उच्च तापमान संक्षारण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Type of corrosion}}
{{short description|Type of corrosion}}
[[File:High-temperature-sulfur-corrosion-of-a-12CrMo195-pipe-stub-01.jpg|thumbnail|12 CrMo 19 5 पाइप स्टब का उच्च तापमान सल्फर जंग]]उच्च तापमान [[जंग]] जंग का तंत्र है जो तब होता है जब [[गैस टर्बाइन]], [[डीजल इंजन]], [[औद्योगिक भट्टी]] या अन्य मशीनरी गर्म गैस के संपर्क में आती हैं जिसमें कुछ दूषित पदार्थ होते हैं। ईंधन में कभी-कभी [[वैनेडियम]] यौगिक या सल्फेट होते हैं जो कम गलनांक वाले दहन के दौरान यौगिक बना सकते हैं। ये तरल पिघला हुआ नमक स्टेनलेस स्टील और अन्य मिश्र धातुओं के लिए दृढ़ता से संक्षारक होते हैं जो आम तौर पर संक्षारण और उच्च तापमान के खिलाफ निष्क्रिय होते हैं। अन्य उच्च तापमान जंगों में उच्च तापमान [[ऑक्सीकरण]] शामिल है,<ref>{{Cite book|last=Birks, N. |title=धातुओं के उच्च तापमान ऑक्सीकरण का परिचय|date=2006 |publisher=Cambridge University Press |author2=Meier, Gerald H. |author3=Pettit, F. S. |isbn=0-511-16162-X |edition=2nd |location=Cambridge, UK |oclc=77562951}}</ref> सल्फिडेशन और कार्बोनाइजेशन। उच्च तापमान ऑक्सीकरण और अन्य जंग प्रकार आमतौर पर प्रसार और प्रतिक्रिया प्रक्रियाओं के लिए [[डील-ग्रोव मॉडल]] का उपयोग करके तैयार किए जाते हैं।
[[File:High-temperature-sulfur-corrosion-of-a-12CrMo195-pipe-stub-01.jpg|thumbnail|12 CrMo 19 5 पाइप स्टब का उच्च तापमान सल्फर जंग]]उच्च तापमान [[जंग]] जंग का तंत्र है जो तब होता है जब [[गैस टर्बाइन]], [[डीजल इंजन]], [[औद्योगिक भट्टी]] या अन्य मशीनरी गर्म गैस के संपर्क में आती हैं जिसमें कुछ दूषित पदार्थ होते हैं। ईंधन में कभी-कभी [[वैनेडियम]] यौगिक या सल्फेट होते हैं जो कम गलनांक वाले दहन के समय यौगिक बना सकते हैं। ये तरल पिघला हुआ नमक स्टेनलेस स्टील और अन्य मिश्र धातुओं के लिए दृढ़ता से संक्षारक होते हैं जो सामान्यतः संक्षारण और उच्च तापमान के विरुद्ध निष्क्रिय होते हैं। अन्य उच्च तापमान जंगों में उच्च तापमान [[ऑक्सीकरण]] सम्मिलित है,<ref>{{Cite book|last=Birks, N. |title=धातुओं के उच्च तापमान ऑक्सीकरण का परिचय|date=2006 |publisher=Cambridge University Press |author2=Meier, Gerald H. |author3=Pettit, F. S. |isbn=0-511-16162-X |edition=2nd |location=Cambridge, UK |oclc=77562951}}</ref> सल्फिडेशन और कार्बोनाइजेशन। उच्च तापमान ऑक्सीकरण और अन्य जंग प्रकार सामान्यतः प्रसार और प्रतिक्रिया प्रक्रियाओं के लिए [[डील-ग्रोव मॉडल]] का उपयोग करके तैयार किए जाते हैं।


'''आमतौर पर प्रसार और प्रतिक्रिया प्रक्रियाओं के लिए [[डील-ग्रोव मॉडल]] का उपयोग करके तैयार किए जाते हैं।ल्फिडेशन और कार्बोनाइजेशन। उच्च तापमान ऑक्सीकरण और अन्य जंग प्रकार आमतौर पर प्रसार और प्रतिक्रिया प्रक्रियाओं के लिए [[डील-ग्रोव मॉडल]] का उपयोग कर'''
'''सामान्यतः प्रसार और प्रतिक्रिया प्रक्रियाओं के लिए [[डील-ग्रोव मॉडल]] का उपयोग करके तैयार किए जाते हैं।ल्फिडेशन और कार्बोनाइजेशन। उच्च तापमान ऑक्सीकरण और अन्य जंग प्रकार सामान्यतः प्रसार और प्रतिक्रिया प्रक्रियाओं के लिए [[डील-ग्रोव मॉडल]] का उपयोग कर[[डील-ग्रोव मॉडल|मॉडल]] का उपयोग कर'''


== [[सल्फेट]]्स ==
== [[सल्फेट]]्स ==
दो प्रकार के सल्फेट-प्रेरित गर्म जंग आम तौर पर प्रतिष्ठित होते हैं: टाइप I [[सोडियम सल्फेट]] के पिघलने बिंदु से ऊपर होता है और टाइप II सोडियम सल्फेट के पिघलने बिंदु से नीचे होता है लेकिन एसओ की थोड़ी मात्रा की उपस्थिति में<sub>3</sub>.<ref>{{cite book | url = https://books.google.com/books?id=_UnuDx7avkIC&pg=PA384 | title = उच्च तापमान ऑक्सीकरण और धातुओं का क्षरण| isbn = 978-0-08-044587-8 | last1 = Young | first1 = David John | year = 2008}}</ref><ref name="tfDwOe7xWeQC">{{cite book | url = https://books.google.com/books?id=tfDwOe7xWeQC&pg=PA321 | page = 321 | title = उच्च तापमान जंग और सामग्री अनुप्रयोगों| isbn = 978-0-87170-853-3 | last1 = Lai | first1 = G. Y | date = January 2007}}</ref>
दो प्रकार के सल्फेट-प्रेरित गर्म जंग सामान्यतः प्रतिष्ठित होते हैं: टाइप I [[सोडियम सल्फेट]] के पिघलने बिंदु से ऊपर होता है और टाइप II सोडियम सल्फेट के पिघलने बिंदु से नीचे होता है लेकिन एसओ की थोड़ी मात्रा की उपस्थिति में<sub>3</sub>.<ref>{{cite book | url = https://books.google.com/books?id=_UnuDx7avkIC&pg=PA384 | title = उच्च तापमान ऑक्सीकरण और धातुओं का क्षरण| isbn = 978-0-08-044587-8 | last1 = Young | first1 = David John | year = 2008}}</ref><ref name="tfDwOe7xWeQC">{{cite book | url = https://books.google.com/books?id=tfDwOe7xWeQC&pg=PA321 | page = 321 | title = उच्च तापमान जंग और सामग्री अनुप्रयोगों| isbn = 978-0-87170-853-3 | last1 = Lai | first1 = G. Y | date = January 2007}}</ref>
टाइप I में सुरक्षात्मक ऑक्साइड स्केल पिघले हुए नमक से घुल जाता है। [[ गंधक ]] को नमक से मुक्त किया जाता है और असतत ग्रे / नीले रंग के एल्यूमीनियम या क्रोमियम सल्फाइड बनाने वाले धातु सब्सट्रेट में फैल जाता है, ताकि नमक की परत को हटा दिए जाने के बाद, स्टील नई सुरक्षात्मक ऑक्साइड परत का पुनर्निर्माण नहीं कर सके। क्षार सल्फेट्स [[सल्फर ट्राइऑक्साइड]] और सोडियम युक्त यौगिकों से बनते हैं। जैसा कि वनाडेट्स के गठन को प्राथमिकता दी जाती है, सल्फेट्स केवल तभी बनते हैं जब क्षार धातुओं की मात्रा वैनेडियम की इसी मात्रा से अधिक होती है।<ref name="tfDwOe7xWeQC"/>
टाइप I में सुरक्षात्मक ऑक्साइड स्केल पिघले हुए नमक से घुल जाता है। [[ गंधक ]] को नमक से मुक्त किया जाता है और असतत ग्रे / नीले रंग के एल्यूमीनियम या क्रोमियम सल्फाइड बनाने वाले धातु सब्सट्रेट में फैल जाता है, ताकि नमक की परत को हटा दिए जाने के बाद, स्टील नई सुरक्षात्मक ऑक्साइड परत का पुनर्निर्माण नहीं कर सके। क्षार सल्फेट्स [[सल्फर ट्राइऑक्साइड]] और सोडियम युक्त यौगिकों से बनते हैं। जैसा कि वनाडेट्स के गठन को प्राथमिकता दी जाती है, सल्फेट्स केवल तभी बनते हैं जब क्षार धातुओं की मात्रा वैनेडियम की इसी मात्रा से अधिक होती है।<ref name="tfDwOe7xWeQC"/>


Line 22: Line 22:
1:3 के अनुपात में सोडियम की उपस्थिति सबसे कम गलनांक देती है और इससे बचना चाहिए। 535 °C का यह गलनांक इंजन के हॉट स्पॉट जैसे [[पिस्टन का ताज]], [[वाल्व सीट]] और [[टर्बोचार्जर]] पर समस्या पैदा कर सकता है।<ref name="l3RToM8yxNkC"/><ref name="tfDwOe7xWeQC"/>
1:3 के अनुपात में सोडियम की उपस्थिति सबसे कम गलनांक देती है और इससे बचना चाहिए। 535 °C का यह गलनांक इंजन के हॉट स्पॉट जैसे [[पिस्टन का ताज]], [[वाल्व सीट]] और [[टर्बोचार्जर]] पर समस्या पैदा कर सकता है।<ref name="l3RToM8yxNkC"/><ref name="tfDwOe7xWeQC"/>
== लीड ==
== लीड ==
[[ नेतृत्व करना ]] कम पिघलने वाला स्लैग बना सकता है जो सुरक्षात्मक ऑक्साइड स्केल को प्रवाहित करने में सक्षम है।<ref>{{Cite web |last=Schriner |first=Doug |title=सीसा पुनर्चक्रण में धातुमल रसायन की समीक्षा|url=https://www.pyrometallurgy.co.za/MoltenSlags2016/Manuscripts/A%20Review%20of%20Slag%20Chemistry%20in%20Lead%20Recycling.pdf}}</ref><ref>{{Cite book |date=2014 |title=प्रक्रिया धातुकर्म पर ग्रंथ|url=https://doi.org/10.1016/C2010-0-67121-5 |doi=10.1016/c2010-0-67121-5|isbn=9780080969886 }}</ref> पिघले हुए सीसे के संपर्क में आने पर लीड को अक्सर सामान्य सामग्रियों में [[तनाव जंग खुर]] के लिए जाना जाता है। सीसे की क्रैकिंग प्रवृत्ति को कुछ समय के लिए जाना जाता है क्योंकि स्टील के कंटेनरों और पिघले हुए सीसे के बर्तनों सहित अधिकांश लौह आधारित मिश्र धातु आमतौर पर क्रैकिंग के कारण विफल हो जाते हैं।<ref>{{Cite book |author=Fontana, Mars G. |title=जंग इंजीनियरिंग|date=1987 |publisher=McGraw-Hill |isbn=0-07-100360-6 |edition=3rd, international |location=New York |oclc=77545140}}</ref>
[[ नेतृत्व करना ]] कम पिघलने वाला स्लैग बना सकता है जो सुरक्षात्मक ऑक्साइड स्केल को प्रवाहित करने में सक्षम है।<ref>{{Cite web |last=Schriner |first=Doug |title=सीसा पुनर्चक्रण में धातुमल रसायन की समीक्षा|url=https://www.pyrometallurgy.co.za/MoltenSlags2016/Manuscripts/A%20Review%20of%20Slag%20Chemistry%20in%20Lead%20Recycling.pdf}}</ref><ref>{{Cite book |date=2014 |title=प्रक्रिया धातुकर्म पर ग्रंथ|url=https://doi.org/10.1016/C2010-0-67121-5 |doi=10.1016/c2010-0-67121-5|isbn=9780080969886 }}</ref> पिघले हुए सीसे के संपर्क में आने पर लीड को अक्सर सामान्य सामग्रियों में [[तनाव जंग खुर]] के लिए जाना जाता है। सीसे की क्रैकिंग प्रवृत्ति को कुछ समय के लिए जाना जाता है क्योंकि स्टील के कंटेनरों और पिघले हुए सीसे के बर्तनों सहित अधिकांश लौह आधारित मिश्र धातु सामान्यतः क्रैकिंग के कारण विफल हो जाते हैं।<ref>{{Cite book |author=Fontana, Mars G. |title=जंग इंजीनियरिंग|date=1987 |publisher=McGraw-Hill |isbn=0-07-100360-6 |edition=3rd, international |location=New York |oclc=77545140}}</ref>
== यह भी देखें ==
== यह भी देखें ==
* [[आंतरिक ऑक्सीकरण]]
* [[आंतरिक ऑक्सीकरण]]

Revision as of 21:37, 24 March 2023

12 CrMo 19 5 पाइप स्टब का उच्च तापमान सल्फर जंग

उच्च तापमान जंग जंग का तंत्र है जो तब होता है जब गैस टर्बाइन, डीजल इंजन, औद्योगिक भट्टी या अन्य मशीनरी गर्म गैस के संपर्क में आती हैं जिसमें कुछ दूषित पदार्थ होते हैं। ईंधन में कभी-कभी वैनेडियम यौगिक या सल्फेट होते हैं जो कम गलनांक वाले दहन के समय यौगिक बना सकते हैं। ये तरल पिघला हुआ नमक स्टेनलेस स्टील और अन्य मिश्र धातुओं के लिए दृढ़ता से संक्षारक होते हैं जो सामान्यतः संक्षारण और उच्च तापमान के विरुद्ध निष्क्रिय होते हैं। अन्य उच्च तापमान जंगों में उच्च तापमान ऑक्सीकरण सम्मिलित है,[1] सल्फिडेशन और कार्बोनाइजेशन। उच्च तापमान ऑक्सीकरण और अन्य जंग प्रकार सामान्यतः प्रसार और प्रतिक्रिया प्रक्रियाओं के लिए डील-ग्रोव मॉडल का उपयोग करके तैयार किए जाते हैं।

सामान्यतः प्रसार और प्रतिक्रिया प्रक्रियाओं के लिए डील-ग्रोव मॉडल का उपयोग करके तैयार किए जाते हैं।ल्फिडेशन और कार्बोनाइजेशन। उच्च तापमान ऑक्सीकरण और अन्य जंग प्रकार सामान्यतः प्रसार और प्रतिक्रिया प्रक्रियाओं के लिए डील-ग्रोव मॉडल का उपयोग करमॉडल का उपयोग कर

सल्फेट्स

दो प्रकार के सल्फेट-प्रेरित गर्म जंग सामान्यतः प्रतिष्ठित होते हैं: टाइप I सोडियम सल्फेट के पिघलने बिंदु से ऊपर होता है और टाइप II सोडियम सल्फेट के पिघलने बिंदु से नीचे होता है लेकिन एसओ की थोड़ी मात्रा की उपस्थिति में3.[2][3] टाइप I में सुरक्षात्मक ऑक्साइड स्केल पिघले हुए नमक से घुल जाता है। गंधक को नमक से मुक्त किया जाता है और असतत ग्रे / नीले रंग के एल्यूमीनियम या क्रोमियम सल्फाइड बनाने वाले धातु सब्सट्रेट में फैल जाता है, ताकि नमक की परत को हटा दिए जाने के बाद, स्टील नई सुरक्षात्मक ऑक्साइड परत का पुनर्निर्माण नहीं कर सके। क्षार सल्फेट्स सल्फर ट्राइऑक्साइड और सोडियम युक्त यौगिकों से बनते हैं। जैसा कि वनाडेट्स के गठन को प्राथमिकता दी जाती है, सल्फेट्स केवल तभी बनते हैं जब क्षार धातुओं की मात्रा वैनेडियम की इसी मात्रा से अधिक होती है।[3]

इसी तरह का हमला पोटेशियम सल्फेट और मैग्नीशियम सल्फेट के लिए देखा गया है।

वैनेडियम

वैनेडियम पेट्रोलियम में मौजूद है, विशेष रूप से कनाडा, पश्चिमी संयुक्त राज्य अमेरिका, वेनेज़ुएला और कैरेबियाई क्षेत्र से, पोर्फिरिन परिसरों के रूप में।[4] ये कॉम्प्लेक्स उच्च-उबलते अंशों पर केंद्रित हो जाते हैं, जो भारी अवशिष्ट ईंधन तेलों का आधार होते हैं। सोडियम के अवशेष, मुख्य रूप से सोडियम क्लोराइड और खर्च किए गए तेल उपचार रसायनों से भी मौजूद हैं। 100 पीपीएम से अधिक सोडियम और वैनेडियम ईंधन राख जंग पैदा करने में सक्षम राख का उत्पादन करेगा।[4]

अधिकांश ईंधन में वैनेडियम के छोटे निशान होते हैं। वैनेडियम को विभिन्न वैनाडेट्स में ऑक्सीकृत किया जाता है। धातु पर जमा के रूप में मौजूद पिघला हुआ वैनडेट प्रवाह (धातु विज्ञान) ऑक्साइड मिल स्केल और पैसिवेशन (रसायन विज्ञान) कर सकता है। इसके अलावा, वैनेडियम की उपस्थिति धातु सब्सट्रेट में फ्यूज्ड नमक परत के माध्यम से ऑक्सीजन के प्रसार को तेज करती है; वनाडेट्स अर्ध-परिचालक या आयनिक रूप में मौजूद हो सकते हैं, जहां सेमीकंडक्टिंग फॉर्म में काफी अधिक संक्षारक होता है क्योंकि ऑक्सीजन को ऑक्सीजन रिक्ति दोष के माध्यम से ले जाया जाता है। इसके विपरीत आयनिक रूप वैनडेट्स के प्रसार द्वारा ऑक्सीजन का परिवहन करता है, जो काफी धीमा है। सेमीकंडक्टिंग फॉर्म वैनेडियम पेंटोक्साइड से भरपूर होता है।[3][5] उच्च तापमान या ऑक्सीजन की कम उपलब्धता पर, दुर्दम्य ऑक्साइड - वैनेडियम डाइऑक्साइड और वैनेडियम ट्राइऑक्साइड - बनते हैं। ये क्षरण को बढ़ावा नहीं देते हैं। हालांकि, जलने के लिए सबसे आम परिस्थितियों में वैनेडियम पेंटोक्साइड बनता है। सोडियम ऑक्साइड के साथ, विभिन्न संरचना अनुपातों के वनाडेट बनते हैं। ना का अनुमान लगाने वाली रचना के वनाडेट2O.6 वी2O5 593 °C और 816 °C के बीच के तापमान पर जंग की उच्चतम दर होती है; कम तापमान पर वैनेडेट ठोस अवस्था में होता है, उच्च तापमान पर वैनेडियम के उच्च अनुपात के साथ वनाडेट उच्च संक्षारण दर प्रदान करते हैं।[5][3]

पैसिवेशन (रसायन विज्ञान) ऑक्साइड की पिघले हुए वैनडेट में घुलनशीलता ऑक्साइड परत की संरचना पर निर्भर करती है। आयरन (III) ऑक्साइड ना के बीच वनाडेट में आसानी से घुलनशील है2O.6 वी2O5 और 6 ना2ओ.बी2O5, वनाडेट के द्रव्यमान के बराबर मात्रा में 705 डिग्री सेल्सियस से कम तापमान पर। राख के लिए यह कंपोजिशन रेंज आम है, जो समस्या को और बढ़ा देती है। क्रोमियम (III) ऑक्साइड, निकल (II) ऑक्साइड, और कोबाल्ट (II) ऑक्साइड वनाडेट्स में कम घुलनशील हैं; वे वनडेट्स को कम संक्षारक आयनिक रूप में परिवर्तित करते हैं और उनके वैनडेट्स कसकर पालन करने वाले, दुर्दम्य और ऑक्सीजन बाधाओं के रूप में कार्य करते हैं।[5][3]

दहन के लिए अतिरिक्त हवा की मात्रा को कम करके (इस प्रकार अधिमान्य रूप से दुर्दम्य ऑक्साइड बनाने), उजागर सतहों के दुर्दम्य कोटिंग्स, या उच्च-क्रोमियम मिश्र धातुओं के उपयोग से जंग की दर को कम किया जा सकता है, उदा। 50% Ni/50% Cr या 40% Ni/60% Cr। [6] 1:3 के अनुपात में सोडियम की उपस्थिति सबसे कम गलनांक देती है और इससे बचना चाहिए। 535 °C का यह गलनांक इंजन के हॉट स्पॉट जैसे पिस्टन का ताज, वाल्व सीट और टर्बोचार्जर पर समस्या पैदा कर सकता है।[5][3]

लीड

नेतृत्व करना कम पिघलने वाला स्लैग बना सकता है जो सुरक्षात्मक ऑक्साइड स्केल को प्रवाहित करने में सक्षम है।[7][8] पिघले हुए सीसे के संपर्क में आने पर लीड को अक्सर सामान्य सामग्रियों में तनाव जंग खुर के लिए जाना जाता है। सीसे की क्रैकिंग प्रवृत्ति को कुछ समय के लिए जाना जाता है क्योंकि स्टील के कंटेनरों और पिघले हुए सीसे के बर्तनों सहित अधिकांश लौह आधारित मिश्र धातु सामान्यतः क्रैकिंग के कारण विफल हो जाते हैं।[9]

यह भी देखें

संदर्भ

  1. Birks, N.; Meier, Gerald H.; Pettit, F. S. (2006). धातुओं के उच्च तापमान ऑक्सीकरण का परिचय (2nd ed.). Cambridge, UK: Cambridge University Press. ISBN 0-511-16162-X. OCLC 77562951.
  2. Young, David John (2008). उच्च तापमान ऑक्सीकरण और धातुओं का क्षरण. ISBN 978-0-08-044587-8.
  3. 3.0 3.1 3.2 3.3 3.4 3.5 Lai, G. Y (January 2007). उच्च तापमान जंग और सामग्री अनुप्रयोगों. p. 321. ISBN 978-0-87170-853-3.
  4. 4.0 4.1 Branan, Carl (2005-08-16). Rules of thumb for chemical engineers: A manual of quick, accurate solutions to everyday process engineering problems. p. 293. ISBN 978-0-7506-7856-8. Archived from the original on 2018-04-18. Retrieved 2021-02-08.
  5. 5.0 5.1 5.2 5.3 Chilingar, George V; Yen, Teh Fu (1978-01-01). बिटुमेन, डामर और टार रेत. p. 232. ISBN 978-0-444-41619-3.
  6. Carl Branan Rules of thumb for chemical engineers: a manual of quick, accurate solutions to everyday process engineering problems Archived 2018-04-18 at the Wayback Machine Gulf Professional Publishing, 2005, ISBN 0-7506-7856-9 p. 294
  7. Schriner, Doug. "सीसा पुनर्चक्रण में धातुमल रसायन की समीक्षा" (PDF).
  8. प्रक्रिया धातुकर्म पर ग्रंथ. 2014. doi:10.1016/c2010-0-67121-5. ISBN 9780080969886.
  9. Fontana, Mars G. (1987). जंग इंजीनियरिंग (3rd, international ed.). New York: McGraw-Hill. ISBN 0-07-100360-6. OCLC 77545140.

बाहरी संबंध