गुरुत्वाकर्षण बाध्यकारी ऊर्जा: Difference between revisions
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
जहाँ G [[गुरुत्वाकर्षण स्थिरांक]] है, M गोले का द्रव्यमान है, और R इसकी त्रिज्या है। | जहाँ G [[गुरुत्वाकर्षण स्थिरांक]] है, M गोले का द्रव्यमान है, और R इसकी त्रिज्या है। | ||
यह मानते हुए कि पृथ्वी एकसमान घनत्व का एक गोला है (जो कि नहीं है, किन्तु परिमाण का क्रम प्राप्त करने के लिए अनुमान लगाया जा सकता है) M = {{val|5.97|e=24|u=kg}} और r = {{val|6.37|e=6|u=m}}, तो U = {{val|2.24|e=32|u=J}}. यह लगभग सूर्य के कुल ऊर्जा उत्पादन के एक सप्ताह के समान है। यह है {{val|37.5|u=MJ/kg}}, सतह पर प्रति किलोग्राम संभावित ऊर्जा के निरपेक्ष | यह मानते हुए कि पृथ्वी एकसमान घनत्व का एक गोला है (जो कि नहीं है, किन्तु परिमाण का क्रम प्राप्त करने के लिए अनुमान लगाया जा सकता है) M = {{val|5.97|e=24|u=kg}} और r = {{val|6.37|e=6|u=m}}, तो U = {{val|2.24|e=32|u=J}}. यह लगभग सूर्य के कुल ऊर्जा उत्पादन के एक सप्ताह के समान है। यह है {{val|37.5|u=MJ/kg}}, सतह पर प्रति किलोग्राम संभावित ऊर्जा के निरपेक्ष मान का 60% है। | ||
भूकंपीय यात्रा के समय से अनुमानित घनत्व की वास्तविक गहराई-निर्भरता,(एडम्स-विलियमसन समीकरण देखें) [[प्रारंभिक संदर्भ पृथ्वी मॉडल]] में दी गई है।<ref name=PREM>{{cite journal | last1 = Dziewonski | first1 = A. M. | author-link = Adam Dziewonski | last2 = Anderson | first2 = D. L. | author2-link = Don L. Anderson | title = प्रारंभिक संदर्भ पृथ्वी मॉडल| journal = [[Physics of the Earth and Planetary Interiors]] | year = 1981 | volume = 25 | issue = 4 | pages = 297–356 | doi=10.1016/0031-9201(81)90046-7 | bibcode = 1981PEPI...25..297D }}</ref> इसका उपयोग करके, पृथ्वी की वास्तविक गुरुत्वाकर्षण बाध्यकारी ऊर्जा की गणना [[संख्यात्मक एकीकरण]] रूप से U = {{val|2.49|e=32|u=J}} के रूप में की जा सकती है | भूकंपीय यात्रा के समय से अनुमानित घनत्व की वास्तविक गहराई-निर्भरता,(एडम्स-विलियमसन समीकरण देखें) [[प्रारंभिक संदर्भ पृथ्वी मॉडल]] में दी गई है।<ref name=PREM>{{cite journal | last1 = Dziewonski | first1 = A. M. | author-link = Adam Dziewonski | last2 = Anderson | first2 = D. L. | author2-link = Don L. Anderson | title = प्रारंभिक संदर्भ पृथ्वी मॉडल| journal = [[Physics of the Earth and Planetary Interiors]] | year = 1981 | volume = 25 | issue = 4 | pages = 297–356 | doi=10.1016/0031-9201(81)90046-7 | bibcode = 1981PEPI...25..297D }}</ref> इसका उपयोग करके, पृथ्वी की वास्तविक गुरुत्वाकर्षण बाध्यकारी ऊर्जा की गणना [[संख्यात्मक एकीकरण]] रूप से U = {{val|2.49|e=32|u=J}} के रूप में की जा सकती है | ||
[[वायरल प्रमेय|विषाणु प्रमेय]] के अनुसार, द्रवस्थैतिक संतुलन को बनाए रखने के लिए एक तारे की गुरुत्वाकर्षण बंधन ऊर्जा इसकी आंतरिक ऊष्मा से लगभग दोगुनी होती है।<ref name="Chandrasekhar 1939"/> चूंकि एक तारे में गैस सापेक्षता का अधिक सिद्धांत बन जाती है, द्रवस्थैतिक संतुलन के लिए आवश्यक गुरुत्वाकर्षण बंधन ऊर्जा शून्य तक पहुंच जाती है और तारा अस्थिर हो जाता है (अत्यधिक | [[वायरल प्रमेय|विषाणु प्रमेय]] के अनुसार, द्रवस्थैतिक संतुलन को बनाए रखने के लिए एक तारे की गुरुत्वाकर्षण बंधन ऊर्जा इसकी आंतरिक ऊष्मा से लगभग दोगुनी होती है।<ref name="Chandrasekhar 1939"/> चूंकि एक तारे में गैस सापेक्षता का अधिक सिद्धांत बन जाती है, द्रवस्थैतिक संतुलन के लिए आवश्यक गुरुत्वाकर्षण बंधन ऊर्जा शून्य तक पहुंच जाती है और तारा अस्थिर हो जाता है (अत्यधिक अस्तव्यस्तता के प्रति संवेदनशील), जो उच्च-द्रव्यमान तारे के स्थितियों में [[सुपरनोवा]] को जन्म दे सकता है। [[न्यूट्रॉन स्टार|न्यूट्रॉन तारे]] के स्थितियों में [[विकिरण दबाव]] या [[ब्लैक होल]] तक। | ||
== एक समान गोले के लिए व्युत्पत्ति == | == एक समान गोले के लिए व्युत्पत्ति == | ||
त्रिज्या <math>R</math> के साथ एक गोले की गुरुत्वाकर्षण बंधन ऊर्जा यह कल्पना करके पाया जाता है कि गोलाकार गोले को क्रमिक रूप से अनंत तक ले जाकर अलग किया जाता है, सबसे पहले, और उसके लिए आवश्यक कुल ऊर्जा का पता लगाना है। | त्रिज्या <math>R</math> के साथ एक गोले की गुरुत्वाकर्षण बंधन ऊर्जा यह कल्पना करके पाया जाता है कि गोलाकार गोले को क्रमिक रूप से अनंत तक ले जाकर अलग किया जाता है, सबसे पहले, और उसके लिए आवश्यक कुल ऊर्जा का पता लगाना है। | ||
Line 33: | Line 33: | ||
== [[नकारात्मक द्रव्यमान|ऋणात्मक द्रव्यमान]] घटक == | == [[नकारात्मक द्रव्यमान|ऋणात्मक द्रव्यमान]] घटक == | ||
दो पिंड, एक दूसरे से दूरी R पर रखे गए हैं और पारस्परिक रूप से गतिमान नहीं हैं, R के छोटे होने पर एक छोटे से छोटे तीसरे पिंड पर गुरुत्वाकर्षण बल लगाते हैं। इसे समान रूप से गोलाकार समाधानों के लिए समान रूप से प्रणाली के ऋणात्मक द्रव्यमान घटक के रूप में देखा जा सकता है: | दो पिंड, एक दूसरे से दूरी R पर रखे गए हैं और पारस्परिक रूप से गतिमान नहीं हैं, R के छोटे होने पर एक छोटे से छोटे तीसरे पिंड पर गुरुत्वाकर्षण बल लगाते हैं। इसे समान रूप से गोलाकार समाधानों के लिए समान रूप से प्रणाली के ऋणात्मक द्रव्यमान घटक के रूप में देखा जा सकता है: | ||
<math display="block">M_\mathrm{binding}=-\frac{3GM^2}{5Rc^2}</math>उदाहरण के लिए, यह तथ्य कि पृथ्वी अपने वर्तमान आकार की लागत का एक गुरुत्वाकर्षण-बाध्य क्षेत्र है जिसकी लागत 2.49421 × 1015 kg द्रव्यमान का (लगभग [[फोबोस (चंद्रमा)]] के द्रव्यमान का एक चौथाई - जूल में द्रव्यमान-ऊर्जा तुल्यता के लिए ऊपर देखें), और यदि इसके परमाणु विरल थे एक इच्छानुसार से बड़ी मात्रा में , पृथ्वी अपने वर्तमान द्रव्यमान से अधिक {{val|2.49421|e=15|u=kg}} वजन देगी (और तीसरे पिंड पर इसका गुरुत्वाकर्षण खिंचाव तदनुसार | <math display="block">M_\mathrm{binding}=-\frac{3GM^2}{5Rc^2}</math>उदाहरण के लिए, यह तथ्य कि पृथ्वी अपने वर्तमान आकार की लागत का एक गुरुत्वाकर्षण-बाध्य क्षेत्र है जिसकी लागत 2.49421 × 1015 kg द्रव्यमान का (लगभग [[फोबोस (चंद्रमा)]] के द्रव्यमान का एक चौथाई - जूल में द्रव्यमान-ऊर्जा तुल्यता के लिए ऊपर देखें), और यदि इसके परमाणु विरल थे एक इच्छानुसार से बड़ी मात्रा में , पृथ्वी अपने वर्तमान द्रव्यमान से अधिक {{val|2.49421|e=15|u=kg}} वजन देगी (और तीसरे पिंड पर इसका गुरुत्वाकर्षण खिंचाव तदनुसार शक्तिशाली होगा)। | ||
यह आसानी से प्रदर्शित किया जा सकता है कि यह ऋणात्मक घटक कभी भी प्रणाली के सकारात्मक घटक से अधिक नहीं हो सकता। प्रणाली के द्रव्यमान से अधिक एक ऋणात्मक बाध्यकारी ऊर्जा वास्तव में आवश्यक होगी कि प्रणाली का त्रिज्या इससे छोटा हो: | यह आसानी से प्रदर्शित किया जा सकता है कि यह ऋणात्मक घटक कभी भी प्रणाली के सकारात्मक घटक से अधिक नहीं हो सकता। प्रणाली के द्रव्यमान से अधिक एक ऋणात्मक बाध्यकारी ऊर्जा वास्तव में आवश्यक होगी कि प्रणाली का त्रिज्या इससे छोटा हो: | ||
Line 39: | Line 39: | ||
जो इससे छोटा है <math display="inline">\frac{3}{10}</math> इसकी [[श्वार्जस्चिल्ड त्रिज्या]]: | जो इससे छोटा है <math display="inline">\frac{3}{10}</math> इसकी [[श्वार्जस्चिल्ड त्रिज्या]]: | ||
<math display="block">R\leq\frac{3}{10} r_\mathrm{s}</math> | <math display="block">R\leq\frac{3}{10} r_\mathrm{s}</math> | ||
और इसलिए किसी बाहरी पर्यवेक्षक को कभी दिखाई नहीं देता। | और इसलिए किसी बाहरी पर्यवेक्षक को कभी दिखाई नहीं देता। चूँकि यह केवल एक न्यूटोनियन सन्निकटन है और [[सामान्य सापेक्षता]] स्थितियों में अन्य कारकों को भी ध्यान में रखा जाना चाहिए।<ref>{{cite journal | last1 = Katz | first1 = Joseph | last2 = Lynden-Bell | first2 = Donald | last3 = Bičák | first3 = Jiří | date = 27 October 2006 | title = स्थिर अंतरिक्ष-समय में गुरुत्वाकर्षण ऊर्जा| journal = [[Classical and Quantum Gravity]] | volume = 23 | issue = 23 | pages = 7111–7128 | doi = 10.1088/0264-9381/23/23/030 | arxiv = gr-qc/0610052 | bibcode = 2006CQGra..23.7111K | s2cid = 1375765 }}</ref> | ||
== गैर-समान गोले == | == गैर-समान गोले == | ||
ग्रहों और तारों में उनकी कम घनत्व वाली सतहों से उनके अधिक सघन संकुचित कोर तक रेडियल घनत्व प्रवणता होती है। पतित पदार्थ की वस्तुएं (सफेद बौने; न्यूट्रॉन स्टार पल्सर) में रेडियल घनत्व ग्रेडिएंट्स और सापेक्ष सुधार होते हैं। | ग्रहों और तारों में उनकी कम घनत्व वाली सतहों से उनके अधिक सघन संकुचित कोर तक रेडियल घनत्व प्रवणता होती है। पतित पदार्थ की वस्तुएं (सफेद बौने; न्यूट्रॉन स्टार पल्सर) में रेडियल घनत्व ग्रेडिएंट्स और सापेक्ष सुधार होते हैं। |
Revision as of 16:35, 24 April 2023
एक प्रणाली की गुरुत्वाकर्षण बाध्यकारी ऊर्जा न्यूनतम ऊर्जा है जिसे प्रणाली को गुरुत्वाकर्षण बाध्य स्थिति में रहने के क्रम में जोड़ा जाना चाहिए। गुरुत्वाकर्षण से बंधी हुई प्रणाली में इसके भागों की ऊर्जा के योग की तुलना में कम (अर्थात्, अधिक नकारात्मक) गुरुत्वाकर्षण ऊर्जा होती है, जब ये पूरी तरह से अलग हो जाते हैं, यह वह है जो प्रणाली विक्षनरी रखता है | न्यूनतम कुल क्षमता के अनुसार एकत्रीकरण ऊर्जा सिद्धांत है।
एकसमान घनत्व के गोलाकार पिंड के लिए गुरुत्वीय बंधन ऊर्जा U सूत्र द्वारा दी जाती है[2][3]
यह मानते हुए कि पृथ्वी एकसमान घनत्व का एक गोला है (जो कि नहीं है, किन्तु परिमाण का क्रम प्राप्त करने के लिए अनुमान लगाया जा सकता है) M = 5.97×1024 kg और r = 6.37×106 m, तो U = 2.24×1032 J. यह लगभग सूर्य के कुल ऊर्जा उत्पादन के एक सप्ताह के समान है। यह है 37.5 MJ/kg, सतह पर प्रति किलोग्राम संभावित ऊर्जा के निरपेक्ष मान का 60% है।
भूकंपीय यात्रा के समय से अनुमानित घनत्व की वास्तविक गहराई-निर्भरता,(एडम्स-विलियमसन समीकरण देखें) प्रारंभिक संदर्भ पृथ्वी मॉडल में दी गई है।[4] इसका उपयोग करके, पृथ्वी की वास्तविक गुरुत्वाकर्षण बाध्यकारी ऊर्जा की गणना संख्यात्मक एकीकरण रूप से U = 2.49×1032 J के रूप में की जा सकती है
विषाणु प्रमेय के अनुसार, द्रवस्थैतिक संतुलन को बनाए रखने के लिए एक तारे की गुरुत्वाकर्षण बंधन ऊर्जा इसकी आंतरिक ऊष्मा से लगभग दोगुनी होती है।[2] चूंकि एक तारे में गैस सापेक्षता का अधिक सिद्धांत बन जाती है, द्रवस्थैतिक संतुलन के लिए आवश्यक गुरुत्वाकर्षण बंधन ऊर्जा शून्य तक पहुंच जाती है और तारा अस्थिर हो जाता है (अत्यधिक अस्तव्यस्तता के प्रति संवेदनशील), जो उच्च-द्रव्यमान तारे के स्थितियों में सुपरनोवा को जन्म दे सकता है। न्यूट्रॉन तारे के स्थितियों में विकिरण दबाव या ब्लैक होल तक।
एक समान गोले के लिए व्युत्पत्ति
त्रिज्या के साथ एक गोले की गुरुत्वाकर्षण बंधन ऊर्जा यह कल्पना करके पाया जाता है कि गोलाकार गोले को क्रमिक रूप से अनंत तक ले जाकर अलग किया जाता है, सबसे पहले, और उसके लिए आवश्यक कुल ऊर्जा का पता लगाना है।
एक निरंतर घनत्व मानते हुए, एक खोल और उसके अंदर के गोले का द्रव्यमान है:
ऋणात्मक द्रव्यमान घटक
दो पिंड, एक दूसरे से दूरी R पर रखे गए हैं और पारस्परिक रूप से गतिमान नहीं हैं, R के छोटे होने पर एक छोटे से छोटे तीसरे पिंड पर गुरुत्वाकर्षण बल लगाते हैं। इसे समान रूप से गोलाकार समाधानों के लिए समान रूप से प्रणाली के ऋणात्मक द्रव्यमान घटक के रूप में देखा जा सकता है:
यह आसानी से प्रदर्शित किया जा सकता है कि यह ऋणात्मक घटक कभी भी प्रणाली के सकारात्मक घटक से अधिक नहीं हो सकता। प्रणाली के द्रव्यमान से अधिक एक ऋणात्मक बाध्यकारी ऊर्जा वास्तव में आवश्यक होगी कि प्रणाली का त्रिज्या इससे छोटा हो:
गैर-समान गोले
ग्रहों और तारों में उनकी कम घनत्व वाली सतहों से उनके अधिक सघन संकुचित कोर तक रेडियल घनत्व प्रवणता होती है। पतित पदार्थ की वस्तुएं (सफेद बौने; न्यूट्रॉन स्टार पल्सर) में रेडियल घनत्व ग्रेडिएंट्स और सापेक्ष सुधार होते हैं।
विभिन्न मॉडलों के लिए न्यूट्रॉन स्टार सापेक्षतावादी समीकरणों में त्रिज्या बनाम द्रव्यमान का एक ग्राफ सम्मिलित है। [6] किसी दिए गए न्यूट्रॉन तारे के द्रव्यमान के लिए सबसे संभावित रेडी मॉडल AP4 (सबसे छोटी त्रिज्या) और MS2 (सबसे बड़ी त्रिज्या) द्वारा ब्रैकेट किए गए हैं। बीई गुरुत्वाकर्षण बाध्यकारी ऊर्जा द्रव्यमान का अनुपात है जो त्रिज्या आर के साथ एम के देखे गए न्यूट्रॉन स्टार गुरुत्वाकर्षण द्रव्यमान के समान है,
और तारा द्रव्यमान M सौर द्रव्यमान के सापेक्ष व्यक्त किया गया,
यह भी देखें
- तनाव-ऊर्जा टेंसर
- तनाव-ऊर्जा-संवेग स्यूडोटेंसर
- नॉर्डवेट प्रभाव
संदर्भ
- ↑ "क्लस्टर स्पॉट करें". www.eso.org. Retrieved 31 July 2017.
- ↑ 2.0 2.1 Chandrasekhar, S. 1939, An Introduction to the Study of Stellar Structure (Chicago: U. of Chicago; reprinted in New York: Dover), section 9, eqs. 90–92, p. 51 (Dover edition)
- ↑ Lang, K. R. 1980, Astrophysical Formulae (Berlin: Springer Verlag), p. 272
- ↑ Dziewonski, A. M.; Anderson, D. L. (1981). "प्रारंभिक संदर्भ पृथ्वी मॉडल". Physics of the Earth and Planetary Interiors. 25 (4): 297–356. Bibcode:1981PEPI...25..297D. doi:10.1016/0031-9201(81)90046-7.
- ↑ Katz, Joseph; Lynden-Bell, Donald; Bičák, Jiří (27 October 2006). "स्थिर अंतरिक्ष-समय में गुरुत्वाकर्षण ऊर्जा". Classical and Quantum Gravity. 23 (23): 7111–7128. arXiv:gr-qc/0610052. Bibcode:2006CQGra..23.7111K. doi:10.1088/0264-9381/23/23/030. S2CID 1375765.
- ↑ Neutron Star Masses and Radii Archived 2011-12-17 at the Wayback Machine, p. 9/20, bottom
- ↑ "2018 CODATA Value: Newtonian constant of gravitation". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2019-05-20.