ब्रह्मांड (गणित): Difference between revisions
No edit summary |
(change some english word in pure hindi and minor change.) |
||
Line 9: | Line 9: | ||
{{Main|प्रवचन का क्षेत्र}} | {{Main|प्रवचन का क्षेत्र}} | ||
संभवतः सबसे सरल संस्करण यह है कि कोई भी सेट एक ब्रह्मांड हो सकता है, जब तक कि अध्ययन की वस्तु उस विशेष सेट तक ही सीमित हो। यदि अध्ययन का उद्देश्य [[वास्तविक संख्या]]ओं से बनता है, तो [[वास्तविक रेखा]] 'आर', जो कि वास्तविक संख्या समुच्चय है, विचाराधीन ब्रह्मांड हो सकती है। स्पष्ट रूप से, यह वह ब्रह्मांड है जिसका उपयोग [[जॉर्ज कैंटर]] कर रहे थे जब उन्होंने पहली बार | संभवतः सबसे सरल संस्करण यह है कि कोई भी सेट एक ब्रह्मांड हो सकता है, जब तक कि अध्ययन की वस्तु उस विशेष सेट तक ही सीमित हो। यदि अध्ययन का उद्देश्य [[वास्तविक संख्या]]ओं से बनता है, तो [[वास्तविक रेखा]] 'आर', जो कि वास्तविक संख्या समुच्चय है, विचाराधीन ब्रह्मांड हो सकती है। स्पष्ट रूप से, यह वह ब्रह्मांड है जिसका उपयोग [[जॉर्ज कैंटर]] कर रहे थे जब उन्होंने पहली बार १८७० और १८८० के दशक में [[वास्तविक विश्लेषण]] के लिए अनुप्रयोगों में आधुनिक सहज सेट सिद्धांत और [[प्रमुखता]] विकसित की थी। कैंटर मूल रूप से रुचि रखने वाले एकमात्र सेट 'आर' के [[सबसेट]] थे। | ||
ब्रह्मांड की यह अवधारणा [[वेन आरेख]]ों के उपयोग में परिलक्षित होती है। एक वेन आरेख में, कार्रवाई परंपरागत रूप से एक बड़े आयत के अंदर होती है जो ब्रह्मांड यू का प्रतिनिधित्व करती है। आम तौर पर कहा जाता है कि सेट मंडलियों द्वारा दर्शाए जाते हैं; लेकिन ये समुच्चय केवल यू के उपसमुच्चय हो सकते हैं। समुच्चय ए का पूरक (समुच्चय सिद्धांत) तब ए के वृत्त के बाहर आयत के उस भाग द्वारा दिया जाता है। सख्ती से बोलते हुए, यह यू के सापेक्ष ए का सापेक्ष [[पूरक (सेट सिद्धांत)]] यू \ ए है; लेकिन एक संदर्भ में जहां यू ब्रह्मांड है, इसे पूरक (सेट सिद्धांत) ए के रूप में माना जा सकता है। इसी तरह, शून्य चौराहे की एक धारणा है, जो शून्य सेट (जिसका अर्थ है कोई सेट नहीं, शून्य सेट नहीं) का प्रतिच्छेदन है। | ब्रह्मांड की यह अवधारणा [[वेन आरेख]]ों के उपयोग में परिलक्षित होती है। एक वेन आरेख में, कार्रवाई परंपरागत रूप से एक बड़े आयत के अंदर होती है जो ब्रह्मांड यू का प्रतिनिधित्व करती है। आम तौर पर कहा जाता है कि सेट मंडलियों द्वारा दर्शाए जाते हैं; लेकिन ये समुच्चय केवल यू के उपसमुच्चय हो सकते हैं। समुच्चय ए का पूरक (समुच्चय सिद्धांत) तब ए के वृत्त के बाहर आयत के उस भाग द्वारा दिया जाता है। सख्ती से बोलते हुए, यह यू के सापेक्ष ए का सापेक्ष [[पूरक (सेट सिद्धांत)]] यू \ ए है; लेकिन एक संदर्भ में जहां यू ब्रह्मांड है, इसे पूरक (सेट सिद्धांत) ए के रूप में माना जा सकता है। इसी तरह, शून्य चौराहे की एक धारणा है, जो शून्य सेट (जिसका अर्थ है कोई सेट नहीं, शून्य सेट नहीं) का प्रतिच्छेदन है। | ||
Line 36: | Line 36: | ||
== सेट सिद्धांत में == | == सेट सिद्धांत में == | ||
इस दावे को सटीक अर्थ देना संभव है कि SN सामान्य गणित का ब्रह्मांड है; यह [[ज़र्मेलो सेट सिद्धांत]] का एक [[मॉडल सिद्धांत]] है, स्वयंसिद्ध सेट सिद्धांत मूल रूप से | इस दावे को सटीक अर्थ देना संभव है कि SN सामान्य गणित का ब्रह्मांड है; यह [[ज़र्मेलो सेट सिद्धांत]] का एक [[मॉडल सिद्धांत]] है, स्वयंसिद्ध सेट सिद्धांत मूल रूप से १९०८ में [[अर्नेस्ट ज़र्मेलो]] द्वारा विकसित किया गया था । ज़र्मेलो सेट सिद्धांत सटीक रूप से सफल रहा क्योंकि यह ३० साल पहले कैंटर द्वारा शुरू किए गए कार्यक्रम को पूरा करते हुए सामान्य गणित को स्वयंसिद्ध करने में सक्षम था। लेकिन ज़र्मेलो सेट सिद्धांत गणित की नींव में स्वयंसिद्ध सेट सिद्धांत और अन्य कार्यों के आगे के विकास के लिए अपर्याप्त साबित हुआ, विशेष रूप से मॉडल सिद्धांत। | ||
एक नाटकीय उदाहरण के लिए, ऊपर अधिरचना प्रक्रिया का वर्णन ज़र्मेलो सेट सिद्धांत में ही नहीं किया जा सकता है। अंतिम चरण, एस को एक असीम संघ के रूप में बनाने के लिए, प्रतिस्थापन के स्वयंसिद्ध की आवश्यकता होती है, जिसे | एक नाटकीय उदाहरण के लिए, ऊपर अधिरचना प्रक्रिया का वर्णन ज़र्मेलो सेट सिद्धांत में ही नहीं किया जा सकता है। अंतिम चरण, एस को एक असीम संघ के रूप में बनाने के लिए, प्रतिस्थापन के स्वयंसिद्ध की आवश्यकता होती है, जिसे १९२२ में ज़र्मेलो-फ्रेंकेल सेट सिद्धांत बनाने के लिए ज़र्मेलो सेट सिद्धांत में जोड़ा गया था, जो आज व्यापक रूप से स्वीकृत स्वयंसिद्धों का सेट है। इसलिए जब सामान्य गणित '' एसएन '' में किया जा सकता है, एसएन की चर्चा '' एसएन सामान्य से परे, [[मेटामैथमैटिक्स]] में जाती है। | ||
लेकिन अगर उच्च-शक्ति वाले सेट सिद्धांत को लाया जाता है, तो ऊपर दी गई अधिरचना प्रक्रिया खुद को एक [[ट्रांसफिनिट रिकर्सन]] की शुरुआत के रूप में प्रकट करती है। ''X'' = {}, खाली सेट पर वापस जा रहे हैं, और (मानक) संकेतन ''V'' को प्रस्तुत कर रहे हैं<sub>''i''</sub> Si{}, V<sub>0</sub> = {}, V<sub>1</sub> = P{}, और इसी तरह पहले की तरह। लेकिन जिसे अधिरचना कहा जाता था, वह अब सूची में अगला आइटम है: V<sub>ω</sub>, जहां ω पहली अनंत क्रमिक संख्या है। इसे मनमाने ढंग से क्रमिक संख्याओं तक बढ़ाया जा सकता है: | लेकिन अगर उच्च-शक्ति वाले सेट सिद्धांत को लाया जाता है, तो ऊपर दी गई अधिरचना प्रक्रिया खुद को एक [[ट्रांसफिनिट रिकर्सन]] की शुरुआत के रूप में प्रकट करती है। ''X'' = {}, खाली सेट पर वापस जा रहे हैं, और (मानक) संकेतन ''V'' को प्रस्तुत कर रहे हैं<sub>''i''</sub> Si{}, V<sub>0</sub> = {}, V<sub>1</sub> = P{}, और इसी तरह पहले की तरह। लेकिन जिसे अधिरचना कहा जाता था, वह अब सूची में अगला आइटम है: V<sub>ω</sub>, जहां ω पहली अनंत क्रमिक संख्या है। इसे मनमाने ढंग से क्रमिक संख्याओं तक बढ़ाया जा सकता है: | ||
Line 50: | Line 50: | ||
== विधेय कलन में == | == विधेय कलन में == | ||
प्रथम-क्रम तर्क की एक [[व्याख्या (तर्क)]] में, ब्रह्मांड (या प्रवचन का डोमेन) व्यक्तियों (व्यक्तिगत स्थिरांक) का समूह है, जिस पर [[परिमाणक (तर्क)]]तर्क) की सीमा होती है। एक प्रस्ताव जैसे {{math|[[Universal quantification|∀]]''x'' (''x''<sup>2</sup> ≠ 2)}} अस्पष्ट है, यदि विमर्श के किसी क्षेत्र की पहचान नहीं की गई है। एक व्याख्या में, विमर्श का क्षेत्र वास्तविक संख्याओं का समुच्चय हो सकता है; एक अन्य व्याख्या में, यह प्राकृतिक संख्याओं का समुच्चय हो सकता है। यदि प्रवचन का क्षेत्र वास्तविक संख्याओं का समूह है, तो प्रस्ताव झूठा है, साथ {{math|1=''x'' = {{radic|2}}}} प्रति उदाहरण के रूप में; यदि प्रांत प्राकृतिकों का समुच्चय है, तो तर्कवाक्य सत्य है, क्योंकि | प्रथम-क्रम तर्क की एक [[व्याख्या (तर्क)]] में, ब्रह्मांड (या प्रवचन का डोमेन) व्यक्तियों (व्यक्तिगत स्थिरांक) का समूह है, जिस पर [[परिमाणक (तर्क)]]तर्क) की सीमा होती है। एक प्रस्ताव जैसे {{math|[[Universal quantification|∀]]''x'' (''x''<sup>2</sup> ≠ 2)}} अस्पष्ट है, यदि विमर्श के किसी क्षेत्र की पहचान नहीं की गई है। एक व्याख्या में, विमर्श का क्षेत्र वास्तविक संख्याओं का समुच्चय हो सकता है; एक अन्य व्याख्या में, यह प्राकृतिक संख्याओं का समुच्चय हो सकता है। यदि प्रवचन का क्षेत्र वास्तविक संख्याओं का समूह है, तो प्रस्ताव झूठा है, साथ {{math|1=''x'' = {{radic|2}}}} प्रति उदाहरण के रूप में; यदि प्रांत प्राकृतिकों का समुच्चय है, तो तर्कवाक्य सत्य है, क्योंकि २ किसी भी प्राकृत संख्या का वर्ग नहीं है। | ||
== श्रेणी सिद्धांत में == | == श्रेणी सिद्धांत में == | ||
{{Main|ग्रोथेन डाइक ब्रह्मांड}} | {{Main|ग्रोथेन डाइक ब्रह्मांड}} | ||
ब्रह्मांडों के लिए एक और दृष्टिकोण है जो ऐतिहासिक रूप से श्रेणी सिद्धांत से जुड़ा हुआ है। यह ग्रोथेंडिक ब्रह्मांड का विचार है। मोटे तौर पर, एक ग्रोथेंडिक ब्रह्मांड एक सेट है जिसके अंदर सेट सिद्धांत के सभी सामान्य संचालन किए जा सकते हैं। ब्रह्मांड के इस संस्करण को किसी भी सेट के रूप में परिभाषित किया गया है जिसके लिए निम्नलिखित स्वयंसिद्ध हैं:<ref>Mac Lane 1998, p. 22</ref> | |||
# <math>x\in u\in U</math> तात्पर्य <math>x\in U</math> | # <math>x\in u\in U</math> तात्पर्य <math>x\in U</math> | ||
# <math>u\in U</math> और <math>v\in U</math> मतलब {यू, वी}, (यू, वी), और <math>u\times v\in U</math>. | # <math>u\in U</math> और <math>v\in U</math> मतलब {यू, वी}, (यू, वी), और <math>u\times v\in U</math>. | ||
Line 62: | Line 62: | ||
# अगर <math>f:a\to b</math> के साथ एक विशेषण कार्य है <math> a\in U</math> और <math>b\subset U</math>, तब <math>b\in U</math>. | # अगर <math>f:a\to b</math> के साथ एक विशेषण कार्य है <math> a\in U</math> और <math>b\subset U</math>, तब <math>b\in U</math>. | ||
ग्रोथेंडिक ब्रह्मांड का लाभ यह है कि यह वास्तव में एक सेट है, और कभी भी उचित वर्ग नहीं है। | ग्रोथेंडिक ब्रह्मांड का लाभ यह है कि यह वास्तव में एक सेट है, और कभी भी उचित वर्ग नहीं है। हानि यह है कि यदि कोई पर्याप्त प्रयास करता है, तो वह ग्रोथेंडिक ब्रह्मांड को छोड़ सकता है।{{citation needed|date=December 2013}} | ||
ग्रोथेंडिक ब्रह्मांड यू का सबसे आम उपयोग यू को सभी सेटों की श्रेणी के प्रतिस्थापन के रूप में लेना है। एक का कहना है कि एक समुच्चय S 'यू'-'छोटा' है यदि S ∈यू, और 'यू'-'बड़ा' अन्यथा। सभी यू-छोटे सेटों की श्रेणी यू-'सेट' में सभी यू-छोटे सेट | ग्रोथेंडिक ब्रह्मांड यू का सबसे आम उपयोग यू को सभी सेटों की श्रेणी के प्रतिस्थापन के रूप में लेना है। एक का कहना है कि एक समुच्चय S 'यू'-'छोटा' है यदि S ∈यू, और 'यू'-'बड़ा' अन्यथा। सभी यू-छोटे सेटों की श्रेणी यू-'सेट' में सभी यू-छोटे सेट वस्तु के रूप में हैं और इन सेटों के बीच सभी प्रकार्यों के रूप में हैं। वस्तु समुच्चय और आकारिकी समुच्चय दोनों ही समुच्चय हैं, इसलिए उचित वर्गों का आह्वान किए बिना सभी समुच्चयों की श्रेणी पर चर्चा करना संभव हो जाता है। तब इस नई श्रेणी के संदर्भ में अन्य श्रेणियों को परिभाषित करना संभव हो जाता है। उदाहरण के लिए, सभी यू-छोटी श्रेणियों की श्रेणी उन सभी श्रेणियों की श्रेणी है, जिनका वस्तु सेट और जिनका आकारिकी सेट यू में है। फिर सेट सिद्धांत के सामान्य तर्क सभी श्रेणियों की श्रेणी पर लागू होते हैं, और किसी को नहीं करना पड़ता है गलती से उचित कक्षाओं के बारे में बात करने की चिंता। क्योंकि ग्रोथेंडिक ब्रह्मांड बहुत बड़े हैं, यह लगभग सभी अनुप्रयोगों में पर्याप्त है। | ||
प्रायः ग्रोथेंडिक ब्रह्मांडों के साथ काम करते समय, गणितज्ञ टार्स्की-ग्रोथेंडिक सेट सिद्धांत को मानते हैं: किसी भी सेट x के लिए, एक ब्रह्मांड यू मौजूद है जैसे कि x ∈यू। इस स्वयंसिद्ध का | प्रायः ग्रोथेंडिक ब्रह्मांडों के साथ काम करते समय, गणितज्ञ टार्स्की-ग्रोथेंडिक सेट सिद्धांत को मानते हैं: किसी भी सेट x के लिए, एक ब्रह्मांड यू मौजूद है जैसे कि x ∈यू। इस स्वयंसिद्ध का समस्या यह है कि किसी भी सेट का सामना कुछ यू के लिए यू-छोटा होता है, इसलिए सामान्य ग्रोथेंडिक ब्रह्मांड में किए गए किसी भी तर्क को लागू किया जा सकता है।<ref>{{Cite arXiv |last=Low |first=Zhen Lin |date=2013-04-18 |title=श्रेणी सिद्धांत के लिए ब्रह्मांड|class=math.CT |eprint=1304.5227v2 }}</ref> यह स्वयंसिद्ध दुर्गम कार्डिनल्स के अस्तित्व से निकटता से संबंधित है। | ||
== टाइप थ्योरी में<!--'Russell-style universe', 'Russell-style universes', 'Tarski-style universe', and 'Tarski-style universes' redirect here-->== | == टाइप थ्योरी में<!--'Russell-style universe', 'Russell-style universes', 'Tarski-style universe', and 'Tarski-style universes' redirect here-->== | ||
कुछ प्रकार के सिद्धांतों में, विशेष रूप से [[आश्रित प्रकार]] वाले | कुछ प्रकार के सिद्धांतों में, विशेष रूप से [[आश्रित प्रकार]] वाले प्रणालियों में, स्वयं को शब्द (तर्क) के रूप में माना जा सकता है। एक प्रकार है जिसे ब्रह्मांड कहा जाता है (प्रायः निरूपित किया जाता है <math>\mathcal{U}</math>) जिसके तत्वों के प्रकार हैं। गिरार्ड के विरोधाभास (टाइप थ्योरी के लिए रसेल के विरोधाभास का एक एनालॉग) जैसे विरोधाभासों से बचने के लिए, प्रकार के सिद्धांतों को प्रायः ऐसे ब्रह्मांडों के एक [[गणनीय सेट]] पदानुक्रम से सुसज्जित किया जाता है, जिसमें प्रत्येक ब्रह्मांड अगले एक का पद होता है। | ||
कम से कम दो प्रकार के ब्रह्माण्ड हैं जिन पर एक प्रकार के सिद्धांत में विचार किया जा सकता है: रसेल-शैली के ब्रह्मांड ([[बर्ट्रेंड रसेल]] के नाम पर) और तार्स्की-शैली के ब्रह्मांड ([[अल्फ्रेड टार्स्की]] के नाम पर)।<ref name=nLab>[https://ncatlab.org/homotopytypetheory/show/universe "Universe in Homotopy Type Theory"] in [[nLab]]</ref><ref>Zhaohui Luo, [http://www.cs.rhul.ac.uk/home/zhaohui/universes.pdf "Notes on Universes in Type Theory"], 2012.</ref><ref>[[Per Martin-Löf]], ''Intuitionistic Type Theory'', Bibliopolis, 1984, pp. 88 and 91.</ref> एक रसेल-शैली का ब्रह्मांड एक प्रकार है जिसकी शर्तें प्रकार हैं।<ref name=nLab/>एक तर्स्की-शैली ब्रह्मांड एक प्रकार है जो एक व्याख्या संचालन के साथ मिलकर हमें इसकी शर्तों को प्रकारों के रूप में मानने की अनुमति देता है।<ref name=nLab/> | कम से कम दो प्रकार के ब्रह्माण्ड हैं जिन पर एक प्रकार के सिद्धांत में विचार किया जा सकता है: रसेल-शैली के ब्रह्मांड ([[बर्ट्रेंड रसेल]] के नाम पर) और तार्स्की-शैली के ब्रह्मांड ([[अल्फ्रेड टार्स्की]] के नाम पर)।<ref name=nLab>[https://ncatlab.org/homotopytypetheory/show/universe "Universe in Homotopy Type Theory"] in [[nLab]]</ref><ref>Zhaohui Luo, [http://www.cs.rhul.ac.uk/home/zhaohui/universes.pdf "Notes on Universes in Type Theory"], 2012.</ref><ref>[[Per Martin-Löf]], ''Intuitionistic Type Theory'', Bibliopolis, 1984, pp. 88 and 91.</ref> एक रसेल-शैली का ब्रह्मांड एक प्रकार है जिसकी शर्तें प्रकार हैं।<ref name=nLab/>एक तर्स्की-शैली ब्रह्मांड एक प्रकार है जो एक व्याख्या संचालन के साथ मिलकर हमें इसकी शर्तों को प्रकारों के रूप में मानने की अनुमति देता है।<ref name=nLab/> | ||
Line 75: | Line 75: | ||
उदाहरण के लिए:<ref>{{cite journal |last1=Rathjen |first1=Michael |date=October 2005 |title=The Constructive Hilbert Program and the Limits of Martin-Löf Type Theory |url=https://link.springer.com/article/10.1007/s11229-004-6208-4 |journal=Synthese |volume=147 |pages=81–120 |doi=10.1007/s11229-004-6208-4 |s2cid=143295 |access-date=September 21, 2022}}</ref> | उदाहरण के लिए:<ref>{{cite journal |last1=Rathjen |first1=Michael |date=October 2005 |title=The Constructive Hilbert Program and the Limits of Martin-Löf Type Theory |url=https://link.springer.com/article/10.1007/s11229-004-6208-4 |journal=Synthese |volume=147 |pages=81–120 |doi=10.1007/s11229-004-6208-4 |s2cid=143295 |access-date=September 21, 2022}}</ref> | ||
{{quote| | {{quote|[[मार्टिन-लोफ प्रकार सिद्धांत]] की खुलापन विशेष रूप से तथाकथित ब्रह्मांडों की शुरूआत में प्रकट होता है। प्रकार के ब्रह्मांड प्रतिबिंब की अनौपचारिक धारणा को समाहित करते हैं जिसकी भूमिका को निम्नानुसार समझाया जा सकता है। टाइप सिद्धांत के एक विशेष औपचारिकरण को विकसित करने के दौरान, टाइप सिद्धांतकार प्रकारों के नियमों पर वापस देख सकता है, सी कहते हैं, जिन्हें अब तक पेश किया गया है और यह पहचानने का चरण निष्पादित कर सकता है कि वे [[मार्टिन-लोफ]]<nowiki> के अनौपचारिक शब्दार्थ के अनुसार मान्य हैं। 'आत्मनिरीक्षण' का यह कार्य उन धारणाओं से अवगत होने का एक प्रयास है जिन्होंने अतीत में हमारे निर्माणों को नियंत्रित किया है। यह एक "[प्रतिबिंब सिद्धांत]] को जन्म देता है जो मोटे तौर पर कहता है कि हम जो कुछ भी प्रकारों के साथ करने के आदी हैं, वह एक ब्रह्मांड के अंदर किया जा सकता है" (मार्टिन-लोफ १९७५,८३) । औपचारिक स्तर पर, यह प्रकार सिद्धांत के मौजूदा औपचारिकरण के विस्तार की ओर जाता है जिसमें सी की प्रकार बनाने की क्षमता एक प्रकार के ब्रह्मांड यू</nowiki><sub>सी</sub> दर्पण में निहित हो जाती है।}} | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 90: | Line 90: | ||
==संदर्भ== | ==संदर्भ== | ||
* | *मैक लेन, सॉन्डर्स (१९९८) । कामकाजी गणितज्ञ के लिए श्रेणियाँ. स्प्रिंगर-वर्लाग न्यूयॉर्क, इंक। | ||
Revision as of 13:36, 18 March 2023
गणित में, और विशेष रूप वर्ग (सेट सिद्धांत), श्रेणी सिद्धांत, प्रकार सिद्धांत और गणित की नींव में, एक ब्रह्मांड एक संग्रह है जिसमें सभी संस्थाएं सम्मिलित होती हैं जिन्हें किसी दिए गए स्थिति में विचार करना होता है।
समुच्चय सिद्धान्त में, ब्रह्माण्ड प्रायः ऐसे वर्ग होते हैं जिनमें (तत्व के रूप में ) सभी समुच्चय होते हैं जिसके लिए एक विशेष प्रमेय के गणितीय प्रमाण की आशा की जाती है। ये वर्ग विभिन्न स्वयंसिद्ध प्रणालियों जैसे जेडएफसी या मोर्स-केली सेट सिद्धांत के लिए आंतरिक मॉडल के रूप में काम कर सकते हैं। सेट-सैद्धांतिक नींव के अंदर श्रेणी सिद्धांत में अवधारणाओं को औपचारिक रूप देने के लिए ब्रह्मांड का महत्वपूर्ण महत्व है। उदाहरण के लिए, किसी श्रेणी की विहित प्रेरक उदाहरण सेट है की जो सभी सेट की श्रेणी है, जिसे एक ब्रह्मांड की कुछ धारणा के बिना एक सेट सिद्धांत में औपचारिक रूप नहीं दिया जा सकता है।
प्रकार सिद्धांत में, ब्रह्मांड एक प्रकार है जिसके तत्व प्रकार हैं।
एक विशिष्ट संदर्भ में
संभवतः सबसे सरल संस्करण यह है कि कोई भी सेट एक ब्रह्मांड हो सकता है, जब तक कि अध्ययन की वस्तु उस विशेष सेट तक ही सीमित हो। यदि अध्ययन का उद्देश्य वास्तविक संख्याओं से बनता है, तो वास्तविक रेखा 'आर', जो कि वास्तविक संख्या समुच्चय है, विचाराधीन ब्रह्मांड हो सकती है। स्पष्ट रूप से, यह वह ब्रह्मांड है जिसका उपयोग जॉर्ज कैंटर कर रहे थे जब उन्होंने पहली बार १८७० और १८८० के दशक में वास्तविक विश्लेषण के लिए अनुप्रयोगों में आधुनिक सहज सेट सिद्धांत और प्रमुखता विकसित की थी। कैंटर मूल रूप से रुचि रखने वाले एकमात्र सेट 'आर' के सबसेट थे।
ब्रह्मांड की यह अवधारणा वेन आरेखों के उपयोग में परिलक्षित होती है। एक वेन आरेख में, कार्रवाई परंपरागत रूप से एक बड़े आयत के अंदर होती है जो ब्रह्मांड यू का प्रतिनिधित्व करती है। आम तौर पर कहा जाता है कि सेट मंडलियों द्वारा दर्शाए जाते हैं; लेकिन ये समुच्चय केवल यू के उपसमुच्चय हो सकते हैं। समुच्चय ए का पूरक (समुच्चय सिद्धांत) तब ए के वृत्त के बाहर आयत के उस भाग द्वारा दिया जाता है। सख्ती से बोलते हुए, यह यू के सापेक्ष ए का सापेक्ष पूरक (सेट सिद्धांत) यू \ ए है; लेकिन एक संदर्भ में जहां यू ब्रह्मांड है, इसे पूरक (सेट सिद्धांत) ए के रूप में माना जा सकता है। इसी तरह, शून्य चौराहे की एक धारणा है, जो शून्य सेट (जिसका अर्थ है कोई सेट नहीं, शून्य सेट नहीं) का प्रतिच्छेदन है।
ब्रह्मांड के बिना, शून्य प्रतिच्छेदन पूरी तरह से सब कुछ का सेट होगा, जिसे आम तौर पर असंभव माना जाता है; लेकिन ब्रह्मांड को ध्यान में रखते हुए, शून्य प्रतिच्छेदन को विचाराधीन हर चीज के सेट के रूप में माना जा सकता है, जो केवल यू है। ये सम्मेलन बूलियन लैटिस पर आधारित शून्य सेट सिद्धांत के बीजगणितीय दृष्टिकोण में काफी उपयोगी हैं। स्वयंसिद्ध समुच्चय सिद्धांत (जैसे नई नींव) के कुछ गैर-मानक रूपों को छोड़कर, सभी समुच्चयों का वर्ग (सेट सिद्धांत) एक बूलियन जाली नहीं है (यह केवल एक अपेक्षाकृत पूरक जाली है)।
इसके विपरीत, यू के सभी उपसमुच्चयों का वर्ग, जिसे यू का घात समुच्चय कहा जाता है, एक बूलियन जालक है। ऊपर वर्णित पूर्ण पूरक बूलियन जालक में पूरक संक्रिया है; और यू, शून्य चौराहा के रूप में, बूलियन जाली में सबसे महान तत्व (या नलरी मीट (गणित)) के रूप में कार्य करता है। फिर डी मॉर्गन के नियम, जो मिलने और जुड़ने (गणित) के पूरक से निपटते हैं (जो कि सेट सिद्धांत में संघ (सेट सिद्धांत) हैं) लागू होते हैं, और यहां तक कि नलरी मीट और न्यूलरी जॉइन (जो कि खाली सेट है) पर भी लागू होते हैं।
साधारण गणित में
तथापि, एक बार दिए गए सेट एक्स (कैंटर के मामले में, एक्स = 'आर') के उपसमुच्चय पर विचार किया जाता है, ब्रह्मांड को एक्स के उपसमुच्चय का एक सेट होने की आवश्यकता हो सकती है। (उदाहरण के लिए, एक्स पर एक टोपोलॉजिकल स्पेस सबसेट का एक सेट है।) एक्स के उपसमुच्चय के विभिन्न समुच्चय स्वयं एक्स के उपसमुच्चय नहीं होंगे, बल्कि इसके बजाय 'पी'एक्स के उपसमुच्चय होंगे, जो एक्स का घात समुच्चय है। इसे जारी रखा जा सकता है; अध्ययन की उद्देश्य में आगे एक्स के उपसमुच्चयों के ऐसे सेट सम्मिलित हो सकते हैं, और इसी तरह, जिस स्थिति में ब्रह्मांड 'पी'('पी'एक्स) होगा। एक अन्य दिशा में, एक्स पर द्विआधारी संबंध (कार्टेशियन उत्पाद के उपसमुच्चय एक्स × एक्स) पर विचार किया जा सकता है, या कार्य (गणित) एक्स से स्वयं के लिए किया जा सकता है, जैसे ब्रह्मांडों की आवश्यकता होती है पी(एक्स × एक्स) या एक्सएक्स।
इस प्रकार, भले ही प्राथमिक रुचि एक्स है, ब्रह्मांड को एक्स से काफी बड़ा होना पड़ सकता है। उपरोक्त विचारों के बाद, ब्रह्मांड के रूप में एक्स पर 'अधिरचना' चाह सकता है। इसे संरचनात्मक पुनरावर्तन द्वारा निम्नानुसार परिभाषित किया जा सकता है:
- S0X को X ही होने दें।
- मान लीजिए कि S1X, X और PX का संघ (सेट सिद्धांत) है।
- मान लीजिए कि S2X, S1X और P(S1X) का संघ है।
- सामान्य तौर पर, 'S'n+1X को 'S'nX और 'P' ('S'nX) का संघ होने दें।
फिर एक्स पर अधिरचना, SX लिखा गया है, 'S0X, S1X, S2X, और इसी तरह का संघ है; नहीं तो
कोई भिन्नता नहीं पड़ता कि कौन सा सेट एक्स शुरुआती बिंदु है, खाली सेट {} 'एस'1एक्स से संबंधित होगा। खाली सेट वॉन न्यूमैन क्रमसूचक [0] है। तब {[0]}, वह समुच्चय जिसका एकमात्र तत्व खाली समुच्चय है, 'एस'2एक्स से संबंधित होगा; यह वॉन न्यूमैन क्रमसूचक है [1] । इसी तरह, {[1]} 'एस'3एक्स से संबंधित होगा, और इस प्रकार {[0], [1]}, {[0]} और {[1]} के मिलन के रूप में होगा; यह वॉन न्यूमैन क्रमसूचक [2] है। इस प्रक्रिया को जारी रखते हुए, प्रत्येक प्राकृतिक संख्या को अधिरचना में उसके वॉन न्यूमैन क्रमसूचक द्वारा दर्शाया जाता है। इसके बाद, यदि x और y अधिरचना से संबंधित हैं, तो ऐसा होता है {{x},{x,y}}, जो क्रमित युग्म (x, y) का प्रतिनिधित्व करता है। इस प्रकार अधिरचना में विभिन्न वांछित कार्टेशियन उत्पाद सम्मिलित होंगे। फिर अधिरचना में कार्य (गणित) और संबंध (गणित) भी सम्मिलित हैं, क्योंकि इन्हें कार्टेशियन उत्पादों के उपसमुच्चय के रूप में दर्शाया जा सकता है। यह प्रक्रिया आदेशित n-टुपल्स भी देती है, जिसका प्रतिनिधित्व ऐसे कार्यों के रूप में किया जाता है जिसका डोमेन वॉन न्यूमैन ऑर्डिनल [n] है, और इसी तरह।
इसलिए यदि प्रारंभिक बिंदु केवल X = {} है, तो गणित के लिए आवश्यक सेटों का एक बड़ा हिस्सा {} पर अधिरचना के तत्वों के रूप में दिखाई देते हैं। लेकिन 'S'{} का प्रत्येक अवयव परिमित समुच्चय होगा। प्रत्येक प्राकृतिक संख्या इससे संबंधित है, लेकिन सभी प्राकृतिक संख्याओं का सेट 'एन' नहीं है (यद्यपि यह 'एस' {} का उप-समूह है)। वास्तव में, {} पर अधिरचना में सभी आनुवंशिक रूप से परिमित समुच्चय होते हैं। जैसे, इसे परिमित गणित का ब्रह्मांड माना जा सकता है। कालानुक्रमिक रूप से बोलते हुए, कोई यह सुझाव दे सकता है कि 19वीं सदी के फिनिटिस्ट लियोपोल्ड क्रोनकर इस ब्रह्मांड में काम कर रहे थे; उनका मानना था कि प्रत्येक प्राकृतिक संख्या मौजूद थी लेकिन सेट 'एन' (एक पूर्ण अनंत) नहीं था।
तथापि, 'S'{} सामान्य गणितज्ञों (जो परिमित नहीं हैं) के लिए असंतोषजनक है, क्योंकि भले ही 'N' 'S'{} के उपसमुच्चय के रूप में उपलब्ध हो, फिर भी 'N' का घात समुच्चय नहीं है। विशेष रूप से, वास्तविक संख्याओं का मनमाना सेट उपलब्ध नहीं है। इसलिए प्रक्रिया को फिर से शुरू करना और 'S'('S'{}) बनाना आवश्यक हो सकता है। तथापि, चीजों को सरल रखने के लिए, प्राकृतिक संख्याओं के सेट 'N' को दिया जा सकता है और 'SN', 'N' के ऊपर अधिरचना का निर्माण कर सकते हैं। इसे प्रायः सामान्य गणित का ब्रह्मांड माना जाता है। विचार यह है कि सामान्य रूप से अध्ययन किए जाने वाले सभी गणित इस ब्रह्मांड के तत्वों को संदर्भित करते हैं। उदाहरण के लिए, वास्तविक संख्याओं का कोई भी सामान्य निर्माण (डेडेकाइंड कट्स द्वारा) 'एसएन' से संबंधित है। यहां तक कि प्राकृतिक संख्याओं के गैर-मानक मॉडल पर अधिरचना में गैर-मानक विश्लेषण भी किया जा सकता है।
पिछले खंड से दर्शनशास्त्र में थोड़ा बदलाव आया है, जहां ब्रह्मांड रुचि का कोई सेट यू था। वहां, अध्ययन किए जा रहे सेट ब्रह्मांड के उपसमुच्चय थे; अब, वे ब्रह्मांड के सदस्य हैं। इस प्रकार यद्यपि 'P'('S'X) एक बूलियन जाली है, जो प्रासंगिक है वह यह है कि 'S'X स्वयं नहीं है। नतीजतन, बूलियन लैटिस और वेन आरेखों की धारणाओं को सीधे अधिरचना ब्रह्मांड पर लागू करना दुर्लभ है क्योंकि वे पिछले खंड के शक्ति-सेट ब्रह्मांडों के लिए थे। इसके बजाय, व्यक्ति अलग-अलग बूलियन लैटिस 'पीए'ए के साथ काम कर सकता है, जहां ए 'एस'एक्स से संबंधित कोई भी प्रासंगिक सेट है; तो 'पीए'ए 'एस'एक्स का एक उपसमुच्चय है (और वास्तव में 'एस'एक्स से संबंधित है)। कैंटर के मामले में एक्स = 'आर' विशेष रूप से, वास्तविक संख्याओं के मनमाने सेट उपलब्ध नहीं हैं, इसलिए वहां प्रक्रिया को फिर से शुरू करना आवश्यक हो सकता है।
सेट सिद्धांत में
इस दावे को सटीक अर्थ देना संभव है कि SN सामान्य गणित का ब्रह्मांड है; यह ज़र्मेलो सेट सिद्धांत का एक मॉडल सिद्धांत है, स्वयंसिद्ध सेट सिद्धांत मूल रूप से १९०८ में अर्नेस्ट ज़र्मेलो द्वारा विकसित किया गया था । ज़र्मेलो सेट सिद्धांत सटीक रूप से सफल रहा क्योंकि यह ३० साल पहले कैंटर द्वारा शुरू किए गए कार्यक्रम को पूरा करते हुए सामान्य गणित को स्वयंसिद्ध करने में सक्षम था। लेकिन ज़र्मेलो सेट सिद्धांत गणित की नींव में स्वयंसिद्ध सेट सिद्धांत और अन्य कार्यों के आगे के विकास के लिए अपर्याप्त साबित हुआ, विशेष रूप से मॉडल सिद्धांत।
एक नाटकीय उदाहरण के लिए, ऊपर अधिरचना प्रक्रिया का वर्णन ज़र्मेलो सेट सिद्धांत में ही नहीं किया जा सकता है। अंतिम चरण, एस को एक असीम संघ के रूप में बनाने के लिए, प्रतिस्थापन के स्वयंसिद्ध की आवश्यकता होती है, जिसे १९२२ में ज़र्मेलो-फ्रेंकेल सेट सिद्धांत बनाने के लिए ज़र्मेलो सेट सिद्धांत में जोड़ा गया था, जो आज व्यापक रूप से स्वीकृत स्वयंसिद्धों का सेट है। इसलिए जब सामान्य गणित एसएन में किया जा सकता है, एसएन की चर्चा एसएन सामान्य से परे, मेटामैथमैटिक्स में जाती है।
लेकिन अगर उच्च-शक्ति वाले सेट सिद्धांत को लाया जाता है, तो ऊपर दी गई अधिरचना प्रक्रिया खुद को एक ट्रांसफिनिट रिकर्सन की शुरुआत के रूप में प्रकट करती है। X = {}, खाली सेट पर वापस जा रहे हैं, और (मानक) संकेतन V को प्रस्तुत कर रहे हैंi Si{}, V0 = {}, V1 = P{}, और इसी तरह पहले की तरह। लेकिन जिसे अधिरचना कहा जाता था, वह अब सूची में अगला आइटम है: Vω, जहां ω पहली अनंत क्रमिक संख्या है। इसे मनमाने ढंग से क्रमिक संख्याओं तक बढ़ाया जा सकता है:
वी परिभाषित करता हैi किसी भी क्रम संख्या के लिए मैं। सभी वी का संघi वॉन न्यूमैन ब्रह्मांड V है:
- .
प्रत्येक व्यक्ति Vi एक समुच्चय है, लेकिन उनका संघ V एक उचित वर्ग है। नींव का स्वयंसिद्ध, जिसे ज़र्मेलो-फ्रेंकेल सेट थ्योरी सेट थ्योरी में जोड़ा गया था, उसी समय प्रतिस्थापन के स्वयंसिद्ध के रूप में कहा गया था कि प्रत्येक सेट वी से संबंधित है।
- कर्ट गोडेल का रचनात्मक ब्रह्मांड एल और रचनात्मकता का स्वयंसिद्ध
- अप्राप्य कार्डिनल्स ZF के मॉडल और कभी-कभी अतिरिक्त स्वयंसिद्धों का उत्पादन करते हैं, और ग्रोथेंडिक ब्रह्मांड सेट के अस्तित्व के समान हैं
विधेय कलन में
प्रथम-क्रम तर्क की एक व्याख्या (तर्क) में, ब्रह्मांड (या प्रवचन का डोमेन) व्यक्तियों (व्यक्तिगत स्थिरांक) का समूह है, जिस पर परिमाणक (तर्क)तर्क) की सीमा होती है। एक प्रस्ताव जैसे ∀x (x2 ≠ 2) अस्पष्ट है, यदि विमर्श के किसी क्षेत्र की पहचान नहीं की गई है। एक व्याख्या में, विमर्श का क्षेत्र वास्तविक संख्याओं का समुच्चय हो सकता है; एक अन्य व्याख्या में, यह प्राकृतिक संख्याओं का समुच्चय हो सकता है। यदि प्रवचन का क्षेत्र वास्तविक संख्याओं का समूह है, तो प्रस्ताव झूठा है, साथ x = √2 प्रति उदाहरण के रूप में; यदि प्रांत प्राकृतिकों का समुच्चय है, तो तर्कवाक्य सत्य है, क्योंकि २ किसी भी प्राकृत संख्या का वर्ग नहीं है।
श्रेणी सिद्धांत में
ब्रह्मांडों के लिए एक और दृष्टिकोण है जो ऐतिहासिक रूप से श्रेणी सिद्धांत से जुड़ा हुआ है। यह ग्रोथेंडिक ब्रह्मांड का विचार है। मोटे तौर पर, एक ग्रोथेंडिक ब्रह्मांड एक सेट है जिसके अंदर सेट सिद्धांत के सभी सामान्य संचालन किए जा सकते हैं। ब्रह्मांड के इस संस्करण को किसी भी सेट के रूप में परिभाषित किया गया है जिसके लिए निम्नलिखित स्वयंसिद्ध हैं:[1]
- तात्पर्य
- और मतलब {यू, वी}, (यू, वी), और .
- तात्पर्य और
- (यहाँ सभी क्रमवाचक संख्याओं का समुच्चय है।)
- अगर के साथ एक विशेषण कार्य है और , तब .
ग्रोथेंडिक ब्रह्मांड का लाभ यह है कि यह वास्तव में एक सेट है, और कभी भी उचित वर्ग नहीं है। हानि यह है कि यदि कोई पर्याप्त प्रयास करता है, तो वह ग्रोथेंडिक ब्रह्मांड को छोड़ सकता है।[citation needed]
ग्रोथेंडिक ब्रह्मांड यू का सबसे आम उपयोग यू को सभी सेटों की श्रेणी के प्रतिस्थापन के रूप में लेना है। एक का कहना है कि एक समुच्चय S 'यू'-'छोटा' है यदि S ∈यू, और 'यू'-'बड़ा' अन्यथा। सभी यू-छोटे सेटों की श्रेणी यू-'सेट' में सभी यू-छोटे सेट वस्तु के रूप में हैं और इन सेटों के बीच सभी प्रकार्यों के रूप में हैं। वस्तु समुच्चय और आकारिकी समुच्चय दोनों ही समुच्चय हैं, इसलिए उचित वर्गों का आह्वान किए बिना सभी समुच्चयों की श्रेणी पर चर्चा करना संभव हो जाता है। तब इस नई श्रेणी के संदर्भ में अन्य श्रेणियों को परिभाषित करना संभव हो जाता है। उदाहरण के लिए, सभी यू-छोटी श्रेणियों की श्रेणी उन सभी श्रेणियों की श्रेणी है, जिनका वस्तु सेट और जिनका आकारिकी सेट यू में है। फिर सेट सिद्धांत के सामान्य तर्क सभी श्रेणियों की श्रेणी पर लागू होते हैं, और किसी को नहीं करना पड़ता है गलती से उचित कक्षाओं के बारे में बात करने की चिंता। क्योंकि ग्रोथेंडिक ब्रह्मांड बहुत बड़े हैं, यह लगभग सभी अनुप्रयोगों में पर्याप्त है।
प्रायः ग्रोथेंडिक ब्रह्मांडों के साथ काम करते समय, गणितज्ञ टार्स्की-ग्रोथेंडिक सेट सिद्धांत को मानते हैं: किसी भी सेट x के लिए, एक ब्रह्मांड यू मौजूद है जैसे कि x ∈यू। इस स्वयंसिद्ध का समस्या यह है कि किसी भी सेट का सामना कुछ यू के लिए यू-छोटा होता है, इसलिए सामान्य ग्रोथेंडिक ब्रह्मांड में किए गए किसी भी तर्क को लागू किया जा सकता है।[2] यह स्वयंसिद्ध दुर्गम कार्डिनल्स के अस्तित्व से निकटता से संबंधित है।
टाइप थ्योरी में
कुछ प्रकार के सिद्धांतों में, विशेष रूप से आश्रित प्रकार वाले प्रणालियों में, स्वयं को शब्द (तर्क) के रूप में माना जा सकता है। एक प्रकार है जिसे ब्रह्मांड कहा जाता है (प्रायः निरूपित किया जाता है ) जिसके तत्वों के प्रकार हैं। गिरार्ड के विरोधाभास (टाइप थ्योरी के लिए रसेल के विरोधाभास का एक एनालॉग) जैसे विरोधाभासों से बचने के लिए, प्रकार के सिद्धांतों को प्रायः ऐसे ब्रह्मांडों के एक गणनीय सेट पदानुक्रम से सुसज्जित किया जाता है, जिसमें प्रत्येक ब्रह्मांड अगले एक का पद होता है।
कम से कम दो प्रकार के ब्रह्माण्ड हैं जिन पर एक प्रकार के सिद्धांत में विचार किया जा सकता है: रसेल-शैली के ब्रह्मांड (बर्ट्रेंड रसेल के नाम पर) और तार्स्की-शैली के ब्रह्मांड (अल्फ्रेड टार्स्की के नाम पर)।[3][4][5] एक रसेल-शैली का ब्रह्मांड एक प्रकार है जिसकी शर्तें प्रकार हैं।[3]एक तर्स्की-शैली ब्रह्मांड एक प्रकार है जो एक व्याख्या संचालन के साथ मिलकर हमें इसकी शर्तों को प्रकारों के रूप में मानने की अनुमति देता है।[3]
उदाहरण के लिए:[6]
मार्टिन-लोफ प्रकार सिद्धांत की खुलापन विशेष रूप से तथाकथित ब्रह्मांडों की शुरूआत में प्रकट होता है। प्रकार के ब्रह्मांड प्रतिबिंब की अनौपचारिक धारणा को समाहित करते हैं जिसकी भूमिका को निम्नानुसार समझाया जा सकता है। टाइप सिद्धांत के एक विशेष औपचारिकरण को विकसित करने के दौरान, टाइप सिद्धांतकार प्रकारों के नियमों पर वापस देख सकता है, सी कहते हैं, जिन्हें अब तक पेश किया गया है और यह पहचानने का चरण निष्पादित कर सकता है कि वे मार्टिन-लोफ के अनौपचारिक शब्दार्थ के अनुसार मान्य हैं। 'आत्मनिरीक्षण' का यह कार्य उन धारणाओं से अवगत होने का एक प्रयास है जिन्होंने अतीत में हमारे निर्माणों को नियंत्रित किया है। यह एक "[प्रतिबिंब सिद्धांत]] को जन्म देता है जो मोटे तौर पर कहता है कि हम जो कुछ भी प्रकारों के साथ करने के आदी हैं, वह एक ब्रह्मांड के अंदर किया जा सकता है" (मार्टिन-लोफ १९७५,८३) । औपचारिक स्तर पर, यह प्रकार सिद्धांत के मौजूदा औपचारिकरण के विस्तार की ओर जाता है जिसमें सी की प्रकार बनाने की क्षमता एक प्रकार के ब्रह्मांड यूसी दर्पण में निहित हो जाती है।
यह भी देखें
- प्रवचन का क्षेत्र
- ग्रोथेंडिक ब्रह्मांड
- हरब्रांड ब्रह्मांड
- मुक्त वस्तु
- खुला सूत्र
- अंतरिक्ष (गणित)
टिप्पणियाँ
- ↑ Mac Lane 1998, p. 22
- ↑ Low, Zhen Lin (2013-04-18). "श्रेणी सिद्धांत के लिए ब्रह्मांड". arXiv:1304.5227v2 [math.CT].
- ↑ 3.0 3.1 3.2 "Universe in Homotopy Type Theory" in nLab
- ↑ Zhaohui Luo, "Notes on Universes in Type Theory", 2012.
- ↑ Per Martin-Löf, Intuitionistic Type Theory, Bibliopolis, 1984, pp. 88 and 91.
- ↑ Rathjen, Michael (October 2005). "The Constructive Hilbert Program and the Limits of Martin-Löf Type Theory". Synthese. 147: 81–120. doi:10.1007/s11229-004-6208-4. S2CID 143295. Retrieved September 21, 2022.
संदर्भ
- मैक लेन, सॉन्डर्स (१९९८) । कामकाजी गणितज्ञ के लिए श्रेणियाँ. स्प्रिंगर-वर्लाग न्यूयॉर्क, इंक।
बाहरी संबंध
- "Universe", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Weisstein, Eric W. "Universal Set". MathWorld.