रत्येक को 1 फ्रैंकलिन कहा जाता है यदि उनके बीच स्थिर वैद्युत बल 1 डाइन है।

इसलिए, सीजीएस-ईएसयू में, एक फ्रैंकलिन डाइन के सेंटीमीटर गुणा वर्गमूल के समान है:

धारा की इकाई को इस प्रकार परिभाषित किया गया है:

सीजीएस-ईएसयू प्रणाली में, आवेश q का आयाम M1/2L3/2T−1 है।

सीजीएस-ईएसयू प्रणाली की अन्य इकाइयों में स्टेट्ऐम्पियर (1 statC/s) और स्टैटवोल्ट (1 erg/statC) सम्मिलित हैं।

सीजीएस-ईएसयू में, सभी विद्युत और चुंबकीय मात्राएँ लंबाई, द्रव्यमान और समय के संदर्भ में आयामी रूप से अभिव्यक्त होती हैं और किसी का भी स्वतंत्र आयाम नहीं होता है। विद्युत चुंबकत्व की इकाइयों की ऐसी प्रणाली, जिसमें द्रव्यमान, लंबाई और समय के यांत्रिक आयामों के संदर्भ में सभी विद्युत और चुंबकीय मात्राओं के आयाम अभिव्यक्त होते हैं, पारंपरिक रूप से एक 'विशिष्ट प्रणाली' कहलाती है।[14]:3

इकाई प्रतीक

सीजीएस-ईएसयू प्रणाली में सभी विद्युत चुम्बकीय इकाइयां जिन्हें स्वयं के नाम नहीं दिए गए हैं, उन्हें संलग्न पूर्वयोजन स्टेट या एक भिन्न संक्षिप्त नाम "esu" और इसी प्रकार संबंधित प्रतीकों के साथ संबंधित SI नाम के रूप में नामित किया गया है।।[13]


विद्युत चुम्बकीय इकाइयां (EMU)

सीजीएस प्रणाली के एक अन्य संस्करण में, विद्युत् चुम्बकीय मात्रक (EMU), धारा को दो पतले, समानांतर, अपरिमित रूप से लंबे तारों के मध्य उपस्थित बल के माध्यम से परिभाषित किया जाता है और आवेश को तब समय से गुणा करके परिभाषित किया जाता है। (इस दृष्टिकोण का उपयोग अंततः एम्पीयर की एसआई इकाई को भी परिभाषित करने के लिए किया गया था)। ईएमयू सीजीएस उप प्रणाली में, यह एम्पीयर बल स्थिरांक समायोजन करके किया जाता है, ताकि एम्पीयर के बल नियम में केवल 2 एक स्पष्ट गुणक के रूप में हो।

धारा, बायोट (Bi) की ईएमयू इकाई, जिसे ऐबेंपियर या ईएमयू धारा के रूप में भी जाना जाता है, इनको निम्नानुसार परिभाषित किया गया है:[13]

बायोट वह स्थिर धारा है, जिसे यदि अनंत लंबाई के, नगण्य वृत्ताकार अनुप्रस्थ काट के दो सीधे समानांतर चालकों में बनाए रखा जाए और निर्वात में एक सेंटीमीटर को अलग रखा जाए, तो इन चालकों के मध्य लंबाई के दो डाइन प्रति सेंटीमीटर के समान बल उत्पन्न होगा।

इसलिए, विद्युत् चुम्बकीय सीजीएस इकाइयों में, एक बायोट डाइन के एक वर्गमूल के समान होता है:

.

सीजीएस ईएमयू में आवेश की इकाई है:

.

सीजीएस-ईएमयू प्रणाली में विमीय रूप से, आवेश q इसलिए M1/2L1/2 के समतुल्य है। इसलिए, सीजीएस-ईएमयू प्रणाली में न तो आवेश और न ही धारा एक स्वतंत्र भौतिक मात्रा है।

ईएमयू संकेतन

सीजीएस-ईएमयू प्रणाली में सभी विद्युत चुम्बकीय इकाइयाँ जिनके उचित नाम नहीं हैं, उन्हें संबंधित SI नाम से संलग्न उपसर्ग ab या एक अलग संक्षिप्त नाम emu के साथ निरूपित किया जाता है।[13]


ईएसयू और ईएमयू इकाइयों के मध्य संबंध

सीजीएस के ईएसयू और ईएमयू उप प्रणाली मूलभूत संबंध से जुड़े हुए हैं (ऊपर देखें), जहां c = 299792458003×1010 प्रति सेकंड सेंटीमीटर में निर्वात में प्रकाश की गति है। इसलिए, संबंधित प्राथमिक विद्युत और चुंबकीय इकाइयों (जैसे धारा, आवेश, वोल्टता, आदि - जो सीधे कूलॉम के नियम या एम्पीयर के बल नियम में प्रवेश करते हैं) के अनुपात में या तो c−1 या c के समान है:[13]:

और

इनसे प्राप्त इकाइयों में c की उच्च घातो के समान अनुपात हो सकते हैं, उदाहरण के लिए:

प्रायोगिक सीजीएस इकाइयां

प्रायोगिक सीजीएस प्रणाली एक संकर प्रणाली है जो वाल्ट और एम्पीयर को क्रमशः वोल्टता और धारा की इकाइयों के रूप में उपयोग करती है। ऐसा करने से esu और emu प्रणाली में उत्पन्न होने वाली असुविधाजनक बड़ी और छोटी विद्युत इकाइयों से परिवर्जन किया जा सकता है। यह प्रणाली एक समय में विद्युत अभियान्त्रिकी द्वारा व्यापक रूप से उपयोग की जाती थी क्योंकि 1881 की अंतर्राष्ट्रीय विद्युत व्यवस्थापिका सभा द्वारा वोल्ट और एम्पीयर को अंतर्राष्ट्रीय मानक इकाइयों के रूप में अधिगृहीत किया गया था।[15] साथ ही साथ वोल्ट और एम्पीयर, फैराड (धारिता), ओम (प्रतिरोध), कूलॉम (विद्युत आवेश), और हेनरी (इकाई) (अधिष्ठापन) का भी प्रायोगिक प्रणाली में उपयोग किया जाता है और एसआई इकाइयों के समान ही हैं। चुंबकीय इकाइयाँ emu प्रणाली की हैं।[16]

विद्युत इकाइयाँ, वोल्ट और एम्पीयर के अतिरिक्त, इस आवश्यकता से निर्धारित होती हैं कि कोई भी समीकरण जिसमें केवल विद्युत और शुद्धगतिकीय मात्राएँ सम्मिलित हैं जो SI में मान्य हैं और प्रणाली में भी मान्य होनी चाहिए। उदाहरण के लिए, चूंकि विद्युत क्षेत्र की क्षमता वोल्टता प्रति इकाई लंबाई है, इसकी इकाई वोल्ट प्रति सेंटीमीटर है, जो एसआई इकाई का सौ गुना है।

प्रणाली विद्युत रूप से युक्तिसंगत और चुंबकीय रूप से अयुक्तियुक्त है; अर्थात, λ = 1 और λ′ = 4π, परन्तु λ के लिए उपरोक्त सूत्र अमान्य है। विद्युत और चुंबकीय इकाइयों की अंतर्राष्ट्रीय प्रणाली एक निकट से संबंधित प्रणाली है,[17] जिसमें द्रव्यमान की एक अलग इकाई है ताकि λ' के लिए सूत्र अमान्य हो। द्रव्यमान की इकाई को उन संदर्भों से दस की घातो के प्रगमन के लिए चयन किया गया था जिसमें उन्हें अनुचित माना गया था (जैसे, P = VI और F = qE)। निस्सन्देह, दस की घात अन्य संदर्भों में पुनः प्रकट हुईं, परन्तु इसका प्रभाव क्रमशः कार्य और शक्ति की इकाइयों को परिचित जूल और वाट बनाना था।

एम्पीयर-वर्तन प्रणाली का निर्माण इसी तरह से चुंबकत्व वाहक बल और चुंबकीय क्षेत्र की क्षमता को विद्युत मात्रा मानकर किया जाता है और चुंबकीय ध्रुव शक्ति और चुंबकीयकरण की इकाइयों को 4π से विभाजित करके प्रणाली को युक्तिसंगत बनाया जाता है। प्रथम दो मात्राओं की इकाइयाँ क्रमशः एम्पीयर और एम्पीयर प्रति सेंटीमीटर हैं। चुंबकीय पारगम्यता की इकाई emu प्रणाली की है और चुंबकीय रचक समीकरण B = (4π/10)μH और B = (4π/10)μ0H + μ0M हैं। चुंबकीय परिपथ के लिए ओम के नियम की प्रामाण्य सुनिश्चित करने के लिए चुंबकीय प्रतिष्टम्भ को एक संकर इकाई प्रदान की जाती है।

अन्य संस्करण

समय के विभिन्न बिंदुओं पर विद्युत चुम्बकीय इकाइयों की लगभग आधा दर्जन प्रणालियाँ उपयोग में थीं, जो अधिकांश सीजीएस प्रणाली पर आधारित थीं।[18] इनमें गॉसियन इकाइयां और हीविसाइड-लोरेन्ट्स इकाइयां सम्मिलित हैं।

विभिन्न सीजीएस प्रणालियों में विद्युत चुम्बकीय इकाइयां

विद्युत चुम्बकीय में SI इकाइयों का ईएसयू, ईएमयू और सीजीएस के गॉसियन उप प्रणाली में रूपांतरण[13]
परिमाण प्रतीक SI मात्रक ईएसयू मात्रक गॉसियन मात्रक ईएमयू मात्रक
विद्युत् आवेश q 1 C ≘ (10−1 c) statC (Fr) ≘ (10−1) abC
विद्युत् अभिवाह ΦE 1 Vm ≘ (4π × 10−1 c) statC (Fr) ≘ (10−1) abC
विद्युत धारा I 1 A ≘ (10−1 c) statA (Fr⋅s−1) ≘ (10−1) Bi
विद्युत् विभव/वोल्टता φ / V, U 1 V ≘ (108 c−1) statV (erg/Fr) ≘ (108) abV
वैद्युत क्षेत्र E 1 V/m ≘ (106 c−1) statV/cm (dyn/Fr) ≘ (106) abV/cm
विद्युत विस्थापन क्षेत्र D 1 C/m2 ≘ (10−5 c) statC/cm2 (Fr/cm2) ≘ (10−5) abC/cm2
विद्युत द्विध्रुव आघूर्ण p 1 Cm ≘ (10 c) statCcm ≘ (10) abCcm
चुंबकीय द्विध्रुवी आघूर्ण μ 1 Am2 ≘ (103 c) statCcm2 ≘ (103) Bicm2 = (103) erg/G
चुंबकीय B क्षेत्र B 1 T ≘ (104 c−1) statT ≘ (104) G
चुंबकीय H क्षेत्र H 1 A/m ≘ (4π × 10−3 c) statA/cm ≘ (4π × 10−3) Oe
चुंबकीय अभिवाह Φm 1 Wb ≘ (108 c−1) statWb ≘ (108) Mx
प्रतिरोध R 1 Ω ≘ (109 c−2) statΩ (s/cm) ≘ (109) abΩ
प्रतिरोधकता ρ 1 Ωm ≘ (1011 c−2) statΩcm (s) ≘ (1011) abΩcm
धारिता C 1 F ≘ (10−9 c2) statF (cm) ≘ (10−9) abF
अधिष्ठापन L 1 H ≘ (109 c−2) statH (s2/cm) ≘ (109) abH

इस तालिका में, c = 29979245800 प्रति सेकंड सेंटीमीटर की इकाइयों में व्यक्त किए जाने पर निर्वात में प्रकाश की गति का आयाम रहित संख्यात्मक मान है। प्रतीक ≘ का उपयोग = के स्थान पर एक अनुस्मारक के रूप में किया जाता है कि मात्राएँ समान हैं परन्तु सामान्य रूप से समान नहीं हैं, यहाँ तक कि सीजीएस परिवर्त्य के मध्य भी समान नहीं हैं। उदाहरण के लिए, तालिका की आगामी-से-अंतिम पंक्ति के अनुसार, यदि किसी संधारित्र की SI में 1 F की धारिता है, तो इसकी ईएसयू में धारिता (10−9 c2) सेमी की धारिता है; परन्तु किसी समीकरण या सूत्र में 1 F को (10−9 c2) सेमी से परिवर्तित करना अनुचित है (यह चेतावनी सीजीएस में विद्युत चुंबकत्व इकाइयों का एक विशेष गुण है। इसके विपरीत, उदाहरण के लिए, समीकरण या सूत्र के भीतर 1 मीटर को 100 सेमी से परिवर्तित करना सदैव उचित होता है।)

कूलॉम स्थिरांक kC के SI मान के विषय में कोई विचार कर सकता है: जैसे

यह स्पष्ट करता है कि क्यों SI से ईएसयू रूपांतरणों में c2 के गुणक सम्मिलित हैं, ईएसयू इकाइयों का महत्वपूर्ण सरलीकरण की ओर ले जाते हैं, जैसे कि 1 statE = 1 सेमी और 1 statΩ = 1 s/सेमी: यह इस तथ्य का परिणाम ईएसयू प्रणाली में kC = 1 है। उदाहरण के लिए, एक सेंटीमीटर की धारिता निर्वात में 1 सेंटीमीटर त्रिज्या के गोले की धारिता है। ईएसयू सीजीएस प्रणाली में त्रिज्या R और r के दो संकेंद्रित क्षेत्रों के मध्य धारिता C है:

.

R के अनंत तक जाने की सीमा लेने पर हम C को r के समान देखते हैं।

सीजीएस इकाइयों में भौतिक स्थिरांक

सीजीएस इकाइयों में सामान्यतः उपयोग होने वाले भौतिक स्थिरांक[19]
स्थिरांक प्रतीक मान
परमाणु द्रव्यमान स्थिरांक mu 1.660539066×10−24 g
बोर मैग्नेटॉन μB 9.274010078×10−21 erg/G (EMU, Gaussian)
2.780 278 00 × 10−10 statA⋅cm2 (ESU)
बोर त्रिज्या a0 5.2917721090×10−9 cm
बोल्ट्समान स्थिरांक k 1.380649×10−16 erg/K
इलेक्ट्रॉन द्रव्यमान me 9.10938370×10−28 g
मूल आवेश e 4.803 204 27 × 10−10 Fr (ESU, Gaussian)
1.602176634×10−20 abC (EMU)
सूक्ष्म संरचना स्थिरांक α 7.297352569×10−3
न्यूटनी गुरुत्वाकर्षण स्थिरांक G 6.67430×10−8 dyncm2/g2
प्लांक स्थिरांक h 6.62607015×10−27 ergs
समानीत प्लांक स्थिरांक ħ 1.054571817×10−27 ergs
प्रकाश की चाल c 2.99792458×1010 cm/s


लाभ या हानि

जबकि कुछ सीजीएस उपप्रणालियों में मात्राओं के मध्य कुछ संबंध व्यक्त करने वाले सूत्रों में निरंतर गुणांक की अनुपस्थिति कुछ गणनाओं को सरल बनाती है, इसकी हानि यह है कि कभी-कभी सीजीएस में इकाइयों को प्रयोग के माध्यम से परिभाषित करना कठिन होता है। इसके अतिरिक्त, अद्वितीय इकाई नामों की कमी एक विख्यात अस्तव्यस्तता की ओर ले जाती है: इस प्रकार "15 emu" का अर्थ या तो 15 एबीवोल्ट, या 15 emu इकाई विद्युत द्विध्रुव आघूर्ण, या 15 emu इकाई चुंबकीय संवेदनशीलता, कभी-कभी (परन्तु सदैव नहीं) प्रति ग्राम, या प्रति हो सकती है। तिल (इकाई)। दूसरी ओर, एसआई धारा की एक इकाई, एम्पीयर से प्रारंभ होती है, जो प्रयोग के माध्यम से निर्धारित करना सरल है, परन्तु विद्युत चुम्बकीय समीकरणों में अतिरिक्त गुणांक की आवश्यकता होती है। विशिष्ट नामित इकाइयों की अपनी प्रणालियों के साथ, एसआई उपयोग में किसी भी अस्तव्यस्तता को भी दूर करता है: 1 एम्पीयर एक निर्दिष्ट मात्रा का एक निश्चित मान है और इसलिए 1 हेनरी (इकाई), 1 ओम और 1 वोल्ट हैं।

गॉसियन इकाइयों का एक लाभ सीजीएस-गाऊसी प्रणाली यह है कि विद्युत और चुंबकीय क्षेत्रों की इकाइयाँ समान होती हैं, 4πε0 को 1 से परिवर्तित कर दिया जाता है और मैक्सवेल समीकरणों में दिखाई देने वाला एकमात्र आयामी स्थिरांक c, प्रकाश की गति है। हीविसाइड-लोरेन्ट्स प्रणाली में ये गुण भी हैं (ε0 के साथ 1 के समान), परन्तु यह एक "युक्तिसंगत" प्रणाली है (जैसा कि एसआई है) जिसमें आवेश और क्षेत्र इस तरह से परिभाषित किए गए हैं कि सूत्रों में दिखाई देने वाले 4π के कम गुणक हैं और यह हीविसाइड-लोरेन्ट्स इकाइयों में है कि मैक्सवेल समीकरण अपना सरलतम रूप लेते हैं।

एसआई, और अन्य युक्तिसंगत प्रणालियों (उदाहरण के लिए, हीविसाइड-लोरेन्ट्स) में, धारा की इकाई को इस में चयन किया गया था कि आवेशित क्षेत्रों से संबंधित विद्युत चुम्बकीय समीकरणों में 4π होते हैं, जो धारा और सीधे तारों की कुण्डली से संबंधित होते हैं उनमें 2π होते हैं और आवेश सतहों से व्यवहार में पूर्णतया से π की कमी है, जो विद्युत अभियन्त्रण में अनुप्रयोगों के लिए सबसे सुविधाजनक विकल्प था। हालाँकि, आधुनिक कैलकुलेटर और व्यक्तिगत परिकलक ने इस लाभ को समाप्त कर दिया है। कुछ क्षेत्रों में जहां क्षेत्रों से संबंधित सूत्र सामान्य हैं (उदाहरण के लिए, खगोल भौतिकी में), यह तर्क दिया गया है[by whom?] कि गैर-तर्कसंगत सीजीएस प्रणाली सांकेतिक रूप से कुछ अधिक सुविधाजनक हो सकती है।

प्राकृतिक इकाइयों की कुछ प्रणाली के माध्यम से स्थिरांक को समाप्त करके, SI या सीजीएस से भी आगे सूत्रों को सरल बनाने के लिए विशिष्ट इकाई प्रणालियों का उपयोग किया जाता है। उदाहरण के लिए, कण भौतिकी में एक प्रणाली का उपयोग किया जाता है, जहां प्रत्येक मात्रा ऊर्जा की केवल एक इकाई द्वारा व्यक्त की जाती है, इलेक्ट्रॉन वोल्ट, लंबाई, समय के साथ, और इसी तरह प्रकाश की गति और प्लांक स्थिरांक के कारकों को सम्मिलित करके इलेक्ट्रानवोल्ट में परिवर्तित किया जाता है| समानीत प्लांक स्थिरांक ħ. यह इकाई प्रणाली कण भौतिकी में गणना के लिए सुविधाजनक है, परन्तु इसे अन्य संदर्भों में अव्यावहारिक माना जाएगा।

यह भी देखें

संदर्भ और नोट्स

  1. "Centimetre-gram-second system | physics". Encyclopedia Britannica (in English). Retrieved 2018-03-27.[failed verification]
  2. "The Centimeter-Gram-Second (CGS) System of Units – Maple Programming Help". www.maplesoft.com. Retrieved 2018-03-27.
  3. Carron, Neal J. (21 May 2015). "Babel of units: The evolution of units systems in classical electromagnetism". arXiv:1506.01951 [physics.hist-ph].
  4. Gauss, C. F. (1832), "Intensitas vis magneticae terrestris ad mensuram absolutam revocata", Commentationes Societatis Regiae Scientiarum Gottingensis Recentiores, 8: 3–44. English translation.
  5. Hallock, William; Wade, Herbert Treadwell (1906). Outlines of the evolution of weights and measures and the metric system. New York: The Macmillan Co. p. 200.
  6. Thomson, Sir W; Foster, Professor GC; Maxwell, Professor JC; Stoney, Mr GJ; Jenkin, Professor Fleeming; Siemens, Dr; Bramwell, Mr FJ (September 1873). Everett, Professor (ed.). First Report of the Committee for the Selection and Nomenclature of Dynamical and Electrical Units. Forty-third Meeting of the British Association for the Advancement of Science. Bradford: John Murray. p. 223. Retrieved 2012-04-08.
  7. 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 Jackson, John David (1999). Classical Electrodynamics (3rd ed.). New York: Wiley. pp. 775–784. ISBN 0-471-30932-X.
  8. Weisstein, Eric W. "तटरक्षक पोत". Eric Weisstein's World of Physics (in English).
  9. Bennett, L. H.; Page, C. H.; Swartzendruber, L. J. (January–February 1978). "चुंबकत्व में इकाइयों पर टिप्पणियाँ". Journal of Research of the National Bureau of Standards. 83 (1): 9–12. doi:10.6028/jres.083.002. PMC 6752159. PMID 34565970.
  10. "Atomic Spectroscopy". Atomic Spectroscopy. NIST. Retrieved 25 October 2015.
  11. Cardarelli, F. (2004). Encyclopaedia of Scientific Units, Weights and Measures: Their SI Equivalences and Origins (2nd ed.). Springer. p. 20. ISBN 1-85233-682-X.
  12. 12.0 12.1 Leung, P. T. (2004). "A note on the 'system-free' expressions of Maxwell's equations". European Journal of Physics. 25 (2): N1–N4. Bibcode:2004EJPh...25N...1L. doi:10.1088/0143-0807/25/2/N01. S2CID 43177051.
  13. 13.0 13.1 13.2 13.3 13.4 13.5 Cardarelli, F. (2004). Encyclopaedia of Scientific Units, Weights and Measures: Their SI Equivalences and Origins (2nd ed.). Springer. pp. 20–25. ISBN 1-85233-682-X.
  14. Fenna, Donald (2002). वज़न, माप और इकाइयों का एक शब्दकोश (in English). Oxford University Press. ISBN 978-0-19-107898-9.
  15. Tunbridge, Paul (1992). Lord Kelvin: His Influence on Electrical Measurements and Units. IET. pp. 34–40. ISBN 0-86341-237-8.
  16. Knoepfel, Heinz E. (2000). Magnetic Fields: A Comprehensive Theoretical Treatise for Practical Use. Wiley. p. 543. ISBN 3-527-61742-6.
  17. Dellinger, John Howard (1916). International System of Electric and Magnetic Units. Washington, D.C.: U.S. Government Printing Office.
  18. Bennett, L. H.; Page, C. H.; Swartzendruber, L. J. (1978). "Comments on units in magnetism". Journal of Research of the National Bureau of Standards. 83 (1): 9–12. doi:10.6028/jres.083.002. PMC 6752159. PMID 34565970.
  19. A.P. French; Edwind F. Taylor (1978). An Introduction to Quantum Physics. W.W. Norton & Company.


सामान्य साहित्य


श्रेणी:सेंटीमीटर-ग्राम-दूसरी इकाइयों की प्रणाली श्रेणी:मेट्रोलोजी श्रेणी:इकाइयों की प्रणाली श्रेणी:मीट्रिक प्रणाली