माइक्रोस्टेट (सांख्यिकीय यांत्रिकी): Difference between revisions

From Vigyanwiki
No edit summary
Line 63: Line 63:
==बाहरी संबंध==
==बाहरी संबंध==
* [http://theory.physics.manchester.ac.uk/~judith/stat_therm/node57.html Some illustrations of microstates vs. macrostates]
* [http://theory.physics.manchester.ac.uk/~judith/stat_therm/node57.html Some illustrations of microstates vs. macrostates]
[[Category: सांख्यिकीय यांत्रिकी]]


[[Category: Machine Translated Page]]
[[Category:Created On 09/03/2023]]
[[Category:Created On 09/03/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Webarchive template wayback links]]
[[Category:सांख्यिकीय यांत्रिकी]]

Revision as of 17:34, 18 April 2023

सिक्के को दो बार उछालने के लिए माइक्रोस्टेट हैं। सभी माइक्रोस्टेट्स समान रूप से संभावित हैं, किन्तु मैक्रोस्टेट्स में बिना ऑर्डर के राज्य सम्मिलित हैं (H, T) एकल राज्यों (H, H) और (T, T) वाले मैक्रोस्टेट्स की तुलना में दोगुना संभावित है।

सांख्यिकीय यांत्रिकी में, माइक्रोस्टेट थर्मोडायनामिक प्रणाली का विशिष्ट सूक्ष्म विन्यास है जो प्रणाली अपने थर्मल उतार-चढ़ाव के समय निश्चित संभावना के साथ प्रभुत्व कर सकता है। इसके विपरीत, प्रणाली के मैक्रोस्कोपिक गुणों को संदर्भित करता है, जैसे कि इसका तापमान, दबाव, आयतन और घनत्व है[1] सांख्यिकीय यांत्रिकी पर [2][3] मैक्रोस्टेट को निम्नानुसार परिभाषित करते है : ऊर्जा के मूल्यों का विशेष सेट, कणों की संख्या, और पृथक थर्मोडायनामिक प्रणाली की मात्रा को विशेष मैक्रोस्टेट निर्दिष्ट करते है। इस विवरण में, माइक्रोस्टेट विभिन्न संभावित विधि के रूप में प्रकट होती हैं, और यह प्रणाली विशेष मैक्रोस्टेट को प्राप्त कर सकती है।

माइक्रोस्टेट्स के निश्चित सांख्यिकीय यांत्रिकी (गणितीय भौतिकी) में संभावित राज्यों के संभाव्यता वितरण की विशेषता है। यह वितरण निश्चित माइक्रोस्टेट में प्रणाली के शोध की संभावना का वर्णन करता है। थर्मोडायनामिक सीमा में, मैक्रोस्कोपिक प्रणाली द्वारा अपने उतार-चढ़ाव के समय में समान मैक्रोस्कोपिक गुण होते हैं।

ऊष्मप्रवैगिकी अवधारणाओं की सूक्ष्म परिभाषाएँ

सांख्यिकीय यांत्रिकी प्रणाली के अनुभवजन्य थर्मोडायनामिक गुणों को माइक्रोस्टेट्स के समूह के सांख्यिकीय वितरण से जोड़ता है। प्रणाली के सभी मैक्रोस्कोपिक थर्मोडायनामिक गुणों की गणना विभाजन फ़ंक्शन (सांख्यिकीय यांत्रिकी) से की जा सकती है जो योग होता है ये सभी माइक्रोस्टेट्स है।

किसी भी समय प्रणाली को समूह में वितरित किया जाता है सूक्ष्म को द्वारा लेबल किया गया, और प्रभुत्व की संभावना होती है, और जिसमे ऊर्जा है यदि माइक्रोस्टेट प्रकृति में मशीनी को क्वांटम सांख्यिकीय यांत्रिकी द्वारा असतत सेट बनाते हैं, और प्रणाली का ऊर्जा स्तर है।

आंतरिक ऊर्जा

मैक्रोस्टेट की आंतरिक ऊर्जा प्रणाली का माइक्रोस्टेट्स औसत है

यह ऊष्मप्रवैगिकी के प्रथम नियम से जुड़ी ऊर्जा की धारणा का सूक्ष्म कथन है।

एंट्रॉपी

विहित यांत्रिकी के अधिक सामान्य स्थिति के लिए, पूर्ण एन्ट्रापी विशेष रूप से माइक्रोस्टेट्स की संभावनाओं पर निर्भर करती है और इसे परिभाषित किया जाता है-

जहाँ बोल्ट्जमैन स्थिरांक है। माइक्रोकैनोनिकल यांत्रिकी के लिए, केवल उन माइक्रोस्टेट्स से मिलकर ऊर्जा को सामान और सरल करता है

माइक्रोस्टेट की संख्या है एंट्रॉपी का यह रूप विएना में लुडविग बोल्ट्जमैन के ग्रेवस्टोन पर दिखाई देता है।

ऊष्मप्रवैगिकी का दूसरा नियम बताता है कि समय के साथ पृथक प्रणाली की एन्ट्रापी कैसे परिवर्तित होती है। ऊष्मप्रवैगिकी का तीसरा नियम इस परिभाषा के अनुरूप है, क्योंकि शून्य एन्ट्रॉपी का अर्थ है कि प्रणाली का मैक्रोस्टेट कम हो जाता है।

ऊष्मा और कार्य

यदि हम प्रणाली की अंतर्निहित क्वांटम प्रकृति को ध्यान में रखते हैं तो ऊष्मा और कार्य को भिन्न किया जा सकता है।

बंद प्रणाली (पदार्थ का कोई हस्तांतरण नहीं) के लिए, सांख्यिकीय यांत्रिकी प्रणाली में सूक्ष्म क्रिया से ऊर्जा हस्तांतरण होता है, जो प्रणाली के क्वांटम ऊर्जा स्तरों को परिवर्तन के प्रभुत्व की संख्या में जुड़ा हुआ है।[2]

कार्य (ऊष्मप्रवैगिकी) प्रणाली पर आदेशित, मैक्रोस्कोपिक क्रिया से जुड़ा ऊर्जा हस्तांतरण है। यदि यह क्रिया अधिक धीमी गति से कार्य करती है, तो क्वांटम यांत्रिकी के रुद्धोष्म प्रमेय का अर्थ है कि यह प्रणाली के ऊर्जा स्तरों के मध्य स्थान्तरित नहीं होगा। इस स्थिति में, प्रणाली की आंतरिक ऊर्जा केवल ऊर्जा स्तरों में परिवर्तन के कारण परवर्तित होती है ।[2]

ऊष्मा और कार्य की सूक्ष्म, क्वांटम परिभाषाएँ निम्नलिखित हैं:

जिससे

ऊष्मा और कार्य की उपरोक्त दो परिभाषाएँ सांख्यिकीय यांत्रिकी की कुछ अभिव्यक्तियों में से हैं जहाँ क्वांटम स्थिति में परिभाषित थर्मोडायनामिक मात्राएँ मौलिक सीमा में कोई समान परिभाषा नहीं प्राप्त करती हैं। इसका कारण यह है कि मौलिक माइक्रोस्टेट्स को त्रुटिहीन संबंध में परिभाषित नहीं किया गया है, जिसका अर्थ है कि जब कार्य प्रणाली के क्लासिकल माइक्रोस्टेट्स के मध्य वितरण के लिए उपलब्ध कुल ऊर्जा को परवर्तित करता है, जो माइक्रोस्टेट्स कि ऊर्जा को स्तर करता है और परिवर्तन का पालन नहीं करता है ।

फेज स्पेस में माइक्रोस्टेट

मौलिक चरण स्थान

स्वतंत्रता की F डिग्री (भौतिकी और रसायन विज्ञान) मौलिक प्रणाली का वर्णन 2F आयामी चरण स्थान के संदर्भ में किया जाता है, जिसका समन्वय अक्ष प्रणाली के F सामान्यीकृत निर्देशांक qi और इसका F सामान्यीकृत संवेग pi से मिलकर बनता है। ऐसी प्रणाली का माइक्रोस्टेट चरण स्थान में बिंदु द्वारा निर्दिष्ट किया जाएगा। किन्तु स्वतंत्रता की बड़ी संख्या वाली प्रणाली के लिए इसकी त्रुटिहीन माइक्रोस्टेट सामान्यतः महत्वपूर्ण नहीं होती है। तो चरण स्थान को h0 = ΔqiΔpi, आकार की कोशिकाओं में विभाजित किया जा सकता है, प्रत्येक को माइक्रोस्टेट के रूप में माना जाता है।[4] अब माइक्रोस्टेट असतत और गणनीय हैं और आंतरिक ऊर्जा U का अब कोई त्रुटिहीन मान नहीं है, किन्तु U+δU के मध्य और हैI

माइक्रोस्टेट्स Ω की संख्या जो बंद प्रणाली पर प्रभुत्व कर सकती है, उसके चरण स्थान की मात्रा के समानुपाती होती है:

जहाँ संकेतक कार्य 1 है। किन्तु हैमिल्टन फ़ंक्शन H(x) बिंदु x = (q,p) पर चरण स्थान में U और U+ δU और 0 के मध्य है यदि मध्य नहीं है तो स्थिरांक Ω(U) को विश्राम रहित बनाता है। आदर्श गैस के लिए हैI[5] इस विवरण में, कण भिन्न-भिन्न हैं। यदि दो कणों की स्थिति और संवेग का आदान-प्रदान किया जाता है, तो नए राज्य को चरण स्थान में भिन्न बिंदु द्वारा दर्शाया जाएगा। इस स्थिति में बिंदु माइक्रोस्टेट का प्रतिनिधित्व करता है। यदि M कणों का उपसमुच्चय अप्रभेद्य है, तो M इन कणों के संभावित क्रम परिवर्तन या संभावित आदान-प्रदान को एकल माइक्रोस्टेट को भाग के रूप में गिना जाएगा। थर्मोडायनामिक प्रणाली पर बाधाओं में संभावित माइक्रोस्टेट्स का सेट भी परिलक्षित होता है।

उदाहरण के लिए, कुल ऊर्जा U के साथ N कणों की साधारण गैस की स्थिति में मात्रा V के घन में निहित है, गैस का प्रारूप प्रयोगात्मक विधि से भिन्न नहीं किया जा सकता है, माइक्रोस्टेट में उपरोक्त सम्मिलित होगा- उल्लेखित N. चरण और माइक्रोस्टेट्स के सेट को बॉक्स के अंदर सभी स्थिति निर्देशांक के लिए विवश किया जाएगा, और त्रिज्या U के संवेग निर्देशांक में हाइपरस्फेरिकल सतह है। प्रणाली में दो भिन्न-भिन्न गैसों का मिश्रण, जिनमें प्रारूप को भिन्न किया जा सकता हैं, A और B द्वारा माइक्रोस्टेट्स की संख्या बढ़ जाती है, क्योंकि दो बिंदु जिनमें A और B कण चरण अंतरिक्ष में परिवर्तित हो जाते हैं, माइक्रोस्टेट दो समान कण का भाग नहीं हैं। उदाहरण के लिए, उनके स्थान के आधार पर भिन्न-भिन्न हो सकते हैं। (विन्यास एन्ट्रापी देखें।) यदि बॉक्स में समान कण संतुलन पर होते है, तो विभाजन होता है, और आयतन को अर्ध में विभाजित किया जाता है, बॉक्स में उपस्तिथ कण एक दूसरे से भिन्न होते हैं। चरण स्थान में, प्रत्येक बॉक्स में N/2 कण अब मात्रा V/2 तक सीमित हैं, और उनकी ऊर्जा U/2 तक सीमित है, और एकल माइक्रोस्टेट का वर्णन करने वाले बिंदुओं की संख्या परिवर्तित हो जाएगी, और चरण स्थान का विवरण नहीं है।

इसका गिब्स विरोधाभास और सही बोल्ट्जमैन गिनती दोनों में निहितार्थ है। बोल्ट्जमैन की गिनती के संबंध में, यह फेज स्पेस में बिंदुओं की बहुलता है जो प्रभावी रूप से माइक्रोस्टेट्स की संख्या को कम करती है और एंट्रॉपी को व्यापक बनाती है। गिब्स विरोधाभास के संबंध में, महत्वपूर्ण परिणाम यह है कि विभाजन के सम्मिलन के परिणामस्वरूप माइक्रोस्टेट्स की संख्या में वृद्धि और अल्पता से युग्मित होती हैI प्रत्येक कण के लिए उपलब्ध आयतन में कमी के परिणामस्वरूप शून्य का शुद्ध एन्ट्रापी परिवर्तन होता है।

यह भी देखें

  • क्वांटम सांख्यिकीय यांत्रिकी
  • स्वतंत्रता की डिग्री (भौतिकी और रसायन विज्ञान)
  • एर्गोडिक परिकल्पना
  • फेज स्पेस

संदर्भ

  1. Macrostates and Microstates Archived 2012-03-05 at the Wayback Machine
  2. 2.0 2.1 2.2 Reif, Frederick (1965). सांख्यिकीय और तापीय भौतिकी के मूल सिद्धांत. McGraw-Hill. pp. 66–70. ISBN 978-0-07-051800-1.
  3. Pathria, R K (1965). सांख्यिकीय यांत्रिकी. Butterworth-Heinemann. p. 10. ISBN 0-7506-2469-8.
  4. "The Statistical Description of Physical Systems".
  5. Bartelmann, Matthias (2015). सैद्धांतिक भौतिकी. Springer Spektrum. pp. 1142–1145. ISBN 978-3-642-54617-4.


बाहरी संबंध