बिंदुवार: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 26: Line 26:


== घटकवार संचालन ==
== घटकवार संचालन ==
घटकवार संचालन सामान्यतः वैक्टर पर परिभाषित होते हैं, जहां वेक्टर उपसमुच्चय के तत्व होते हैं <math>K^n</math> कुछ [[प्राकृतिक संख्या]] के लिए <math>n</math> एवं कुछ [[क्षेत्र (गणित)]] <math>K</math>. अगर हम निरूपित करते हैं <math>i</math>किसी भी सदिश का -वाँ घटक <math>v</math> जैसा <math>v_i</math>, तो घटकवार जोड़ है <math>(u+v)_i = u_i+v_i</math>.
घटकवार संचालन सामान्यतः सदिश पर परिभाषित होते हैं, जहां सदिश उपसमुच्चय के तत्व होते हैं, <math>K^n</math> कुछ [[प्राकृतिक संख्या]] के लिए <math>n</math> एवं कुछ [[क्षेत्र (गणित)]] <math>K</math> यदि हम निरूपित करते हैं, किसी भी सदिश का <math>i</math> -वाँ घटक <math>v</math> रूप में <math>v_i</math>, तो घटकवार जोड़ है।<math>(u+v)_i = u_i+v_i</math>.


मेट्रिसेस पर कंपोनेंट वाइज संचालन को परिभाषित किया जा सकता है। मैट्रिक्स जोड़, जहां <math>(A + B)_{ij} = A_{ij} + B_{ij}</math> एक घटकवार संचालन है जबकि [[मैट्रिक्स गुणन]] नहीं है।
मेट्रिसेस पर घटकवार संचालन को परिभाषित किया जा सकता है। मैट्रिक्स जोड़, जहां <math>(A + B)_{ij} = A_{ij} + B_{ij}</math> घटकवार संचालन है जबकि [[मैट्रिक्स गुणन]] नहीं है।


एक Tuple#Tuples कार्यों के रूप में एक फ़ंक्शन के रूप में माना जा सकता है, एवं एक वेक्टर एक टपल है। इसलिए, कोई भी वेक्टर <math>v</math> फ़ंक्शन से मेल खाता है <math>f:n\to K</math> ऐसा है कि <math>f(i)=v_i</math>, एवं सदिशों पर कोई भी घटकवार संक्रिया उन सदिशों के संगत फलनों पर बिंदुवार प्रचालन है।
टपल को फ़ंक्शन के रूप में माना जा सकता है, एवं वेक्टर, टपल है। इसलिए, कोई भी वेक्टर <math>v</math> फ़ंक्शन से युग्मित होता है। <math>f:n\to K</math> ऐसा है कि <math>f(i)=v_i</math>, एवं सदिशों पर कोई भी घटकवार संक्रिया उन सदिशों के संगत फलनों पर बिंदुवार प्रचालन होता है।


== बिंदुवार संबंध ==
== बिंदुवार संबंध ==
[[आदेश सिद्धांत]] में कार्यों पर एक बिंदुवार आंशिक क्रम को परिभाषित करना आम है। ए, बी [[आंशिक रूप से आदेशित सेट|आंशिक रूप से आदेशित उपसमुच्चय]] के साथ, कार्यों ए → बी का उपसमुच्चय एफ ≤ जी द्वारा आदेश दिया जा सकता है अगर एवं केवल अगर (∀x ∈ ए) एफ (एक्स) ≤ जी (एक्स)। पॉइंटवाइज ऑर्डर भी अंतर्निहित पॉउपसमुच्चय्स के कुछ गुण प्राप्त करते हैं। उदाहरण के लिए यदि A एवं B निरंतर जालक हैं, तो फलनों का समुच्चय A → B बिंदुवार क्रम में है।<ref>Gierz et al., p. xxxiii</ref> कार्यों पर बिंदुवार क्रम का उपयोग करके अन्य महत्वपूर्ण धारणाओं को संक्षिप्त रूप से परिभाषित किया जा सकता है, उदाहरण के लिए:<ref>Gierz, et al., p. 26</ref>
[[आदेश सिद्धांत]] में कार्यों पर एक बिंदुवार आंशिक क्रम को परिभाषित करना आम है। ए, बी [[आंशिक रूप से आदेशित सेट|आंशिक रूप से आदेशित उपसमुच्चय]] के साथ, कार्यों ए → बी का उपसमुच्चय एफ ≤ जी द्वारा आदेश दिया जा सकता है यदि एवं केवल यदि (∀x ∈ ए) एफ (एक्स) ≤ जी (एक्स)। पॉइंटवाइज ऑर्डर भी अंतर्निहित पॉउपसमुच्चय्स के कुछ गुण प्राप्त करते हैं। उदाहरण के लिए यदि A एवं B निरंतर जालक हैं, तो फलनों का समुच्चय A → B बिंदुवार क्रम में है।<ref>Gierz et al., p. xxxiii</ref> कार्यों पर बिंदुवार क्रम का उपयोग करके अन्य महत्वपूर्ण धारणाओं को संक्षिप्त रूप से परिभाषित किया जा सकता है, उदाहरण के लिए:<ref>Gierz, et al., p. 26</ref>
* पॉउपसमुच्चय पी पर एक [[बंद करने वाला ऑपरेटर]] सी एक [[मोनोटोनिक फ़ंक्शन]] है एवं अतिरिक्त संपत्ति के साथ पी (यानी एक [[प्रक्षेपण (आदेश)]]ऑर्डर)) पर आदर्श आत्म-नक्शा है जो आईडी<sub>''A''</sub> ≤ c, जहाँ id पहचान फलन है।
* पॉउपसमुच्चय पी पर एक [[बंद करने वाला ऑपरेटर]] सी एक [[मोनोटोनिक फ़ंक्शन]] है एवं अतिरिक्त संपत्ति के साथ पी (यानी एक [[प्रक्षेपण (आदेश)]]ऑर्डर)) पर आदर्श आत्म-नक्शा है जो आईडी<sub>''A''</sub> ≤ c, जहाँ id पहचान फलन है।
* इसी प्रकार, प्रोजेक्शन ऑपरेटर के को [[कर्नेल ऑपरेटर]] कहा जाता है यदि एवं केवल अगर के ≤ आईडी<sub>''A''</sub>.
* इसी प्रकार, प्रोजेक्शन ऑपरेटर के को [[कर्नेल ऑपरेटर]] कहा जाता है यदि एवं केवल यदि के ≤ आईडी<sub>''A''</sub>.


असीमित बिंदुवार संबंध का एक उदाहरण कार्यों का [[बिंदुवार अभिसरण]] है - कार्यों का [[अनुक्रम]]
असीमित बिंदुवार संबंध का एक उदाहरण कार्यों का [[बिंदुवार अभिसरण]] है - कार्यों का [[अनुक्रम]]

Revision as of 11:34, 22 April 2023

गणित में, क्वालीफायर बिंदुवार उपयोग यह इंगित करने के लिए किया जाता है, कि प्रत्येक मान पर विचार करके निश्चित संपत्ति परिभाषित की जाती है किसी फ़ंक्शन का बिंदुवार अवधारणाओं का महत्वपूर्ण वर्ग संचालन होता है, अर्थात्, परिभाषा के कार्य के डोमेन में प्रत्येक बिंदु के लिए भिन्न-भिन्न मानों को कार्य करने के लिए संचालन को प्रारम्भ करके कार्यों पर परिभाषित संचालन संबंधों के महत्वपूर्ण सिद्धांत को बिंदुवार भी परिभाषित किया जा सकता है।

बिंदुवार संचालन

साइन फ़ंक्शन (निचला प्लॉट, नीला) एवं प्राकृतिक लघुगणक (लाल) कार्यों का बिंदुवार योग (ऊपरी भूखंड, बैंगनी) एवं उत्पाद (हरा)। हाइलाइट किया गया लंबवत टुकड़ा बिंदु x = 2π पर गणना दिखाता है।

औपचारिक परिभाषा

बाइनरी संचालन o: Y × YY उपसमुच्चय पर Y किसी संचालन O: (XY) × (XY) → (XY) से सभी कार्यों के मंच XY के लिए बिंदुवार उठाया जा सकता है। X से Y इस प्रकार है। दो फ़ंक्शन f1: XY एवं f2: XY दिए गए हैं। फ़ंक्शन O(f1, f2): XY द्वारा परिभाषित करें।

(O(f1, f2))(x) = o(f1(x), f2(x)) for all xX.

सामान्यतः o एवं O को प्रतीक द्वारा निरूपित किया जाता है। समान परिभाषा का उपयोग यूनरी संचालन o के लिए एवं अन्य एरीटी के संचालन के लिए किया जाता है।

उदाहरण

जहाँ .

बिंदुवार गुणनफल एवं अदिश (गणित) भी देखें।

कार्यों पर संचालन का उदाहरण जो बिंदुवार नहीं है, कनवल्शन है।

गुण

बिंदुवार संचालन को कोडोमेन पर संबंधित संचालन से संबद्धता , क्रमविनिमेयता एवं वितरण जैसे गुण मिलते हैं। यदि कुछ बीजगणितीय संरचना है, सभी कार्यों का उपसमुच्चय के वाहक उपसमुच्चय के लिए को समान प्रकार की बीजगणितीय संरचना में परिवर्तित किया जा सकता है।

घटकवार संचालन

घटकवार संचालन सामान्यतः सदिश पर परिभाषित होते हैं, जहां सदिश उपसमुच्चय के तत्व होते हैं, कुछ प्राकृतिक संख्या के लिए एवं कुछ क्षेत्र (गणित) यदि हम निरूपित करते हैं, किसी भी सदिश का -वाँ घटक रूप में , तो घटकवार जोड़ है।.

मेट्रिसेस पर घटकवार संचालन को परिभाषित किया जा सकता है। मैट्रिक्स जोड़, जहां घटकवार संचालन है जबकि मैट्रिक्स गुणन नहीं है।

टपल को फ़ंक्शन के रूप में माना जा सकता है, एवं वेक्टर, टपल है। इसलिए, कोई भी वेक्टर फ़ंक्शन से युग्मित होता है। ऐसा है कि , एवं सदिशों पर कोई भी घटकवार संक्रिया उन सदिशों के संगत फलनों पर बिंदुवार प्रचालन होता है।

बिंदुवार संबंध

आदेश सिद्धांत में कार्यों पर एक बिंदुवार आंशिक क्रम को परिभाषित करना आम है। ए, बी आंशिक रूप से आदेशित उपसमुच्चय के साथ, कार्यों ए → बी का उपसमुच्चय एफ ≤ जी द्वारा आदेश दिया जा सकता है यदि एवं केवल यदि (∀x ∈ ए) एफ (एक्स) ≤ जी (एक्स)। पॉइंटवाइज ऑर्डर भी अंतर्निहित पॉउपसमुच्चय्स के कुछ गुण प्राप्त करते हैं। उदाहरण के लिए यदि A एवं B निरंतर जालक हैं, तो फलनों का समुच्चय A → B बिंदुवार क्रम में है।[1] कार्यों पर बिंदुवार क्रम का उपयोग करके अन्य महत्वपूर्ण धारणाओं को संक्षिप्त रूप से परिभाषित किया जा सकता है, उदाहरण के लिए:[2]

असीमित बिंदुवार संबंध का एक उदाहरण कार्यों का बिंदुवार अभिसरण है - कार्यों का अनुक्रम

साथ
एक फ़ंक्शन के लिए एक अनुक्रम बिंदुवार की सीमा यदि प्रत्येक के लिए में


टिप्पणियाँ

  1. Gierz et al., p. xxxiii
  2. Gierz, et al., p. 26


संदर्भ

For order theory examples:

  • T. S. Blyth, Lattices and Ordered Algebraic Structures, Springer, 2005, ISBN 1-85233-905-5.
  • G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, D. S. Scott: Continuous Lattices and Domains, Cambridge University Press, 2003.

This article incorporates material from Pointwise on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.