क्रिस्टल प्रकाशिकी: Difference between revisions
m (3 revisions imported from alpha:क्रिस्टल_प्रकाशिकी) |
No edit summary |
||
Line 78: | Line 78: | ||
== बाहरी संबंध == | == बाहरी संबंध == | ||
* [http://gerdbreitenbach.de/crystal/crystal.html A virtual polarization microscope] | * [http://gerdbreitenbach.de/crystal/crystal.html A virtual polarization microscope] | ||
[[Category:Created On 27/03/2023]] | [[Category:Created On 27/03/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Lua-based templates]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:क्रिस्टलोग्राफी]] | |||
[[Category:नॉनलाइनियर ऑप्टिक्स]] | |||
[[Category:संघनित पदार्थ भौतिकी]] |
Revision as of 11:05, 18 April 2023
क्रिस्टल प्रकाशिकी प्रकाशिकी की वह शाखा है जो विषमदैशिक माध्यम में प्रकाश के व्यवहार का वर्णन करती है, अर्थात, माध्यम (जैसे क्रिस्टल) जिसमें प्रकाश अलग-अलग व्यवहार करता है, जिसके आधार पर प्रकाश का प्रसार होता है। अपवर्तन का सूचकांक रचना और क्रिस्टल संरचना दोनों पर निर्भर करता है और इसकी गणना ग्लैडस्टोन-डेल संबंध का उपयोग करके की जा सकती है। क्रिस्टल प्रायः स्वाभाविक रूप से विषमदैशिक होते हैं, और कुछ माध्यम (जैसे तरल क्रिस्टल) में बाहरी विद्युत क्षेत्र को लागू करके विषमदैशिकता को प्रेरित करना संभव होता है।
समदैशिक माध्यम
विशिष्ट पारदर्शी माध्यम जैसे काँच समदैशिक होते हैं, जिसका अर्थ है कि प्रकाश समान रूप से व्यवहार करता है चाहे वह किसी भी दिशा में माध्यम में यात्रा कर रहा हो। परावैद्युत में मैक्सवेल के समीकरणों के संदर्भ में, यह विद्युत विस्थापन क्षेत्र D और विद्युत क्षेत्र E के बीच एक संबंध देता है-
जहां ε0 मुक्त स्थान की पारगम्यता है और P विद्युत ध्रुवीकरण (माध्यम में उपस्थित विद्युत द्विध्रुव आघूर्णों के अनुरूप सदिश क्षेत्र) है। भौतिक रूप से, ध्रुवीकरण क्षेत्र को प्रकाश के विद्युत क्षेत्र में माध्यम की प्रतिक्रिया के रूप में माना जा सकता है।
विद्युत संवेदनशीलता
समदैशिक और रैखिक माध्यम में, यह ध्रुवीकरण क्षेत्र P विद्युत क्षेत्र E के समानुपाती और समानांतर है-
जहां χ माध्यम की विद्युत संवेदनशीलता है। D और E के बीच का संबंध इस प्रकार है-
जहाँ
माध्यम का परावैद्युतांक है। मान 1+χ माध्यम की सापेक्ष पारगम्यता कहलाती है, और गैर-चुंबकीय माध्यम के लिए, अपवर्तक सूचकांक n से संबंधित है, द्वारा
विषमदैशिक माध्यम
विषमदैशिक माध्यम में, जैसे कि क्रिस्टल, ध्रुवीकरण क्षेत्र P आवश्यक रूप से प्रकाश E के विद्युत क्षेत्र के साथ संरेखित नहीं होता है। एक भौतिक चित्र में, इसे क्रिस्टल की भौतिक संरचना से संबंधित निश्चित मुख्य दिशाओं वाले विद्युत क्षेत्र द्वारा माध्यम में प्रेरित द्विध्रुव के रूप में माना जा सकता है। इसे इस प्रकार लिखा जा सकता है-
यहाँ χ पहले की तरह कोई संख्या नहीं है, बल्कि कोटि 2 का प्रदिश है जो विद्युत संवेदनशीलता प्रदिश है। घटकों के संदर्भ में 3 आयामों में-
या संकलन अधिवेशन का उपयोग करना-
चूँकि χ एक प्रदिश है, इसलिए जरूरी नहीं है कि P, E के साथ संरेखी हो।
गैर चुंबकीय और पारदर्शी पदार्थ में, χij = χji, अर्थात χ प्रदिश वास्तविक और सममित है।[1] वर्णक्रमीय प्रमेय के अनुसार, χxx, χyy और χzz को छोड़कर प्रदिश के सभी घटकों को शून्य करते हुए, निर्देशांक अक्षों के उपयुक्त समुच्चय का चयन करके प्रदिश को विकर्ण करना संभव है। यह संबंधों का समुच्चय देता है-
इस स्थिति में दिशाएँ x, y और z को माध्यम के प्रमुख अक्ष के रूप में जाना जाता है। ध्यान दें कि ये अक्ष लंबकोणीय होंगे यदि χ प्रदिश में सभी प्रविष्टियां वास्तविक हैं, उस स्थिति के अनुरूप जिसमें सभी दिशाओं में अपवर्तक सूचकांक वास्तविक है।
यह इस प्रकार है कि D और E भी एक प्रदिश से संबंधित हैं-
यहाँ ε को आपेक्षिक पारगम्यता प्रदिश या परावैद्युत प्रदिश के रूप में जाना जाता है। नतीजतन, माध्यम का अपवर्तक सूचकांक भी प्रदिश होना चाहिए। प्रकाश तरंग पर विचार करें जो ध्रुवीकृत z मुख्य अक्ष के साथ संचरित होती है जैसे कि तरंग का विद्युत क्षेत्र x-अक्ष के समानांतर होता है। तरंग संवेदनशीलता χxx और पारगम्यता εxx का अनुभव करती है। अपवर्तक सूचकांक इस प्रकार है-
y दिशा में ध्रुवीकृत तरंग के लिए-
इस प्रकार ये तरंगें दो अलग-अलग अपवर्तक सूचकांकों को देखेंगी और विभिन्न गतियों से यात्रा करेंगी। इस घटना को द्विअपवर्तन के रूप में जाना जाता है और यह कैल्साइट और क्वार्ट्ज जैसे कुछ सामान्य क्रिस्टल में होता है।
यदि χxx = χyy ≠ χzz, तो क्रिस्टल को एकअक्षीय कहा जाता है। (क्रिस्टल का प्रकाशिक अक्ष देखें।) यदि χxx ≠ χyy और χyy ≠ χzz तो क्रिस्टल द्विअक्षीय कहलाता है। एकअक्षीय क्रिस्टल दो अपवर्तक सूचक प्रदर्शित करता है, x या y दिशाओं में ध्रुवीकृत प्रकाश के लिए "साधारण" सूचकांक (no), और z दिशा में ध्रुवीकरण के लिए "असाधारण" सूचकांक (ne) प्रदर्शित करता है। एकअक्षीय क्रिस्टल "धनात्मक" होता है यदि ne > no और "ऋणात्मक" यदि ne < no। अक्षों के कुछ कोण पर ध्रुवीकृत प्रकाश विभिन्न ध्रुवीकरण घटकों के लिए एक अलग चरण वेग का अनुभव करेगा, और अपवर्तन के एकल सूचकांक द्वारा वर्णित नहीं किया जा सकता है। इसे प्रायः सूचकांक दीर्घवृत्ताभ के रूप में दर्शाया जाता है।
अन्य प्रभाव
विद्युत् प्रकाशिकी प्रभाव जैसे कुछ गैर-रैखिक प्रकाशिक घटनाएं एक बाहरी विद्युत क्षेत्र लागू होने पर माध्यम की पारगम्यता प्रदिश की भिन्नता का कारण बनती हैं, जो क्षेत्र की दृढ़ता के लिए आनुपातिक (न्यूनतम क्रम) होती है। यह माध्यम के प्रमुख अक्षों के घूर्णन का कारण बनता है और इसके माध्यम से यात्रा करने वाले प्रकाश के व्यवहार को बदल देता है प्रभाव का उपयोग प्रकाश मॉडुलकों के उत्पादन के लिए किया जा सकता है।
चुंबकीय क्षेत्र के जवाब में, कुछ पदार्थों में परावैद्युत प्रदिश हो सकता है जो कि जटिल-हर्मिटियन है इसे जाइरो-चुंबकीय या चुंबकीय-प्रकाशिकी प्रभाव कहा जाता है। इस स्थिति में, प्रमुख अक्ष जटिल-मान सदिश हैं, जो अण्डाकार रूप से ध्रुवीकृत प्रकाश के अनुरूप हैं, और समय-व्युत्क्रम समरूपता को तोड़ा जा सकता है। इसका उपयोग प्रकाशिक पृथक्कारकों को डिजाइन करने के लिए किया जा सकता है, उदाहरण के लिए।
एक परावैद्युत प्रदिश जो हर्मिटियन नहीं है, जटिल अभिलक्षणिक मान को जन्म देता है, जो एक विशेष आवृत्ति पर लाभ या अवशोषण के साथ पदार्थ से मेल खाता है।
यह भी देखें
- द्विअपवर्तन
- सूचकांक दीर्घवृत्त
- प्रकाशिक घूर्णन
- प्रिज्म
संदर्भ
- ↑ Amnon Yariv, Pochi Yeh. (2006). Photonics optical electronics in modern communications (6th ed.). Oxford University Press. pp. 30-31.