ब्रह्मांड (गणित): Difference between revisions
No edit summary |
No edit summary |
||
Line 44: | Line 44: | ||
वी परिभाषित करता है <sub>''i''</sub> किसी भी क्रम संख्या के लिए मैं। सभी वी का संघ <sub>''Vi''</sub> वॉन न्यूमैन ब्रह्मांड ''V'' है: | वी परिभाषित करता है <sub>''i''</sub> किसी भी क्रम संख्या के लिए मैं। सभी वी का संघ <sub>''Vi''</sub> वॉन न्यूमैन ब्रह्मांड ''V'' है: | ||
: <math> V := \bigcup_{i} V_{i} \! </math>. | : <math> V := \bigcup_{i} V_{i} \! </math>. | ||
प्रत्येक व्यक्ति ''V<sub>i</sub>'' एक समुच्चय है, लेकिन उनका संघ ''V'' एक [[उचित वर्ग]] है। [[नींव का स्वयंसिद्ध]], जिसे ज़र्मेलो-फ्रेंकेल समुच्चय | प्रत्येक व्यक्ति ''V<sub>i</sub>'' एक समुच्चय है, लेकिन उनका संघ ''V'' एक [[उचित वर्ग]] है। [[नींव का स्वयंसिद्ध]], जिसे ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत समुच्चय सिद्धांत में जोड़ा गया था, उसी समय प्रतिस्थापन के स्वयंसिद्ध के रूप में कहा गया था कि प्रत्येक समुच्चय ''V'' से संबंधित है। | ||
: कर्ट गोडेल का रचनात्मक ब्रह्मांड एल और रचनात्मकता का स्वयंसिद्ध | : कर्ट गोडेल का रचनात्मक ब्रह्मांड एल और रचनात्मकता का स्वयंसिद्ध | ||
Line 68: | Line 68: | ||
प्रायः ग्रोथेंडिक ब्रह्मांडों के साथ काम करते समय, गणितज्ञ टार्स्की-ग्रोथेंडिक समुच्चय सिद्धांत को मानते हैं: किसी भी समुच्चय ''x'' के लिए, एक ब्रह्मांड ''U'' अस्तित्व है जैसे कि ''x'' ∈''U''। इस स्वयंसिद्ध का समस्या यह है कि किसी भी समुच्चय का सामना कुछ ''U'' के लिए ''U''-छोटा होता है, इसलिए सामान्य ग्रोथेंडिक ब्रह्मांड में किए गए किसी भी तर्क को लागू किया जा सकता है।<ref>{{Cite arXiv |last=Low |first=Zhen Lin |date=2013-04-18 |title=श्रेणी सिद्धांत के लिए ब्रह्मांड|class=math.CT |eprint=1304.5227v2 }}</ref> यह स्वयंसिद्ध दुर्गम कार्डिनल्स के अस्तित्व से निकटता से संबंधित है। | प्रायः ग्रोथेंडिक ब्रह्मांडों के साथ काम करते समय, गणितज्ञ टार्स्की-ग्रोथेंडिक समुच्चय सिद्धांत को मानते हैं: किसी भी समुच्चय ''x'' के लिए, एक ब्रह्मांड ''U'' अस्तित्व है जैसे कि ''x'' ∈''U''। इस स्वयंसिद्ध का समस्या यह है कि किसी भी समुच्चय का सामना कुछ ''U'' के लिए ''U''-छोटा होता है, इसलिए सामान्य ग्रोथेंडिक ब्रह्मांड में किए गए किसी भी तर्क को लागू किया जा सकता है।<ref>{{Cite arXiv |last=Low |first=Zhen Lin |date=2013-04-18 |title=श्रेणी सिद्धांत के लिए ब्रह्मांड|class=math.CT |eprint=1304.5227v2 }}</ref> यह स्वयंसिद्ध दुर्गम कार्डिनल्स के अस्तित्व से निकटता से संबंधित है। | ||
== | == प्रकार सिद्धांत में<!--'Russell-style universe', 'Russell-style universes', 'Tarski-style universe', and 'Tarski-style universes' redirect here-->== | ||
कुछ प्रकार के सिद्धांतों में, विशेष रूप से [[आश्रित प्रकार]] वाले प्रणालियों में, स्वयं को शब्द (तर्क) के रूप में माना जा सकता है। एक प्रकार | कुछ प्रकार के सिद्धांतों में, विशेष रूप से [[आश्रित प्रकार]] वाले प्रणालियों में, स्वयं को शब्द (तर्क) के रूप में माना जा सकता है। ब्रह्मांड नामक एक प्रकार है (प्रायः निरूपित किया जाता है <math>\mathcal{U}</math>) जिसके तत्वों में प्रकार हैं। गिरार्ड के विरोधाभास (प्रकार सिद्धांत के लिए रसेल के विरोधाभास का एक एनालॉग) जैसे विरोधाभासों से बचने के लिए, प्रकार के सिद्धांतों को प्रायः ऐसे ब्रह्मांडों के एक [[गणनीय सेट|गणनीय समुच्चय]] पदानुक्रम से सुसज्जित किया जाता है, जिसमें प्रत्येक ब्रह्मांड अगले एक का एक शब्द होता है। | ||
कम से कम दो प्रकार के ब्रह्मांड हैं जिन पर एक प्रकार के सिद्धांत में विचार किया जा सकता है: रसेल-शैली के ब्रह्मांड ([[बर्ट्रेंड रसेल]] के नाम पर) और तार्स्की-शैली के ब्रह्मांड ([[अल्फ्रेड टार्स्की]] के नाम पर)।<ref name=nLab>[https://ncatlab.org/homotopytypetheory/show/universe "Universe in Homotopy Type Theory"] in [[nLab]]</ref><ref>Zhaohui Luo, [http://www.cs.rhul.ac.uk/home/zhaohui/universes.pdf "Notes on Universes in Type Theory"], 2012.</ref><ref>[[Per Martin-Löf]], ''Intuitionistic Type Theory'', Bibliopolis, 1984, pp. 88 and 91.</ref> एक रसेल-शैली का ब्रह्मांड एक प्रकार है जिसकी शर्तें प्रकार हैं।<ref name=nLab/>एक तर्स्की-शैली ब्रह्मांड एक प्रकार है जो एक व्याख्या संचालन के साथ मिलकर हमें इसकी शर्तों को प्रकारों के रूप में मानने की अनुमति देता है।<ref name=nLab/> | कम से कम दो प्रकार के ब्रह्मांड हैं जिन पर एक प्रकार के सिद्धांत में विचार किया जा सकता है: रसेल-शैली के ब्रह्मांड ([[बर्ट्रेंड रसेल]] के नाम पर) और तार्स्की-शैली के ब्रह्मांड ([[अल्फ्रेड टार्स्की]] के नाम पर)।<ref name=nLab>[https://ncatlab.org/homotopytypetheory/show/universe "Universe in Homotopy Type Theory"] in [[nLab]]</ref><ref>Zhaohui Luo, [http://www.cs.rhul.ac.uk/home/zhaohui/universes.pdf "Notes on Universes in Type Theory"], 2012.</ref><ref>[[Per Martin-Löf]], ''Intuitionistic Type Theory'', Bibliopolis, 1984, pp. 88 and 91.</ref> एक रसेल-शैली का ब्रह्मांड एक प्रकार है जिसकी शर्तें प्रकार हैं।<ref name=nLab/>एक तर्स्की-शैली ब्रह्मांड एक प्रकार है जो एक व्याख्या संचालन के साथ मिलकर हमें इसकी शर्तों को प्रकारों के रूप में मानने की अनुमति देता है।<ref name=nLab/> |
Revision as of 23:22, 29 March 2023
गणित में, और विशेष रूप वर्ग (समुच्चय सिद्धांत), श्रेणी सिद्धांत, प्रकार सिद्धांत और गणित की नींव में, ब्रह्मांड एक संग्रह है जिसमें सभी संस्थाएं सम्मिलित होती हैं जिन्हें किसी दिए गए स्थिति में विचार करना होता है।
समुच्चय सिद्धान्त में, ब्रह्मांड प्रायः ऐसे वर्ग होते हैं जिनमें (तत्व के रूप में ) सभी समुच्चय होते हैं जिसके लिए एक विशेष प्रमेय के गणितीय प्रमाण की आशा की जाती है। ये वर्ग विभिन्न स्वयंसिद्ध प्रणालियों जैसे जेडएफसी या मोर्स-केली समुच्चय सिद्धांत के लिए आंतरिक मॉडल के रूप में काम कर सकते हैं। समुच्चय-सैद्धांतिक नींव के अंदर श्रेणी सिद्धांत में अवधारणाओं को औपचारिक रूप देने के लिए ब्रह्मांड का महत्वपूर्ण महत्व है। उदाहरण के लिए, किसी श्रेणी की विहित प्रेरक उदाहरण समुच्चय है की जो सभी समुच्चय की श्रेणी है, जिसे एक ब्रह्मांड की कुछ धारणा के बिना एक समुच्चय सिद्धांत में औपचारिक रूप नहीं दिया जा सकता है।
प्रकार सिद्धांत में, ब्रह्मांड एक प्रकार है जिसके तत्व प्रकार हैं।
एक विशिष्ट संदर्भ में
संभवतः सबसे सरल संस्करण यह है कि कोई भी समुच्चय एक ब्रह्मांड हो सकता है, जब तक कि अध्ययन की वस्तु उस विशेष समुच्चय तक ही सीमित हो। यदि अध्ययन का उद्देश्य वास्तविक संख्याओं द्वारा बनता है, तो वास्तविक रेखा 'R', जो कि वास्तविक संख्या समुच्चय है, विचाराधीन ब्रह्मांड हो सकती है। अंतर्निहित रूप से, यह वह ब्रह्मांड है जिसका उपयोग जॉर्ज कैंटर कर रहे थे जब उन्होंने पहली बार वास्तविक विश्लेषण के अनुप्रयोगों में १८७० और १८८० के दशक में आधुनिक सहज समुच्चय सिद्धांत और प्रमुखता विकसित की थी। कैंटर मूल रूप से रुचि रखने वाले एकमात्र समुच्चय 'R' के सबसमुच्चय थे।
ब्रह्मांड की यह अवधारणा वेन आरेखों के उपयोग में परिलक्षित होती है। वेन आरेख में, कार्रवाई परंपरागत रूप से एक बड़े आयत के अंदर होती है जो ब्रह्मांड U का प्रतिनिधित्व करती है। आम तौर पर कहता है कि समुच्चय को मंडलियों द्वारा दर्शाए जाते हैं; लेकिन ये समुच्चय केवल U के उपसमुच्चय हो सकते हैं। समुच्चय A का पूरक (समुच्चय सिद्धांत) तब A के वृत्त के बाहर आयत के उस भाग द्वारा दिया जाता है। सख्ती से बोलते हुए, यह U के सापेक्ष A का सापेक्ष पूरक (समुच्चय सिद्धांत) U \ A है; लेकिन एक संदर्भ में जहां U ब्रह्मांड है, इसे ए के पूर्ण पूरक एसी के रूप में माना जा सकता है । इसी तरह, शून्य चौराहे की एक धारणा है, जो शून्य समुच्चय (जिसका अर्थ है कोई समुच्चय नहीं, शून्य समुच्चय नहीं) का प्रतिच्छेदन है।
ब्रह्मांड के बिना, शून्य प्रतिच्छेदन पूरी तरह से सब कुछ का समुच्चय होगा, जिसे आम तौर पर असंभव माना जाता है; लेकिन ब्रह्मांड को ध्यान में रखते हुए, शून्य प्रतिच्छेदन को विचाराधीन हर चीज के समुच्चय के रूप में माना जा सकता है, जो केवल U है। ये सम्मेलन बूलियन लैटिस पर आधारित शून्य समुच्चय सिद्धांत के बीजगणितीय दृष्टिकोण में काफी उपयोगी हैं। स्वयंसिद्ध समुच्चय सिद्धांत (जैसे नई नींव) के कुछ गैर-मानक रूपों को छोड़कर, सभी समुच्चयों का वर्ग (समुच्चय सिद्धांत) एक बूलियन जाली नहीं है (यह केवल एक अपेक्षाकृत पूरक जाली है)।
इसके विपरीत, U के सभी उपसमुच्चयों का वर्ग, जिसे U का घात समुच्चय कहा जाता है, एक बूलियन जालक है। ऊपर वर्णित पूर्ण पूरक बूलियन जालक में पूरक संक्रिया है; और U, शून्य चौराहा के रूप में, बूलियन जाली में सबसे महान तत्व (या नलरी मीट (गणित)) के रूप में कार्य करता है। फिर डी मॉर्गन के नियम, जो मिलने और जुड़ने (गणित) के पूरक से निपटते हैं (जो कि समुच्चय सिद्धांत में संघ (समुच्चय सिद्धांत) हैं) लागू होते हैं, शून्य बैठक और शून्य जोड़ (जो कि खाली समुच्चय है) पर भी लागू होते हैं।
साधारण गणित में
तथापि, एक बार दिए गए समुच्चय X (कैंटर के मामले में, X = 'R') के उपसमुच्चय पर विचार किया जाता है, ब्रह्मांड को X के उपसमुच्चय का एक समुच्चय होने की आवश्यकता हो सकती है। (उदाहरण के लिए, X पर एक टोपोलॉजिकल स्पेस सबसमुच्चय का एक समुच्चय है।) X के उपसमुच्चय के विभिन्न समुच्चय स्वयं X के उपसमुच्चय नहीं होंगे, बल्कि इसके बजाय 'P'X के उपसमुच्चय होंगे, जो X का घात समुच्चय है। इसे जारी रखा जा सकता है; अध्ययन की उद्देश्य में आगे X के उपसमुच्चयों के ऐसे समुच्चय सम्मिलित हो सकते हैं, और इसी तरह, जिस स्थिति में ब्रह्मांड 'P'('P'X) होगा। एक अन्य दिशा में, X पर द्विआधारी संबंध (कार्टेशियन उत्पाद के उपसमुच्चय X × X) पर विचार किया जा सकता है, या कार्य (गणित) X से स्वयं के लिए किया जा सकता है, जैसे ब्रह्मांडों की आवश्यकता होती है P(X × X) या XX।
इस प्रकार, भले ही प्राथमिक रुचि X है, ब्रह्मांड को X से बहुत बड़ा होना पड़ सकता है। उपरोक्त विचारों के बाद, ब्रह्मांड के रूप में X पर 'अधिरचना' चाह सकता है। इसे संरचनात्मक पुनरावर्तन द्वारा निम्नानुसार परिभाषित किया जा सकता है:
- S0X को X ही होने दें।
- मान लीजिए कि S1X, X और PX का संघ (समुच्चय सिद्धांत) है।
- मान लीजिए कि S2X, S1X और P(S1X) का संघ है।
- सामान्य तौर पर, Sn+1X को SnX और 'P' (SnX) का संघ होने दें।
फिर X पर अधिरचना, SX लिखा गया है, 'S0X, S1X, S2X, और इसी तरह का संघ है; नहीं तो
कोई भिन्नता नहीं पड़ता कि कौन सा समुच्चय X शुरुआती बिंदु है, खाली समुच्चय {} 'S1X से संबंधित होगा। खाली समुच्चय वॉन न्यूमैन क्रमसूचक [0] है। तब {[0]}, वह समुच्चय जिसका एकमात्र तत्व खाली समुच्चय है, S2X से संबंधित होगा; यह वॉन न्यूमैन क्रमसूचक है [1] । इसी तरह, {[1]} S3X से संबंधित होगा, और इस प्रकार {[0], [1]}, {[0]} और {[1]} के मिलन के रूप में होगा; यह वॉन न्यूमैन क्रमसूचक [2] है। इस प्रक्रिया को जारी रखते हुए, प्रत्येक प्राकृतिक संख्या को अधिरचना में उसके वॉन न्यूमैन क्रमसूचक द्वारा दर्शाया जाता है। इसके बाद, यदि x और y अधिरचना से संबंधित हैं, तो ऐसा होता है {{x},{x,y}}, जो क्रमित युग्म (x, y) का प्रतिनिधित्व करता है। इस प्रकार अधिरचना में विभिन्न वांछित कार्टेशियन उत्पाद सम्मिलित होंगे। फिर अधिरचना में कार्य (गणित) और संबंध (गणित) भी सम्मिलित हैं, क्योंकि इन्हें कार्टेशियन उत्पादों के उपसमुच्चय के रूप में दर्शाया जा सकता है। यह प्रक्रिया आदेशित एन-टुपल्स भी देती है, जिसका प्रतिनिधित्व ऐसे कार्यों के रूप में किया जाता है जिसका डोमेन वॉन न्यूमैन ऑर्डिनल [n] है, और इसी तरह।
इसलिए यदि प्रारंभिक बिंदु केवल X = {} है, तो गणित के लिए आवश्यक समुच्चयों का एक बड़ा भाग {} पर अधिरचना के तत्वों के रूप में दिखाई देते हैं। लेकिन 'S'{} का प्रत्येक तत्व एक परिमित समुच्चय होगा। प्रत्येक प्राकृतिक संख्या इससे संबंधित है, लेकिन सभी प्राकृतिक संख्याओं का समुच्चय 'N' नहीं है (यद्यपि यह 'S' {} का उप-समूह है)। वास्तव में, {} पर अधिरचना में सभी वंशानुगत रूप से परिमित समुच्चय होते हैं। जैसे, इसे परिमित गणित का ब्रह्मांड माना जा सकता है। कालानुक्रमिक रूप से बोलते हुए, कोई यह सुझाव दे सकता है कि 19वीं सदी के फिनिटिस्ट लियोपोल्ड क्रोनकर इस ब्रह्मांड में काम कर रहे थे; उनका मानना था कि प्रत्येक प्राकृतिक संख्या अस्तित्व थी लेकिन समुच्चय 'N' (एक पूर्ण अनंत) नहीं था।
तथापि, 'S'{} सामान्य गणितज्ञों (जो परिमित नहीं हैं) के लिए असंतोषजनक है, क्योंकि भले ही 'N' 'S'{} के उपसमुच्चय के रूप में उपलब्ध हो, फिर भी 'N' का घात समुच्चय नहीं है। विशेष रूप से, वास्तविक संख्याओं का मनमाना समुच्चय उपलब्ध नहीं है। इसलिए प्रक्रिया को फिर से शुरू करना और 'S'('S'{}) बनाना आवश्यक हो सकता है। तथापि, चीजों को सरल रखने के लिए, प्राकृतिक संख्याओं के समुच्चय 'N' को दिया जा सकता है और 'SN', 'N' के ऊपर अधिरचना का निर्माण कर सकते हैं। इसे प्रायः सामान्य गणित का ब्रह्मांड माना जाता है। विचार यह है कि सामान्य रूप से अध्ययन किए जाने वाले सभी गणित इस ब्रह्मांड के तत्वों को संदर्भित करते हैं। उदाहरण के लिए, वास्तविक संख्याओं का कोई भी सामान्य निर्माण (डेडेकाइंड कट्स द्वारा) 'SN' से संबंधित है। यहां तक कि प्राकृतिक संख्याओं के गैर-मानक मॉडल पर अधिरचना में गैर-मानक विश्लेषण भी किया जा सकता है।
पिछले खंड से दर्शनशास्त्र में थोड़ा बदलाव आया है, जहां ब्रह्मांड रुचि का कोई समुच्चय U था। वहां, अध्ययन किए जा रहे समुच्चय ब्रह्मांड के उपसमुच्चय थे; अब, वे ब्रह्मांड के सदस्य हैं। इस प्रकार यद्यपि 'P'('SX) एक बूलियन जाली है, जो प्रासंगिक है वह यह है कि SX स्वयं नहीं है। नतीजतन, बूलियन लैटिस और वेन आरेखों की धारणाओं को सीधे अधिरचना ब्रह्मांड पर लागू करना दुर्लभ है क्योंकि वे पिछले खंड के शक्ति-समुच्चय ब्रह्मांडों के लिए थे। इसके बजाय, व्यक्ति अलग-अलग बूलियन लैटिस PA के साथ काम कर सकता है, जहां A SX से संबंधित कोई भी प्रासंगिक समुच्चय है; तो PA SX का एक उपसमुच्चय है (और वास्तव में SX से संबंधित है)। कैंटर के विषय में X = 'R' विशेष रूप से, वास्तविक संख्याओं के मनमाने समुच्चय उपलब्ध नहीं हैं, इसलिए वहां प्रक्रिया को फिर से शुरू करना आवश्यक हो सकता है।
समुच्चय सिद्धांत में
इस दावे को सटीक अर्थ देना संभव है कि SN सामान्य गणित का ब्रह्मांड है; यह ज़र्मेलो समुच्चय सिद्धांत का एक मॉडल सिद्धांत है, स्वयंसिद्ध समुच्चय सिद्धांत मूल रूप से १९०८ में अर्नेस्ट ज़र्मेलो द्वारा विकसित किया गया था । ज़र्मेलो समुच्चय सिद्धांत सटीक रूप से सफल रहा क्योंकि यह ३० साल पहले कैंटर द्वारा शुरू किए गए कार्यक्रम को पूरा करते हुए सामान्य गणित को स्वयंसिद्ध करने में सक्षम था। लेकिन ज़र्मेलो समुच्चय सिद्धांत गणित की नींव में स्वयंसिद्ध समुच्चय सिद्धांत और अन्य कार्यों के आगे के विकास के लिए अपर्याप्त साबित हुआ, विशेष रूप से मॉडल सिद्धांत।
एक नाटकीय उदाहरण के लिए, ऊपर अधिरचना प्रक्रिया का वर्णन ज़र्मेलो समुच्चय सिद्धांत में ही नहीं किया जा सकता है। अंतिम चरण, S को एक असीम संघ के रूप में बनाने के लिए, प्रतिस्थापन के स्वयंसिद्ध की आवश्यकता होती है, जिसे १९२२ में ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत बनाने के लिए ज़र्मेलो समुच्चय सिद्धांत में जोड़ा गया था, जो आज व्यापक रूप से स्वीकृत स्वयंसिद्धों का समुच्चय है। इसलिए जब सामान्य गणित SN में किया जा सकता है, SN की चर्चा SN सामान्य से परे, मेटामैथमैटिक्स में जाती है।
लेकिन अगर उच्च-शक्ति वाले समुच्चय सिद्धांत को लाया जाता है, तो ऊपर दी गई अधिरचना प्रक्रिया खुद को एक ट्रांसफिनिट रिकर्सन की शुरुआत के रूप में प्रकट करती है। X = {}, खाली समुच्चय पर वापस जा रहे हैं, और (मानक) संकेतन को प्रस्तुत कर रहे हैं Vi Si{}, V0 = {}, V1 = P{}, और इसी तरह पहले की तरह। लेकिन जिसे अधिरचना कहा जाता था, वह अब सूची में अगला आइटम है: Vω, जहां ω पहली अनंत क्रमिक संख्या है। इसे मनमाने ढंग से क्रमिक संख्याओं तक बढ़ाया जा सकता है:
वी परिभाषित करता है i किसी भी क्रम संख्या के लिए मैं। सभी वी का संघ Vi वॉन न्यूमैन ब्रह्मांड V है:
- .
प्रत्येक व्यक्ति Vi एक समुच्चय है, लेकिन उनका संघ V एक उचित वर्ग है। नींव का स्वयंसिद्ध, जिसे ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत समुच्चय सिद्धांत में जोड़ा गया था, उसी समय प्रतिस्थापन के स्वयंसिद्ध के रूप में कहा गया था कि प्रत्येक समुच्चय V से संबंधित है।
- कर्ट गोडेल का रचनात्मक ब्रह्मांड एल और रचनात्मकता का स्वयंसिद्ध
- अप्राप्य कार्डिनल्स ZF के मॉडल और कभी-कभी अतिरिक्त स्वयंसिद्धों का उत्पादन करते हैं, और ग्रोथेंडिक ब्रह्मांड समुच्चय के अस्तित्व के समान हैं
विधेय कलन में
प्रथम-क्रम तर्क की एक व्याख्या (तर्क) में, ब्रह्मांड (या संवाद का डोमेन) व्यक्तियों (व्यक्तिगत स्थिरांक) का समूह है, जिस पर परिमाणक (तर्क)तर्क) की सीमा होती है। एक प्रस्ताव जैसे ∀x (x2 ≠ 2) अस्पष्ट है, यदि विमर्श के किसी क्षेत्र की पहचान नहीं की गई है। एक व्याख्या में, विमर्श का क्षेत्र वास्तविक संख्याओं का समुच्चय हो सकता है; एक अन्य व्याख्या में, यह प्राकृतिक संख्याओं का समुच्चय हो सकता है। यदि संवाद का क्षेत्र वास्तविक संख्याओं का समूह है, तो प्रस्ताव झूठा है, साथ x = √2 प्रति उदाहरण के रूप में; यदि प्रांत प्राकृतिकों का समुच्चय है, तो तर्कवाक्य सत्य है, क्योंकि २ किसी भी प्राकृत संख्या का वर्ग नहीं है।
श्रेणी सिद्धांत में
ब्रह्मांडों के लिए एक और दृष्टिकोण है जो ऐतिहासिक रूप से श्रेणी सिद्धांत से जुड़ा हुआ है। यह ग्रोथेंडिक ब्रह्मांड का विचार है। मोटे तौर पर, एक ग्रोथेंडिक ब्रह्मांड एक समुच्चय है जिसके अंदर समुच्चय सिद्धांत के सभी सामान्य संचालन किए जा सकते हैं। ब्रह्मांड के इस संस्करण को किसी भी समुच्चय के रूप में परिभाषित किया गया है जिसके लिए निम्नलिखित स्वयंसिद्ध हैं:[1]
- तात्पर्य
- और मतलब {u,v}, (u,v), और .
- तात्पर्य और
- (यहाँ सभी क्रमवाचक संख्याओं का समुच्चय है।)
- अगर के साथ एक विशेषण कार्य है और , तब .
ग्रोथेंडिक ब्रह्मांड का लाभ यह है कि यह वास्तव में एक समुच्चय है, और कभी भी उचित वर्ग नहीं है। हानि यह है कि यदि कोई पर्याप्त प्रयास करता है, तो वह ग्रोथेंडिक ब्रह्मांड को छोड़ सकता है।[citation needed]
ग्रोथेंडिक ब्रह्मांड U का सबसे आम उपयोग U को सभी समुच्चयों की श्रेणी के प्रतिस्थापन के रूप में लेना है। एक का कहना है कि एक समुच्चय S U'-'छोटा' है यदि एस ∈U, और U'-'बड़ा' अन्यथा। सभी U-छोटे समुच्चयों की श्रेणी U-'समुच्चय' में सभी U-छोटे समुच्चय वस्तु के रूप में हैं और इन समुच्चयों के बीच सभी प्रकार्यों के रूप में हैं। वस्तु समुच्चय और आकारिकी समुच्चय दोनों ही समुच्चय हैं, इसलिए उचित वर्गों का आह्वान किए बिना सभी समुच्चयों की श्रेणी पर चर्चा करना संभव हो जाता है। तब इस नई श्रेणी के संदर्भ में अन्य श्रेणियों को परिभाषित करना संभव हो जाता है। उदाहरण के लिए, सभी U-छोटी श्रेणियों की श्रेणी उन सभी श्रेणियों की श्रेणी है, जिनका वस्तु समुच्चय और जिनका आकारिकी समुच्चय U में है। फिर समुच्चय सिद्धांत के सामान्य तर्क सभी श्रेणियों की श्रेणी पर लागू होते हैं, और किसी को नहीं करना पड़ता है गलती से उचित कक्षाओं के बारे में बात करने की चिंता। क्योंकि ग्रोथेंडिक ब्रह्मांड बहुत बड़े हैं, यह लगभग सभी अनुप्रयोगों में पर्याप्त है।
प्रायः ग्रोथेंडिक ब्रह्मांडों के साथ काम करते समय, गणितज्ञ टार्स्की-ग्रोथेंडिक समुच्चय सिद्धांत को मानते हैं: किसी भी समुच्चय x के लिए, एक ब्रह्मांड U अस्तित्व है जैसे कि x ∈U। इस स्वयंसिद्ध का समस्या यह है कि किसी भी समुच्चय का सामना कुछ U के लिए U-छोटा होता है, इसलिए सामान्य ग्रोथेंडिक ब्रह्मांड में किए गए किसी भी तर्क को लागू किया जा सकता है।[2] यह स्वयंसिद्ध दुर्गम कार्डिनल्स के अस्तित्व से निकटता से संबंधित है।
प्रकार सिद्धांत में
कुछ प्रकार के सिद्धांतों में, विशेष रूप से आश्रित प्रकार वाले प्रणालियों में, स्वयं को शब्द (तर्क) के रूप में माना जा सकता है। ब्रह्मांड नामक एक प्रकार है (प्रायः निरूपित किया जाता है ) जिसके तत्वों में प्रकार हैं। गिरार्ड के विरोधाभास (प्रकार सिद्धांत के लिए रसेल के विरोधाभास का एक एनालॉग) जैसे विरोधाभासों से बचने के लिए, प्रकार के सिद्धांतों को प्रायः ऐसे ब्रह्मांडों के एक गणनीय समुच्चय पदानुक्रम से सुसज्जित किया जाता है, जिसमें प्रत्येक ब्रह्मांड अगले एक का एक शब्द होता है।
कम से कम दो प्रकार के ब्रह्मांड हैं जिन पर एक प्रकार के सिद्धांत में विचार किया जा सकता है: रसेल-शैली के ब्रह्मांड (बर्ट्रेंड रसेल के नाम पर) और तार्स्की-शैली के ब्रह्मांड (अल्फ्रेड टार्स्की के नाम पर)।[3][4][5] एक रसेल-शैली का ब्रह्मांड एक प्रकार है जिसकी शर्तें प्रकार हैं।[3]एक तर्स्की-शैली ब्रह्मांड एक प्रकार है जो एक व्याख्या संचालन के साथ मिलकर हमें इसकी शर्तों को प्रकारों के रूप में मानने की अनुमति देता है।[3]
उदाहरण के लिए:[6]
मार्टिन-लोफ प्रकार सिद्धांत की खुलापन विशेष रूप से तथाकथित ब्रह्मांडों की शुरूआत में प्रकट होता है। प्रकार के ब्रह्मांड प्रतिबिंब की अनौपचारिक धारणा को समाहित करते हैं जिसकी भूमिका को निम्नानुसार समझाया जा सकता है। टाइप सिद्धांत के एक विशेष औपचारिकरण को विकसित करने के दौरान, टाइप सिद्धांतकार प्रकारों के नियमों पर वापस देख सकता है, सी कहते हैं, जिन्हें अब तक पेश किया गया है और यह पहचानने का चरण निष्पादित कर सकता है कि वे मार्टिन-लोफ के अनौपचारिक शब्दार्थ के अनुसार मान्य हैं। 'आत्मनिरीक्षण' का यह कार्य उन धारणाओं से अवगत होने का एक प्रयास है जिन्होंने अतीत में हमारे निर्माणों को नियंत्रित किया है। यह एक "[प्रतिबिंब सिद्धांत]] को जन्म देता है जो मोटे तौर पर कहता है कि हम जो कुछ भी प्रकारों के साथ करने के आदी हैं, वह एक ब्रह्मांड के अंदर किया जा सकता है" (मार्टिन-लोफ १९७५,८३) । औपचारिक स्तर पर, यह प्रकार सिद्धांत के मौजूदा औपचारिकरण के विस्तार की ओर जाता है जिसमें सी की प्रकार बनाने की क्षमता एक प्रकार के ब्रह्मांड Uc दर्पण C में निहित हो जाती है।
यह भी देखें
- संवाद का क्षेत्र
- ग्रोथेंडिक ब्रह्मांड
- हरब्रांड ब्रह्मांड
- मुक्त वस्तु
- खुला सूत्र
- अंतरिक्ष (गणित)
टिप्पणियाँ
- ↑ Mac Lane 1998, p. 22
- ↑ Low, Zhen Lin (2013-04-18). "श्रेणी सिद्धांत के लिए ब्रह्मांड". arXiv:1304.5227v2 [math.CT].
- ↑ 3.0 3.1 3.2 "Universe in Homotopy Type Theory" in nLab
- ↑ Zhaohui Luo, "Notes on Universes in Type Theory", 2012.
- ↑ Per Martin-Löf, Intuitionistic Type Theory, Bibliopolis, 1984, pp. 88 and 91.
- ↑ Rathjen, Michael (October 2005). "The Constructive Hilbert Program and the Limits of Martin-Löf Type Theory". Synthese. 147: 81–120. doi:10.1007/s11229-004-6208-4. S2CID 143295. Retrieved September 21, 2022.
संदर्भ
- मैक लेन, सॉन्डर्स (१९९८) । कामकाजी गणितज्ञ के लिए श्रेणियाँ. स्प्रिंगर-वर्लाग न्यूयॉर्क, इंक।
बाहरी संबंध
- "Universe", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Weisstein, Eric W. "Universal Set". MathWorld.