लाग्रंगियन (क्षेत्र सिद्धांत): Difference between revisions
No edit summary |
No edit summary |
||
Line 72: | Line 72: | ||
\left(\frac{\partial\mathcal{L}}{\partial(\partial_\mu\varphi)}\right) .</math> | \left(\frac{\partial\mathcal{L}}{\partial(\partial_\mu\varphi)}\right) .</math> | ||
== उदाहरण == | == उदाहरण == | ||
लाग्रंगियन के संदर्भ में | लाग्रंगियन के संदर्भ में क्षेत्रों पर बड़ी संख्या में भौतिक प्रणालियां प्रस्तुत की गई हैं। नीचे क्षेत्र सिद्धांत पर भौतिकी की पाठ्यपुस्तकों में पाए जाने वाले कुछ सबसे सामान्य प्रारूप हैं। | ||
=== न्यूटोनियन गुरुत्वाकर्षण === | === न्यूटोनियन गुरुत्वाकर्षण === | ||
Line 107: | Line 107: | ||
<math display="block">\mathcal{L} = \frac{1}{2} \mathrm{d}\phi \wedge {*\mathrm{d}\phi}</math> | <math display="block">\mathcal{L} = \frac{1}{2} \mathrm{d}\phi \wedge {*\mathrm{d}\phi}</math> | ||
जहां <math>\mathrm{d}</math> [[पुशफॉरवर्ड (अंतर)|अंतर]] है। समानार्थी अभिव्यक्ति इस प्रकार है: | जहां <math>\mathrm{d}</math> [[पुशफॉरवर्ड (अंतर)|अंतर]] है। समानार्थी अभिव्यक्ति इस प्रकार है: | ||
<math display="block">\mathcal{L} = \frac{1}{2}\sum_{i=1}^n \sum_{j=1}^n g_{ij}(\phi) \; \partial^\mu \phi_i \partial_\mu \phi_j</math> <math>g_{ij}</math> क्षेत्र के कई गुना पर [[रिमेंनियन मीट्रिक]]; अर्थात | <math display="block">\mathcal{L} = \frac{1}{2}\sum_{i=1}^n \sum_{j=1}^n g_{ij}(\phi) \; \partial^\mu \phi_i \partial_\mu \phi_j</math> <math>g_{ij}</math> क्षेत्र के कई गुना पर [[रिमेंनियन मीट्रिक]]; अर्थात क्षेत्रों <math>\phi_i</math> कई गुना के समन्वय चार्ट पर केवल [[स्थानीय निर्देशांक]] हैं। तीसरा सामान्य रूप है:<math display="block">\mathcal{L}=\frac{1}{2}\mathrm{tr}\left(L_\mu L^\mu\right)</math> | ||
साथ | साथ | ||
<math display="block">L_\mu=U^{-1}\partial_\mu U </math> | <math display="block">L_\mu=U^{-1}\partial_\mu U </math> | ||
Line 148: | Line 148: | ||
यहाँ, A विद्युत चुम्बकीय क्षमता 1-रूप के लिए है, J वर्तमान 1-रूप है, {{math|'''F'''}} क्षेत्रस्ट्रेंथ 2-रूप है और स्टार हॉज स्टार ऑपरेटर को दर्शाता है। यह ठीक वैसा ही लाग्रंगियन है जैसा ऊपर के खंड में है, इसके अतिरिक्त कि यहाँ प्रक्रिया समन्वय-मुक्त है; इंटीग्रैंड को आधार में विस्तारित करने के समान, लंबी अभिव्यक्ति प्राप्त होती है। ध्यान दें कि रूपों के साथ, अतिरिक्त एकीकरण उपाय आवश्यक नहीं है क्योंकि प्रपत्रों में अंतर्निहित अंतरों का समन्वय होता है। | यहाँ, A विद्युत चुम्बकीय क्षमता 1-रूप के लिए है, J वर्तमान 1-रूप है, {{math|'''F'''}} क्षेत्रस्ट्रेंथ 2-रूप है और स्टार हॉज स्टार ऑपरेटर को दर्शाता है। यह ठीक वैसा ही लाग्रंगियन है जैसा ऊपर के खंड में है, इसके अतिरिक्त कि यहाँ प्रक्रिया समन्वय-मुक्त है; इंटीग्रैंड को आधार में विस्तारित करने के समान, लंबी अभिव्यक्ति प्राप्त होती है। ध्यान दें कि रूपों के साथ, अतिरिक्त एकीकरण उपाय आवश्यक नहीं है क्योंकि प्रपत्रों में अंतर्निहित अंतरों का समन्वय होता है। | ||
<math display="block">\mathrm{d} {\ast}\mathbf{F} = {\ast}\mathbf{J} .</math> | <math display="block">\mathrm{d} {\ast}\mathbf{F} = {\ast}\mathbf{J} .</math> | ||
ये विद्युत चुम्बकीय क्षमता के लिए मैक्सवेल के समीकरण हैं। | ये विद्युत चुम्बकीय क्षमता के लिए मैक्सवेल के समीकरण हैं। {{math|1='''F''' = d'''A'''}} को प्रतिस्थापित करने से तुरंत क्षेत्रों के लिए समीकरण देता है, | ||
<math display="block">\mathrm{d}\mathbf{F} = 0</math> | <math display="block">\mathrm{d}\mathbf{F} = 0</math> | ||
क्योंकि {{math|'''F'''}} | क्योंकि {{math|'''F'''}} [[सटीक रूप|त्रुटिहीन रूप]] है। | ||
A क्षेत्र को [[U(1)]]-फाइबर बंडल पर [[affine कनेक्शन]] के रूप में समझा जा सकता है। अर्थात्, क्लासिकल विद्युतगतिकी, इसके सभी प्रभाव और समीकरण, मिन्कोवस्की अंतरिक्ष | A क्षेत्र को [[U(1)]]-फाइबर बंडल पर [[affine कनेक्शन|एफाइन कनेक्शन]] के रूप में समझा जा सकता है। अर्थात्, क्लासिकल विद्युतगतिकी, इसके सभी प्रभाव और समीकरण, मिन्कोवस्की अंतरिक्ष समय पर वृत्त बंडल के रूप में ''प्रत्येक प्रकार से'' अध्ययन किये जा सकते हैं। | ||
यांग-मिल्स समीकरणों को | यांग-मिल्स समीकरणों को उसी रूप में लिखा जा सकता है जैसा ऊपर दिया गया है, विद्युत चुंबकत्व के लाई समूह U(1) को इच्छानुसार रूप से लाई समूह द्वारा प्रतिस्थापित करके किया जाता है। [[मानक मॉडल|मानक]] प्रारूप में, इसे पारंपरिक रूप से<math>\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)</math> लिया जाता है। चूँकि सामान्य स्थिति रुचि की है। सभी स्थितियों में, किसी भी मात्रा का प्रदर्शन करने की कोई आवश्यकता नहीं है। यद्यपि यांग-मिल्स समीकरण ऐतिहासिक रूप से क्वांटम क्षेत्र सिद्धांत में निहित हैं, उपरोक्त समीकरण विशुद्ध रूप से शास्त्रीय हैं।<ref name="Bleecker"/><ref name= "jost"/> | ||
=== चेर्न-सिमंस कार्यात्मक === | === चेर्न-सिमंस कार्यात्मक === | ||
उपरोक्त के समान ही, क्रिया को आयाम में अल्प माना जा सकता है, अर्थात संपर्क ज्यामिति सेटिंग में होता है। यह चेर्न-साइमन्स रूप देता है। चेर्न-साइमन्स कार्यात्मक के रूप में लिखा गया है: | उपरोक्त के समान ही, क्रिया को आयाम में अल्प माना जा सकता है, अर्थात संपर्क ज्यामिति सेटिंग में होता है। यह चेर्न-साइमन्स रूप देता है। चेर्न-साइमन्स कार्यात्मक के रूप में लिखा गया है: |
Revision as of 13:14, 16 April 2023
लाग्रंगियन क्षेत्र सिद्धांत शास्त्रीय क्षेत्र सिद्धांत की औपचारिकता है। यह लाग्रंगियन यांत्रिकी का क्षेत्र-सैद्धांतिक अनुरूप है। लाग्रंगियन यांत्रिकी का उपयोग स्वतंत्रता की डिग्री की सीमित संख्या के साथ असतत कणों की प्रणाली की गति का विश्लेषण करने के लिए किया जाता है। लाग्रंगियन क्षेत्र सिद्धांत निरंतरता और क्षेत्रों पर प्रस्तावित होता है, जिसमें स्वतंत्रता की डिग्री की अनंत संख्या होती है।
क्षेत्रों पर लाग्रंगियन औपचारिकता के विकास के लिए प्रेरणा, सामान्यतः शास्त्रीय क्षेत्र सिद्धांत और क्वांटम क्षेत्र सिद्धांत के लिए स्वच्छ गणितीय आधार प्रदान करता है, जो औपचारिक कठिनाइयों से कुख्यात है जो इसे गणितीय सिद्धांत के रूप में अस्वीकार्य बनाता है। यहां प्रस्तुत लाग्रंगियन उनके क्वांटम समकक्षों के समान हैं, किन्तु, क्षेत्रों को शास्त्रीय क्षेत्रों के रूप में मानने और प्रमाणित होने के अतिरिक्त, परिभाषाएं प्रदान कर सकते हैं और आंशिक अंतर समीकरणों के गणित के पारंपरिक औपचारिक दृष्टिकोण के संगत गुणों के साथ समाधान प्राप्त कर सकते हैं। यह सोबोलेव रिक्त स्थान जैसे उचित प्रकार से चित्रित गुणों वाले रिक्त स्थान पर समाधान तत्पर करने में सक्षम बनाता है। यह विभिन्न प्रमेयों को प्रदान करने में सक्षम बनाता है, अस्तित्व के प्रमाण से औपचारिक श्रृंखला के समान अभिसरण से लेकर संभावित सिद्धांत की सामान्य सेटिंग्स तक होता है। इसके अतिरिक्त, रीमैनियन कई गुना और फाइबर बंडलों के सामान्यीकरण द्वारा अंतर्दृष्टि और स्पष्टता प्राप्त की जाती है, जिससे ज्यामितीय संरचना को स्पष्ट रूप से समझा जा सकता है और गति के संबंधित समीकरणों से भिन्न किया जा सकता है। ज्यामितीय संरचना के स्पष्ट दृष्टिकोण ने विपरीत में ज्यामिति से अत्यधिक अमूर्त प्रमेयों को अंतर्दृष्टि प्राप्त करने के लिए उपयोग करने की अनुमति दी है, जिसमें चेर्न-गॉस-बोनट प्रमेय और रिमेंन-रोच प्रमेय से अतियाह-सिंगर इंडेक्स प्रमेय और चेर्न-साइमन्स सिद्धांत सम्मिलित हैं।
अवलोकन
क्षेत्र सिद्धांत में, स्वतंत्र चर को अंतरिक्ष समय (x, y, z, t) में घटना से परिवर्तित कर दिया जाता है, या सामान्यतः अभी भी रिमेंनियन मैनिफोल्ड पर बिंदु s द्वारा होता है। निर्भर चर को अंतरिक्ष समय में उस बिंदु पर क्षेत्र के मान से परिवर्तित कर दिया जाता है, जिससे कि गति की समीकरण क्रिया सिद्धांत के माध्यम से प्राप्त किए जा सकें, जिसे इस प्रकार लिखा गया है:
गणितीय योगों में, फाइबर बंडल पर फलन के रूप में लाग्रंगियन को व्यक्त करना सामान्य है, जिसमें फाइबर बंडल पर जियोडेसिक्स को निर्दिष्ट करने के रूप में यूलर-लग्रेंज समीकरणों की व्याख्या की जा सकती है। अब्राहम और मार्सडेन की पाठ्यपुस्तक[1] ने आधुनिक ज्यामितीय विचारों के संदर्भ में शास्त्रीय यांत्रिकी का प्रथम व्यापक विवरण प्रदान किया, अर्थात, स्पर्शरेखा कई गुना, सहानुभूतिपूर्ण कई गुना और संपर्क ज्यामिति के संदर्भ में होता है। बिलीकर की पाठ्यपुस्तक[2] ने गेज अपरिवर्तनीय फाइबर बंडलों के संदर्भ में भौतिकी में क्षेत्र सिद्धांतों की व्यापक प्रस्तुति प्रदान की। इस प्रकार के फॉर्मूलेशन पूर्व ज्ञात या संदिग्ध थे। जोस्ट[3] ज्यामितीय प्रस्तुति के साथ निरंतर है, हैमिल्टनियन और लाग्रंगियन रूपों के मध्य संबंध को स्पष्ट करते हुए, पूर्व सिद्धांतों से स्पिन कई गुना का वर्णन करते हुए, आदि। वर्तमान शोध गैर-कठोर संबंध संरचनाओं पर केंद्रित है, (कभी-कभी "क्वांटम संरचनाएं" कहा जाता है) जिसमें घटना का स्थान लेता है। टेंसर बीजगणित द्वारा सदिश रिक्त स्थान होता है। यह शोध क्वांटम समूहों की एफाइन लाइ बीजगणित के रूप में सफलता की समझ से प्रेरित है (लाइ समूह अर्थ में कठोर हैं, क्योंकि वे अपने लाइ बीजगणित द्वारा निर्धारित किए जाते हैं। जब टेन्सर बीजगणित पर सुधार किया जाता है, तो वे फ्लॉपी हो जाते हैं, स्वतंत्रता की अनंत डिग्री होती है ; उदाहरण के लिए वीरासोरो बीजगणित देखें।)
परिभाषाएँ
लाग्रंगियन क्षेत्र सिद्धांत में, सामान्यीकृत निर्देशांक के समारोह के रूप में लाग्रंगियन को लाग्रंगियन घनत्व द्वारा प्रतिस्थापित किया जाता है, प्रणाली में क्षेत्रों का कार्य और उनके डेरिवेटिव, और संभवतः अंतरिक्ष और समय स्वयं को निर्देशित करता है। क्षेत्र सिद्धांत में, स्वतंत्र चर t को अंतरिक्ष समय में घटना (x, y, z, t) से परिवर्तित कर दिया जाता है, या इससे भी अधिक सामान्यतः कई गुना पर बिंदु s द्वारा प्रतिस्थापित किया जाता है।
प्रायः, लाग्रंगियन घनत्व को केवल लाग्रंगियन के रूप में संदर्भित किया जाता है।
अदिश क्षेत्र
अदिश क्षेत्र के लिए , लाग्रंगियन घनत्व रूप निम्न प्रकार है:[nb 1][4]
सदिश क्षेत्र, टेन्सर क्षेत्र, स्पिनर क्षेत्र
उपरोक्त को सदिश क्षेत्रों, टेंसर क्षेत्रों और स्पिनर क्षेत्रों के लिए सामान्यीकृत किया जा सकता है। भौतिकी में, फर्मियन का वर्णन स्पिनर क्षेत्र द्वारा किया जाता है। बोसॉन का वर्णन टेन्सर क्षेत्र द्वारा किया जाता है, जिसमें विशेष स्थितियों के रूप में अदिश और सदिश क्षेत्र सम्मिलित हैं।
उदाहरण के लिए, यदि वास्तविक संख्या-मूल्यवान अदिश क्षेत्र, हैं, तो क्षेत्र कई गुना है, यदि क्षेत्र वास्तविक सदिश क्षेत्र है, तो क्षेत्र मैनिफोल्ड समरूप है।
क्रिया
लाग्रंगियन के समय अभिन्न को S द्वारा निरूपित क्रिया कहा जाता है। क्षेत्र सिद्धांत में, लाग्रंगियन L के मध्य कभी-कभी अंतर किया जाता है, जिसमें से समय अभिन्न क्रिया है:
मात्रा रूप
गुरुत्वाकर्षण की उपस्थिति में या सामान्य घूर्णन निर्देशांक का उपयोग करते समय, लाग्रंगियन घनत्व का कारक सम्मिलित होगा, यह सुनिश्चित करता है कि क्रिया सामान्य समन्वय परिवर्तनों के अंतर्गत अपरिवर्तनीय है। गणितीय साहित्य में, अंतरिक्ष समय को रीमैनियन मैनिफोल्ड के रूप में लिया जाता है, और तब अभिन्न मात्रा रूप बन जाता है:
यूलर–लैग्रेंज समीकरण
यूलर-लैग्रेंज समीकरण क्षेत्र समय के कार्य के रूप में जियोडेसिक प्रवाह का वर्णन करते हैं। संबंध में कार्यात्मक व्युत्पन्न लेना प्राप्त करता है:
उदाहरण
लाग्रंगियन के संदर्भ में क्षेत्रों पर बड़ी संख्या में भौतिक प्रणालियां प्रस्तुत की गई हैं। नीचे क्षेत्र सिद्धांत पर भौतिकी की पाठ्यपुस्तकों में पाए जाने वाले कुछ सबसे सामान्य प्रारूप हैं।
न्यूटोनियन गुरुत्वाकर्षण
न्यूटोनियन गुरुत्वाकर्षण के लिए लाग्रंगियन घनत्व है:
इस लाग्रंगियन को इस रूप में लिखा जा सकता है , के साथ गतिज पद और अंतःक्रिया प्रदान करता है, संभावित पद है। समय के साथ परिवर्तनों से निवारण के लिए इसे कैसे संशोधित किया जा सकता है, इसके लिए नॉर्डस्ट्रॉम के गुरुत्वाकर्षण के सिद्धांत को भी देखें। अदिश क्षेत्र सिद्धांत के अगले उदाहरण में इस रूप को दोहराया गया है।
Φ के संबंध में अभिन्न की भिन्नता है:
अदिश क्षेत्र सिद्धांत
क्षमता में गतिमान अदिश क्षेत्र के लिए लाग्रंगियन रूप में लिखा जा सकता है:
सिग्मा प्रारूप लाग्रंगियन
सिग्मा प्रारूप अदिश बिंदु कण की गति का वर्णन करता है जो रिमेंनियन मैनिफोल्ड पर जाने के लिए विवश है, जैसे कि वृत्त या गोला में होता है। यह अदिश और सदिश क्षेत्र की स्थिति को सामान्यीकृत करता है, अर्थात, फ्लैट मैनिफोल्ड पर जाने के लिए विवश क्षेत्र होता है। लाग्रंगियन सामान्यतः तीन समकक्ष रूपों में लिखा जाता है:
सामान्यतः, सिग्मा प्रारूप सामयिक सॉलिटॉन समाधान प्रदर्शित करते हैं। इनमें से सबसे प्रसिद्ध और उचित प्रकार से अध्ययन किया गया स्किर्मियन है, जो समय की परीक्षा पर उचित न्यूक्लियॉन के प्रारूप के रूप में कार्य करता है।
विशेष सापेक्षता में विद्युत चुंबकत्व
बिंदु कण, आवेशित कण पर विचार करें, जो विद्युत चुम्बकीय क्षेत्र के साथ परस्पर क्रिया करता है। बातचीत की शर्तें
इसके अतिरिक्त के संबंध में भिन्न , हम पाते हैं
टेन्सर संकेतन का उपयोग करके, हम यह सब अधिक सघन रूप से लिख सकते हैं। शब्द वास्तव में दो चार-सदिशों का आंतरिक उत्पाद है। हम चार्ज घनत्व को वर्तमान चार-सदिश में और क्षमता को संभावित 4-सदिश में पैकेज करते हैं। ये दो नए वैक्टर हैं
विद्युत चुंबकत्व और यांग-मिल्स समीकरण
विभेदक रूपों का उपयोग करते हुए, (छद्म-) रीमैनियन मैनिफोल्ड पर वैक्यूम में विद्युत चुम्बकीय एक्शन S, लिखा जा सकता है (प्राकृतिक इकाइयों का उपयोग करके, c = ε0 = 1) जैसा
A क्षेत्र को U(1)-फाइबर बंडल पर एफाइन कनेक्शन के रूप में समझा जा सकता है। अर्थात्, क्लासिकल विद्युतगतिकी, इसके सभी प्रभाव और समीकरण, मिन्कोवस्की अंतरिक्ष समय पर वृत्त बंडल के रूप में प्रत्येक प्रकार से अध्ययन किये जा सकते हैं।
यांग-मिल्स समीकरणों को उसी रूप में लिखा जा सकता है जैसा ऊपर दिया गया है, विद्युत चुंबकत्व के लाई समूह U(1) को इच्छानुसार रूप से लाई समूह द्वारा प्रतिस्थापित करके किया जाता है। मानक प्रारूप में, इसे पारंपरिक रूप से लिया जाता है। चूँकि सामान्य स्थिति रुचि की है। सभी स्थितियों में, किसी भी मात्रा का प्रदर्शन करने की कोई आवश्यकता नहीं है। यद्यपि यांग-मिल्स समीकरण ऐतिहासिक रूप से क्वांटम क्षेत्र सिद्धांत में निहित हैं, उपरोक्त समीकरण विशुद्ध रूप से शास्त्रीय हैं।[2][3]
चेर्न-सिमंस कार्यात्मक
उपरोक्त के समान ही, क्रिया को आयाम में अल्प माना जा सकता है, अर्थात संपर्क ज्यामिति सेटिंग में होता है। यह चेर्न-साइमन्स रूप देता है। चेर्न-साइमन्स कार्यात्मक के रूप में लिखा गया है:
गिंज़बर्ग-लैंडौ लग्रांगियन
गिन्ज़बर्ग-लैंडौ सिद्धांत के लिए लाग्रंगियन घनत्व अदिश क्षेत्र सिद्धांत के लिए लाग्रंगियन को यांग-मिल्स क्रिया के लिए लाग्रंगियन के साथ जोड़ता है। इसे इस प्रकार लिखा जा सकता है:[7]
डिराक लाग्रंगियन
डिराक क्षेत्र के लिए लाग्रंगियन घनत्व है:[8]
क्वांटम इलेक्ट्रोडायनामिक लाग्रंगियन
क्वांटम इलेक्ट्रोडायनामिक्स के लिए लाग्रंगियन घनत्व डिराक क्षेत्र के लिए लाग्रंगियन को गेज-इनवेरिएंट प्रकार से इलेक्ट्रोडायनामिक्स के लिए लाग्रंगियन के साथ जोड़ता है। यह है:
क्वांटम क्रोमोडायनामिक लाग्रंगियन
क्वांटम क्रोमोडायनामिक्स के लिए लाग्रंगियन घनत्व या अधिक बड़े स्तर पर डिराक स्पिनरों के लिए लाग्रंगियन को यांग-मिल्स एक्शन के लिए लाग्रंगियन के साथ जोड़ता है, जो गेज क्षेत्र की गतिशीलता का वर्णन करता है; संयुक्त लाग्रंगियन गेज अपरिवर्तनीय है। इसे इस प्रकार लिखा जा सकता है:[9]
आइंस्टीन गुरुत्वाकर्षण
पदार्थ क्षेत्रों की उपस्थिति में सामान्य सापेक्षता के लिए लैग्रेंज घनत्व है:
सामान्य सापेक्षता के लिए लाग्रंगियन को ऐसे रूप में भी लिखा जा सकता है जो इसे स्पष्ट रूप से यांग-मिल्स समीकरणों के समान बनाता है। इसे आइंस्टीन-यांग-मिल्स क्रिया सिद्धांत कहा जाता है। यह इस विषय पर ध्यान देकर किया जाता है कि अधिकांश डिफरेंशियल ज्योमेट्री बंडलों पर एफ़िन कनेक्शन और इच्छानुसार रूप से लेट ग्रुप के साथ बंडलों पर उचित कार्य करती है। फिर, उस समरूपता समूह के लिए SO(3,1) में प्लगिंग, अर्थात फ्रेम क्षेत्र के लिए, उपरोक्त समीकरण प्राप्त करता है।[2][3]
इस लाग्रंगियन को यूलर-लैग्रेंज समीकरण में प्रतिस्थापित करना और मेट्रिक टेन्सर लेना क्षेत्र के रूप में, हम आइंस्टीन क्षेत्र समीकरण प्राप्त करते हैं:
सामान्य सापेक्षता में विद्युत चुंबकत्व
सामान्य सापेक्षता में विद्युत चुंबकत्व के लैग्रेंज घनत्व में आइंस्टीन-हिल्बर्ट क्रिया भी सम्मिलित है। शुद्ध विद्युत चुम्बकीय लाग्रंगियन वास्तव में लाग्रंगियन स्थिति है:
अतिरिक्त उदाहरण
- बीएफ प्रारूप लाग्रंगियन, पृष्ठभूमि क्षेत्र के लिए संक्षिप्त है, फ्लैट अंतरिक्ष समय मैनिफोल्ड पर लिखे जाने पर नगण्य गतिकी के साथ प्रणाली का वर्णन करता है। स्थैतिक रूप से गैर-नगण्य अंतरिक्ष समय पर, प्रणाली में गैर-नगण्य शास्त्रीय समाधान होंगे, जिन्हें सॉलिटन या इंस्टेंटन के रूप में व्याख्या किया जा सकता है। संस्थानिक क्षेत्र सिद्धांत के लिए नींव बनाने वाले विभिन्न प्रकार के विस्तार उपस्थित हैं।
यह भी देखें
- विविधताओं की गणना
- सहसंयोजक शास्त्रीय क्षेत्र सिद्धांत
- यूलर-लैग्रेंज समीकरण
- कार्यात्मक व्युत्पन्न
- कार्यात्मक अभिन्न
- सामान्यीकृत निर्देशांक
- हैमिल्टनियन यांत्रिकी
- हैमिल्टनियन क्षेत्र सिद्धांत
- काइनेटिक शब्द
- लाग्रंगियन और ऑयलेरियन निर्देशांक
- लाग्रंगियन यांत्रिकी
- लाग्रंगियन बिंदु
- लाग्रंगियन बिंदु
- नोथेर प्रमेय
- ऑनसेजर-मचलूप फलन
- न्यूनतम क्रिया का सिद्धांत
- अदिश क्षेत्र सिद्धांत
टिप्पणियाँ
- ↑ It is a standard abuse of notation to abbreviate all the derivatives and coordinates in the Lagrangian density as follows:
see four-gradient. The μ is an index which takes values 0 (for the time coordinate), and 1, 2, 3 (for the spatial coordinates), so strictly only one derivative or coordinate would be present. In general, all the spatial and time derivatives will appear in the Lagrangian density, for example in Cartesian coordinates, the Lagrangian density has the full form:Here we write the same thing, but using ∇ to abbreviate all spatial derivatives as a vector.
उद्धरण
- ↑ Ralph Abraham and Jerrold E. Marsden, (1967) "Foundations of Mechanics"
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 David Bleecker, (1981) "Gauge Theory and Variational Principles" Addison-Wesley
- ↑ 3.0 3.1 3.2 3.3 3.4 3.5 Jurgen Jost, (1995) "Riemannian Geometry and Geometric Analysis", Springer
- ↑ Mandl, F.; Shaw, G. (2010). "Lagrangian Field Theory". क्वांटम फील्ड थ्योरी (2nd ed.). Wiley. p. 25–38. ISBN 978-0-471-49684-7.
- ↑ 5.0 5.1 5.2 Zee, Anthony (2013). संक्षेप में आइंस्टीन गुरुत्वाकर्षण. Princeton: Princeton University Press. pp. 344–390. ISBN 9780691145587.
- ↑ Cahill, Kevin (2013). भौतिक गणित. Cambridge: Cambridge University Press. ISBN 9781107005211.
- ↑ Jost, Jürgen (2002). "The Ginzburg–Landau Functional". रीमानियन ज्यामिति और ज्यामितीय विश्लेषण (Third ed.). Springer-Verlag. pp. 373–381. ISBN 3-540-42627-2.
- ↑ Itzykson-Zuber, eq. 3-152
- ↑ Claude Itykson and Jean-Bernard Zuber, (1980) "Quantum Field Theory"