गतिशील आवृत्ति स्केलिंग: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
{{redirect|सीपीयू थ्रॉटलिंग|अन्य उपयोग|थ्रॉटल (बहुविकल्पी) कंप्यूटिंग}}
{{redirect|सीपीयू थ्रॉटलिंग|अन्य उपयोग|थ्रॉटल (बहुविकल्पी) कंप्यूटिंग}}


'''गतिशील आवृत्ति स्केलिंग''' (सीपीयू थ्रॉटलिंग के रूप में भी जाना जाता है) [[कंप्यूटर आर्किटेक्चर]] में [[ऊर्जा प्रबंधन]] विधि है जिससे माइक्रोप्रक्रमक की [[घड़ी की दर|आवृत्ति]] को वास्तविक आवश्यकताओं के आधार पर "फ्लाई पर" स्वचालित रूप से समायोजित किया जा सकता है, जिससे [[पावर प्रबंधन एकीकृत सर्किट|ऊर्जा प्रबंधन एकीकृत परिपथ]] और उत्पन्न ऊष्मा की मात्रा को कम करता है जो टुकड़े द्वारा गतिशील आवृत्ति स्केलिंग मोबाइल उपकरणों पर बैटरी को संरक्षित करने और [[शांत पीसी|शांत कंप्यूटिंग सेटिंग्स]] पर शीतलन लागत और ध्वनि को कम करने में सहायता करती है या अधिक ताप प्रणाली (जैसे खराब [[अधिक काल संकजन]] के पश्चात्) के लिए सुरक्षा उपाय के रूप में उपयोगी हो सकती है।
'''गतिशील आवृत्ति स्केलिंग''' (सीपीयू थ्रॉटलिंग के रूप में भी जाना जाता है) [[कंप्यूटर आर्किटेक्चर|कंप्यूटर वास्तु-कला]] में [[ऊर्जा प्रबंधन]] विधि है जिससे सूक्ष्म प्रक्रमक की [[घड़ी की दर|आवृत्ति]] को वास्तविक आवश्यकताओं के आधार पर "फ्लाई पर" स्वचालित रूप से समायोजित किया जा सकता है, जिससे [[पावर प्रबंधन एकीकृत सर्किट|ऊर्जा प्रबंधन एकीकृत परिपथ]] और उत्पन्न ऊष्मा की मात्रा को कम करता है जो टुकड़े द्वारा गतिशील आवृत्ति स्केलिंग मोबाइल उपकरणों पर बैटरी को संरक्षित करने और [[शांत पीसी|शांत कंप्यूटिंग सेटिंग्स]] पर शीतलन लागत और ध्वनि को कम करने में सहायता करती है या अधिक ताप प्रणाली (जैसे खराब [[अधिक काल संकजन]] के पश्चात्) के लिए सुरक्षा उपाय के रूप में उपयोगी हो सकती है।


गतिशील आवृत्ति स्केलिंग लगभग हमेशा [[गतिशील वोल्टेज स्केलिंग]] के संयोजन में दिखाई देती है, जिससे कि उच्च आवृत्ति के लिए डिजिटल परिपथ के लिए सही परिणाम प्राप्त करने के लिए उच्च आपूर्ति वोल्टेज की आवश्यकता होती है। इस प्रकार संयुक्त विषय को '''गतिशील वोल्टेज और आवृत्ति स्केलिंग (डीवीएफएस)''' के रूप में जाना जाता है।
गतिशील आवृत्ति स्केलिंग लगभग हमेशा [[गतिशील वोल्टेज स्केलिंग]] के संयोजन में दिखाई देती है, जिससे कि उच्च आवृत्ति के लिए डिजिटल परिपथ के लिए सही परिणाम प्राप्त करने के लिए उच्च आपूर्ति वोल्टेज की आवश्यकता होती है। इस प्रकार संयुक्त विषय को '''गतिशील वोल्टेज और आवृत्ति स्केलिंग (डीवीएफएस)''' के रूप में जाना जाता है।
Line 22: Line 22:
गतिशील आवृत्ति स्केलिंग निश्चित समय में प्रक्रमक द्वारा जारी किए जा सकने वाले निर्देशों की संख्या को कम कर देता है, जिससे प्रदर्शन कम हो जाता है। अतः यह सामान्यतः तब उपयोग किया जाता है जब कार्यभार सीपीयू-बाउंड नहीं होता है।
गतिशील आवृत्ति स्केलिंग निश्चित समय में प्रक्रमक द्वारा जारी किए जा सकने वाले निर्देशों की संख्या को कम कर देता है, जिससे प्रदर्शन कम हो जाता है। अतः यह सामान्यतः तब उपयोग किया जाता है जब कार्यभार सीपीयू-बाउंड नहीं होता है।


स्विचिंग ऊर्जा को बचाने की विधि के रूप में गतिशील आवृत्ति स्केलिंग संभवतः ही कभी सार्थक होती है। विद्युत की उच्चतम संभावित मात्रा को बचाने के लिए गतिशील वोल्टेज स्केलिंग की भी आवश्यकता होती है जिससे कि V<sup>2</sup> घटक और तथ्य यह है कि आधुनिक सीपीयू कम ऊर्जा निष्क्रिय अवस्थाओं के लिए दृढ़ता से अनुकूलित हैं। अधिकांश स्थिर-वोल्टेज स्थितियों में, लंबे समय तक कम क्लॉक रेट पर चलने की तुलना में, चरम गति पर संक्षिप्त रूप से दौड़ना और अधिक समय तक गहरी निष्क्रिय अवस्था में रहना (जिसे "[[सोने की दौड़|रेस टू आइडल"]] या कम्प्यूटेशनल स्प्रिंटिंग कहा जाता है) अधिक कुशल होता है। इस प्रकार लम्बे समय तक और केवल थोड़ी देर के लिए हल्की निष्क्रिय अवस्था में रहता है। चूंकि, क्लॉक रेट के साथ-साथ वोल्टेज कम करना उन ट्रेड-ऑफ को परिवर्तित कर सकता है।
स्विचिंग ऊर्जा को बचाने की विधि के रूप में गतिशील आवृत्ति स्केलिंग संभवतः ही कभी सार्थक होती है। विद्युत की उच्चतम संभावित मात्रा को बचाने के लिए गतिशील वोल्टेज स्केलिंग की भी आवश्यकता होती है जिससे कि V<sup>2</sup> घटक और तथ्य यह है कि आधुनिक सीपीयू कम ऊर्जा निष्क्रिय अवस्थाओं के लिए दृढ़ता से अनुकूलित हैं। अधिकांश स्थिर-वोल्टेज स्थितियों में, लंबे समय तक कम घड़ी की दर पर चलने की तुलना में, चरम गति पर संक्षिप्त रूप से दौड़ना और अधिक समय तक गहरी निष्क्रिय अवस्था में रहना (जिसे "[[सोने की दौड़|रेस टू आइडल"]] या कम्प्यूटेशनल स्प्रिंटिंग कहा जाता है) अधिक कुशल होता है। इस प्रकार लम्बे समय तक और केवल थोड़ी देर के लिए हल्की निष्क्रिय अवस्था में रहता है। चूंकि, घड़ी की दर के साथ-साथ वोल्टेज कम करना उन ट्रेड-ऑफ को परिवर्तित कर सकता है।


इस प्रकार संबंधित-किन्तु-विपरीत विधि अधिक काल संकजन है, जिससे प्रक्रमक के प्रदर्शन को निर्माता के डिजाइन विनिर्देशों से ऊपर प्रक्रमक की (गतिशील) आवृत्ति को बढ़ाकर बढ़ाया जाता है।
इस प्रकार संबंधित-किन्तु-विपरीत विधि अधिक काल संकजन है, जिससे प्रक्रमक के प्रदर्शन को निर्माता के डिजाइन विनिर्देशों से ऊपर प्रक्रमक की (गतिशील) आवृत्ति को बढ़ाकर बढ़ाया जाता है।
Line 34: Line 34:


=== [[एएमडी]] ===
=== [[एएमडी]] ===
एएमडी दो भिन्न-भिन्न सीपीयू थ्रॉटलिंग विधियों को नियोजित करता है। एएमडी की Cool'n'Quiet विधि का उपयोग उसके डेस्कटॉप और सर्वर प्रक्रमक रेखाओ पर किया जाता है। Cool'n'Quiet का उद्देश्य बैटरी जीवन को बचाना नहीं है, जिससे कि इसका उपयोग एएमडी के मोबाइल प्रक्रमक रेखा में नहीं किया जाता है, बल्कि इसके अतिरिक्त कम ऊष्मा उत्पन्न करने के उद्देश्य से किया जाता है जो परिवर्तन में प्रणाली पंखे को धीमी गति से स्पिन करने की अनुमति देता है, परिणामस्वरूप शीतलन और शांत संचालन होता है, इसलिए प्रौद्योगिकी का नाम एएमडी का ऊर्जा युक्त सीपीयू थ्रॉटलिंग विधि का उपयोग इसके मोबाइल प्रक्रमक रेखा में किया जाता है, चूंकि [[एएमडी K6-2]] जैसे कुछ सहायक सीपीयू डेस्कटॉप में भी पाए जा सकते हैं।
एएमडी दो भिन्न-भिन्न सीपीयू थ्रॉटलिंग विधियों को नियोजित करता है। एएमडी की शीतलन और शांत विधि का उपयोग उसके डेस्कटॉप और सर्वर प्रक्रमक रेखाओ पर किया जाता है। शीतलन और शांत का उद्देश्य बैटरी जीवन को बचाना नहीं है, जिससे कि इसका उपयोग एएमडी के मोबाइल प्रक्रमक रेखा में नहीं किया जाता है, बल्कि इसके अतिरिक्त कम ऊष्मा उत्पन्न करने के उद्देश्य से किया जाता है जो परिवर्तन में प्रणाली पंखे को धीमी गति से चक्रण करने की अनुमति देता है, परिणामस्वरूप शीतलन और शांत संचालन होता है, इसलिए प्रौद्योगिकी का नाम एएमडी का ऊर्जा युक्त सीपीयू थ्रॉटलिंग विधि का उपयोग इसके मोबाइल प्रक्रमक रेखा में किया जाता है, चूंकि [[एएमडी K6-2]] जैसे कुछ सहायक सीपीयू डेस्कटॉप में भी पाए जा सकते हैं।


[[AMD PowerTune|एएमडी पावरट्यून]] और [[AMD ZeroCore Power|एएमडी ज़ीरोकोर पावर]] [[ ग्राफ़िक्स प्रोसेसिंग युनिट |ग्राफ़िक्स प्रोसेसिंग युनिट (जीपीयू]]) के लिए गतिशील आवृत्ति स्केलिंग प्रौद्योगिकियां हैं।
[[AMD PowerTune|एएमडी पावरट्यून]] और [[AMD ZeroCore Power|एएमडी ज़ीरोकोर पावर]] [[ ग्राफ़िक्स प्रोसेसिंग युनिट |ग्राफ़िक्स प्रोसेसिंग युनिट (जीपीयू]]) के लिए गतिशील आवृत्ति स्केलिंग प्रौद्योगिकियां हैं।
Line 41: Line 41:
वीआईए प्रौद्योगिकियों के प्रक्रमक [[LongHaul|लंबी दौड़]] (विद्युत बचाने वाला) नामक विधि का उपयोग करते हैं, जबकि [[Transmeta|ट्रांसमेटा]] के संस्करण को [[LongRun|अन्ततोगत्वा]] कहा जाता था।
वीआईए प्रौद्योगिकियों के प्रक्रमक [[LongHaul|लंबी दौड़]] (विद्युत बचाने वाला) नामक विधि का उपयोग करते हैं, जबकि [[Transmeta|ट्रांसमेटा]] के संस्करण को [[LongRun|अन्ततोगत्वा]] कहा जाता था।


साधारण प्रक्रमक चिप का 36-प्रक्रमक एएसएपी 1 प्रथम मल्टी-कोर प्रक्रमक चिप्स में से है। जो पूर्ण प्रकार से अप्रतिबंधित क्लॉक ऑपरेशन का समर्थन करता है (केवल यह आवश्यक है कि आवृत्ति अधिकतम अनुमत से कम होती है) जिसमें आवृत्ति, स्टार्ट और स्टॉप में मनमाना परिवर्तन सम्मिलित है। 167-प्रक्रमक AsAP 2 चिप प्रथम मल्टी-कोर प्रोसेसर चिप है जो व्यक्तिगत प्रोसेसर को अपनी घड़ी की फ्रीक्वेंसी में पूरी तरह से अप्रतिबंधित परिवर्तन करने में सक्षम बनाती है। (केवल उस आवृत्ति की आवश्यकता होती है जो अधिकतम अनुमत से कम हो) का समर्थन करने एसिंक्रोनस ऐरे आवृत्ति, स्टार्ट और स्टॉप में मनमाना परिवर्तन सहित पूर्ण प्रकार से अप्रतिबंधित क्लॉक ऑपरेशन (केवल उस आवृत्ति की आवश्यकता होती है जो अधिकतम अनुमत से कम हो) का समर्थन करने वाले पहले मल्टी-कोर प्रक्रमक चिप्स में से है। सिंपल प्रक्रमक चिप का 167-प्रक्रमक एसिंक्रोनस ऐरे पहला मल्टी-कोर प्रक्रमक चिप है जो भिन्न-भिन्न प्रक्रमक को अपनी घड़ी की आवृत्ति में पूरी प्रकार से अप्रतिबंधित परिवर्तिताव करने में सक्षम बनाता है।
साधारण प्रक्रमक चिप का 36-प्रक्रमक एएसएपी 1 प्रथम मल्टी-कोर प्रक्रमक चिप्स में से है जो पूर्ण प्रकार से अप्रतिबंधित क्लॉक ऑपरेशन का समर्थन करता है (केवल यह आवश्यक है कि आवृत्ति अधिकतम अनुमत से कम होती है) जिसमें आवृत्ति, स्टार्ट और स्टॉप में मनमाना परिवर्तन सम्मिलित है। 167-प्रक्रमक एएसएपी 2 चिप प्रथम मल्टी-कोर प्रक्रमक चिप है जो व्यक्तिगत प्रक्रमक को अपनी घड़ी की आवृत्ति में पूर्ण प्रकार से अप्रतिबंधित परिवर्तन करने में सक्षम बनाती है।


[[उन्नत कॉन्फ़िगरेशन और पावर इंटरफ़ेस|उन्नत कॉन्फ़िगरेशन और ऊर्जा इंटरफ़ेस]] स्पेक्स के अनुसार, आधुनिक समय के CPU की C0 कार्यशील स्थिति को तथाकथित P-स्टेट्स (प्रदर्शन स्टेट्स) में विभाजित किया जा सकता है, जो क्लॉक रेट में कमी और T-स्टेट्स (थ्रॉटलिंग स्टेट्स) की अनुमति देता है, जो STPCLK (स्टॉप क्लॉक) सिग्नल डालकर और इस प्रकार ड्यूटी साइकिल को छोड़ कर CPU (किन्तु वास्तविक क्लॉक रेट नहीं) को और नीचे थ्रॉटल करें।
[[उन्नत कॉन्फ़िगरेशन और पावर इंटरफ़ेस|उन्नत कॉन्फ़िगरेशन और ऊर्जा इंटरफ़ेस]] स्पेक्स के अनुसार, आधुनिक समय के सीपीयू की सीओ कार्यशील स्थिति को तथाकथित 'पी"-स्टेट्स (प्रदर्शन स्टेट्स) में विभाजित किया जा सकता है जो घड़ी की दर में कमी और "टी"-स्टेट्स (थ्रॉटलिंग स्टेट्स) की अनुमति देता है, जो STPCLK (स्टॉप क्लॉक) सिग्नल डालकर और इस प्रकार ड्यूटी साइकिल को छोड़ कर सीपीयू (किन्तु वास्तविक घड़ी की दर नहीं) को और नीचे थ्रॉटल करता है।


=== एआरएम ===
=== एआरएम ===
Line 51: Line 51:
* गतिशील वोल्टेज स्केलिंग
* गतिशील वोल्टेज स्केलिंग
* [[क्लॉक गेटिंग]]
* [[क्लॉक गेटिंग]]
* [[एचएलटी (x86 निर्देश)]]
* [[एचएलटी (x86 निर्देश)|एचएलटी (एक्स86 निर्देश)]]
ऊर्जा सेविंग टेक्नोलॉजीज:
ऊर्जा बचत प्रौद्योगिकियां:
* कूल'एन'क्विट|एएमडी कूल'एन'क्विट (डेस्कटॉप सीपीयू)
* एएमडी शीतलन और शांत (डेस्कटॉप सीपीयू)
* पॉवरनाउ!|एएमडी पॉवरनाउ! (लैपटॉप सीपीयू)
* एएमडी पॉवरनाउ! (लैपटॉप सीपीयू)
* एएमडी ऊर्जाट्यून/[[एएमडी पावरप्ले|एएमडी ऊर्जाप्ले]] (ग्राफिक्स)
* एएमडी ऊर्जाट्यून/[[एएमडी पावरप्ले]] (ग्राफिक्स)
* स्पीडस्टेप (सीपीयू)
* स्पीडस्टेप (सीपीयू)
प्रदर्शन बढ़ाने वाली विधि:
प्रदर्शन बढ़ाने वाली विधि:

Revision as of 21:54, 29 April 2023

गतिशील आवृत्ति स्केलिंग (सीपीयू थ्रॉटलिंग के रूप में भी जाना जाता है) कंप्यूटर वास्तु-कला में ऊर्जा प्रबंधन विधि है जिससे सूक्ष्म प्रक्रमक की आवृत्ति को वास्तविक आवश्यकताओं के आधार पर "फ्लाई पर" स्वचालित रूप से समायोजित किया जा सकता है, जिससे ऊर्जा प्रबंधन एकीकृत परिपथ और उत्पन्न ऊष्मा की मात्रा को कम करता है जो टुकड़े द्वारा गतिशील आवृत्ति स्केलिंग मोबाइल उपकरणों पर बैटरी को संरक्षित करने और शांत कंप्यूटिंग सेटिंग्स पर शीतलन लागत और ध्वनि को कम करने में सहायता करती है या अधिक ताप प्रणाली (जैसे खराब अधिक काल संकजन के पश्चात्) के लिए सुरक्षा उपाय के रूप में उपयोगी हो सकती है।

गतिशील आवृत्ति स्केलिंग लगभग हमेशा गतिशील वोल्टेज स्केलिंग के संयोजन में दिखाई देती है, जिससे कि उच्च आवृत्ति के लिए डिजिटल परिपथ के लिए सही परिणाम प्राप्त करने के लिए उच्च आपूर्ति वोल्टेज की आवश्यकता होती है। इस प्रकार संयुक्त विषय को गतिशील वोल्टेज और आवृत्ति स्केलिंग (डीवीएफएस) के रूप में जाना जाता है।

प्रक्रमक थ्रॉटलिंग को "स्वचालित अंडरक्लॉकिंग" के रूप में भी जाना जाता है। स्वचालित अधिक काल संकजन (बूस्टिंग) भी विधिक रूप से गतिशील आवृत्ति स्केलिंग का रूप है, किन्तु यह अपेक्षाकृत नया है और सामान्यतः थ्रॉटलिंग के साथ इसकी चर्चा नहीं की जाती है।

ऑपरेशन

चिप द्वारा छितरी हुई गतिशील शक्ति (स्विचिंग ऊर्जा) C·V2·A·f है जहां C प्रति घड़ी चक्र में स्विच की जा रही धारिता है, V वोल्टेज है, A गतिविधि कारक है[1] जो स्विचिंग घटनाओं की औसत संख्या दर्शाता है चिप में ट्रांजिस्टर द्वारा प्रति घड़ी चक्र (इकाई रहित मात्रा के रूप में) का संकेत और f घड़ी की आवृत्ति है।[2]

सामान्यतः वोल्टेज विद्युत के उपयोग और ताप का मुख्य निर्धारक है।[3] स्थिर संचालन के लिए आवश्यक वोल्टेज उस आवृत्ति द्वारा निर्धारित किया जाता है जिस पर परिपथ क्लॉक किया जाता है और यदि आवृत्ति भी कम हो जाती है तब इसे कम किया जा सकता है।[4] चिप की कुल शक्ति के लिए अकेले गतिशील शक्ति का हिसाब नहीं है, चूँकि स्थिर शक्ति भी है जो मुख्य रूप से विभिन्न रिसाव धाराओं के कारण है। इस प्रकार स्थैतिक विद्युत की खपत और स्पर्शोन्मुख निष्पादन समय के कारण यह दिखाया गया है कि सॉफ्टवेयर की ऊर्जा खपत उत्तल ऊर्जा व्यवहार दिखाती है अर्थात, इष्टतम सीपीयू आवृत्ति उपस्तिथ होती है जिस पर ऊर्जा की खपत कम से कम होती है।[5]

सबथ्रेशोल्ड रिसाव अधिक से अधिक महत्वपूर्ण हो गया है जिससे कि ट्रांजिस्टर का आकार छोटा हो गया है और थ्रेशोल्ड वोल्टेज का स्तर कम हो गया है। दशक पहले गतिशील शक्ति कुल चिप शक्ति का लगभग दो-तिहाई थी। चूँकि समकालीन सीपीयू और एसओसी में रिसाव धाराओं के कारण विद्युत की कमी कुल विद्युत खपत पर हावी होती है। अतः रिसाव की शक्ति को नियंत्रित करने के प्रयास में, हाई-κ मेटल-गेट और ऊर्जा गेटिंग सामान्य विधि होती हैं।

गतिशील वोल्टेज स्केलिंग अन्य संबंधित ऊर्जा संरक्षण विधि है जिसे अधिकांशतः आवृत्ति स्केलिंग के संयोजन में उपयोग किया जाता है जिससे कि जिस आवृत्ति पर चिप चल सकती है वह ऑपरेटिंग वोल्टेज से संबंधित होती है।

सामान्यतः कुछ विद्युत घटकों की दक्षता, जैसे वोल्टेज नियामक, बढ़ते तापमान के साथ घट जाती है, अतः विद्युत का उपयोग तापमान के साथ बढ़ सकता है। चूंकि विद्युत के बढ़ते उपयोग से तापमान में वृद्धि हो सकती है। इस प्रकार वोल्टेज या आवृत्ति में वृद्धि से प्रणाली की विद्युत की मांग सीएमओएस सूत्र के संकेत से भी अधिक बढ़ सकती है और इसके विपरीत भी हो सकती है।[6][7]

प्रदर्शन प्रभाव

गतिशील आवृत्ति स्केलिंग निश्चित समय में प्रक्रमक द्वारा जारी किए जा सकने वाले निर्देशों की संख्या को कम कर देता है, जिससे प्रदर्शन कम हो जाता है। अतः यह सामान्यतः तब उपयोग किया जाता है जब कार्यभार सीपीयू-बाउंड नहीं होता है।

स्विचिंग ऊर्जा को बचाने की विधि के रूप में गतिशील आवृत्ति स्केलिंग संभवतः ही कभी सार्थक होती है। विद्युत की उच्चतम संभावित मात्रा को बचाने के लिए गतिशील वोल्टेज स्केलिंग की भी आवश्यकता होती है जिससे कि V2 घटक और तथ्य यह है कि आधुनिक सीपीयू कम ऊर्जा निष्क्रिय अवस्थाओं के लिए दृढ़ता से अनुकूलित हैं। अधिकांश स्थिर-वोल्टेज स्थितियों में, लंबे समय तक कम घड़ी की दर पर चलने की तुलना में, चरम गति पर संक्षिप्त रूप से दौड़ना और अधिक समय तक गहरी निष्क्रिय अवस्था में रहना (जिसे "रेस टू आइडल" या कम्प्यूटेशनल स्प्रिंटिंग कहा जाता है) अधिक कुशल होता है। इस प्रकार लम्बे समय तक और केवल थोड़ी देर के लिए हल्की निष्क्रिय अवस्था में रहता है। चूंकि, घड़ी की दर के साथ-साथ वोल्टेज कम करना उन ट्रेड-ऑफ को परिवर्तित कर सकता है।

इस प्रकार संबंधित-किन्तु-विपरीत विधि अधिक काल संकजन है, जिससे प्रक्रमक के प्रदर्शन को निर्माता के डिजाइन विनिर्देशों से ऊपर प्रक्रमक की (गतिशील) आवृत्ति को बढ़ाकर बढ़ाया जाता है।

सामान्यतः दोनों के मध्य बड़ा अंतर यह है कि आधुनिक पीसी प्रणाली में अधिक काल संकजन अधिकांशतः सामने की ओर पर किया जाता है (मुख्यतः जिससे कि गुणक सामान्य रूप से लॉक होता है), किन्तु गतिशील आवृत्ति स्केलिंग सीपीयू गुणक के साथ की जाती है। इसके अतिरिक्त अधिक काल संकजन अधिकांशतः स्थिर होती है, जबकि गतिशील आवृत्ति स्केलिंग हमेशा गतिशील होती है। यदि चिप गिरावट जोखिम स्वीकार्य हैं, तब सॉफ्टवेयर अधिकांशतः आवृत्ति स्केलिंग एल्गोरिदम में ओवरक्लॉक आवृत्तियों को सम्मिलित कर सकता है।

विक्रेताओं भर में समर्थन

इंटेल

इंटेल की सीपीयू थ्रॉटलिंग विधि, स्पीडस्टेप का उपयोग इसके मोबाइल और डेस्कटॉप सीपीयू रेखाओ में किया जाता है।

एएमडी

एएमडी दो भिन्न-भिन्न सीपीयू थ्रॉटलिंग विधियों को नियोजित करता है। एएमडी की शीतलन और शांत विधि का उपयोग उसके डेस्कटॉप और सर्वर प्रक्रमक रेखाओ पर किया जाता है। शीतलन और शांत का उद्देश्य बैटरी जीवन को बचाना नहीं है, जिससे कि इसका उपयोग एएमडी के मोबाइल प्रक्रमक रेखा में नहीं किया जाता है, बल्कि इसके अतिरिक्त कम ऊष्मा उत्पन्न करने के उद्देश्य से किया जाता है जो परिवर्तन में प्रणाली पंखे को धीमी गति से चक्रण करने की अनुमति देता है, परिणामस्वरूप शीतलन और शांत संचालन होता है, इसलिए प्रौद्योगिकी का नाम एएमडी का ऊर्जा युक्त सीपीयू थ्रॉटलिंग विधि का उपयोग इसके मोबाइल प्रक्रमक रेखा में किया जाता है, चूंकि एएमडी K6-2 जैसे कुछ सहायक सीपीयू डेस्कटॉप में भी पाए जा सकते हैं।

एएमडी पावरट्यून और एएमडी ज़ीरोकोर पावर ग्राफ़िक्स प्रोसेसिंग युनिट (जीपीयू) के लिए गतिशील आवृत्ति स्केलिंग प्रौद्योगिकियां हैं।

वीआईए प्रौद्योगिकी

वीआईए प्रौद्योगिकियों के प्रक्रमक लंबी दौड़ (विद्युत बचाने वाला) नामक विधि का उपयोग करते हैं, जबकि ट्रांसमेटा के संस्करण को अन्ततोगत्वा कहा जाता था।

साधारण प्रक्रमक चिप का 36-प्रक्रमक एएसएपी 1 प्रथम मल्टी-कोर प्रक्रमक चिप्स में से है जो पूर्ण प्रकार से अप्रतिबंधित क्लॉक ऑपरेशन का समर्थन करता है (केवल यह आवश्यक है कि आवृत्ति अधिकतम अनुमत से कम होती है) जिसमें आवृत्ति, स्टार्ट और स्टॉप में मनमाना परिवर्तन सम्मिलित है। 167-प्रक्रमक एएसएपी 2 चिप प्रथम मल्टी-कोर प्रक्रमक चिप है जो व्यक्तिगत प्रक्रमक को अपनी घड़ी की आवृत्ति में पूर्ण प्रकार से अप्रतिबंधित परिवर्तन करने में सक्षम बनाती है।

उन्नत कॉन्फ़िगरेशन और ऊर्जा इंटरफ़ेस स्पेक्स के अनुसार, आधुनिक समय के सीपीयू की सीओ कार्यशील स्थिति को तथाकथित 'पी"-स्टेट्स (प्रदर्शन स्टेट्स) में विभाजित किया जा सकता है जो घड़ी की दर में कमी और "टी"-स्टेट्स (थ्रॉटलिंग स्टेट्स) की अनुमति देता है, जो STPCLK (स्टॉप क्लॉक) सिग्नल डालकर और इस प्रकार ड्यूटी साइकिल को छोड़ कर सीपीयू (किन्तु वास्तविक घड़ी की दर नहीं) को और नीचे थ्रॉटल करता है।

एआरएम

चिप पर विभिन्न एआरएम-आधारित प्रणाली सीपीयू और जीपीयू थ्रॉटलिंग प्रदान करते हैं।

यह भी देखें

ऊर्जा बचत प्रौद्योगिकियां:

  • एएमडी शीतलन और शांत (डेस्कटॉप सीपीयू)
  • एएमडी पॉवरनाउ! (लैपटॉप सीपीयू)
  • एएमडी ऊर्जाट्यून/एएमडी पावरप्ले (ग्राफिक्स)
  • स्पीडस्टेप (सीपीयू)

प्रदर्शन बढ़ाने वाली विधि:

संदर्भ

  1. K. Moiseev, A. Kolodny and S. Wimer (September 2008). "संकेतों का समय-जागरूक शक्ति-इष्टतम क्रम". ACM Transactions on Design Automation of Electronic Systems. 13 (4): 1–17. doi:10.1145/1391962.1391973. S2CID 18895687.
  2. Rabaey, J. M. (1996). डिजिटल इंटीग्रेटेड सर्किट. Prentice Hall.
  3. Victoria Zhislina (2014-02-19). "Why has CPU frequency ceased to grow?". Intel.
  4. https://www.usenix.org/legacy/events/hotpower/tech/full_papers/LeSueur.pdf[bare URL PDF]
  5. Karel De Vogeleer; Memmi, Gerard; Jouvelot, Pierre; Coelho, Fabien (2014). "The Energy/Frequency Convexity Rule: Modeling and Experimental Validation on Mobile Devices". arXiv:1401.4655 [cs.OH].
  6. Mike Chin. "Asus EN9600GT Silent Edition Graphics Card". Silent PC Review. p. 5. Retrieved 21 April 2008.
  7. Mike Chin. "80 Plus expands podium for Bronze, Silver & Gold". Silent PC Review. Retrieved 21 April 2008.