उच्च श्रेणी सिद्धांत: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Generalization of category theory}}गणित में, उच्च श्रेणी सिद्धांत एक ''उच्च क्रम'...")
 
No edit summary
Line 1: Line 1:
{{Short description|Generalization of category theory}}गणित में, उच्च [[श्रेणी सिद्धांत]] एक ''उच्च क्रम'' पर श्रेणी सिद्धांत का हिस्सा है, जिसका अर्थ है कि कुछ समानताओं को स्पष्ट आकारिकी द्वारा प्रतिस्थापित किया जाता है ताकि उन समानताओं के पीछे की संरचना का स्पष्ट रूप से अध्ययन किया जा सके। उच्च श्रेणी के सिद्धांत को अक्सर [[बीजगणितीय टोपोलॉजी]] (विशेष रूप से [[होमोटॉपी सिद्धांत]] में) में लागू किया जाता है, जहां एक [[टोपोलॉजिकल स्पेस]] के बीजगणितीय [[अपरिवर्तनीय (गणित)]] का अध्ययन करता है, जैसे कि उनके [[मौलिक समूह]] अर्ध-श्रेणी|कमजोर ∞-ग्रुपॉइड।
{{Short description|Generalization of category theory}}गणित में, उच्च [[श्रेणी सिद्धांत]] उच्च क्रम पर श्रेणी सिद्धांत का हिस्सा है, जिसका अर्थ है कि कुछ समानताओं को स्पष्ट तीरों द्वारा प्रतिस्थापित किया जाता है, ताकि उन समानताओं के पीछे की संरचना का स्पष्ट रूप से अध्ययन किया जा सकता है, उच्च श्रेणी के सिद्धांत को अक्सर [[बीजगणितीय टोपोलॉजी]] (विशेष रूप से [[होमोटॉपी सिद्धांत]]) में लागू किया जाता है, जैसे कि उनके [[मौलिक समूह]] ∞-ग्रुपॉइड जहां कोई [[टोपोलॉजिकल स्पेस]] के बीजगणितीय [[अपरिवर्तनीय (गणित)]] का अध्ययन करता है।


== सख्त उच्च श्रेणियां ==
== सख्त उच्च श्रेणियां ==
एक साधारण [[श्रेणी (गणित)]] में [[वस्तु (श्रेणी सिद्धांत)]] और आकारिकी होती है, जिन्हें उच्च श्रेणी सिद्धांत के संदर्भ में 1-रूपवाद कहा जाता है। एक [[2-श्रेणी]] 1-मोर्फिज्म के बीच 2-मॉर्फिज्म को शामिल करके इसे सामान्यीकृत करती है। इसे (n − 1)-मॉर्फिज्म के बीच n-मॉर्फिज्म तक जारी रखना एक n-श्रेणी देता है।
एक सामान्य [[श्रेणी (गणित)]] में [[वस्तु (श्रेणी सिद्धांत)]] और आकारिकी होती हैं, जिन्हें उच्च श्रेणी के सिद्धांत के संदर्भ में 1-रूपवाद कहा जाता है। एक [[2-श्रेणी]] 1-मोर्फिज्म के बीच 2-मॉर्फिज्म को शामिल करके इसे सामान्यीकृत करती है। इसे (n − 1)-मॉर्फिज्म के बीच n-मॉर्फिज्म तक जारी रखने से एक n-श्रेणी मिलती है।


जिस प्रकार 'कैट' के रूप में जानी जाने वाली श्रेणी, जो कि छोटी श्रेणियों और फ़ैक्टरों की श्रेणी है, वास्तव में एक 2-श्रेणी है, जिसमें इसके 2-मोर्फिज़्म के रूप में [[प्राकृतिक परिवर्तन]] होते हैं, श्रेणी n-'Cat' की (छोटी) n-श्रेणियाँ वास्तव में हैं एक (एन + 1)-श्रेणी।
जिस तरह कैट के नाम से जानी जाने वाली श्रेणी, जो कि छोटी श्रेणियों और मज़दूरों की श्रेणी है, वास्तव में एक 2-श्रेणी है, जिसमें इसके 2-मोर्फिज्म के रूप में [[प्राकृतिक परिवर्तन]] होते हैं, श्रेणी n-Cat की (छोटी) n-श्रेणियाँ वास्तव में एक (n +1)-श्रेणी होती हैं।


एक एन-श्रेणी को एन पर प्रेरण द्वारा परिभाषित किया गया है:
एक n-श्रेणी को n पर प्रेरण द्वारा परिभाषित किया गया है:
* 0-श्रेणी सेट की एक श्रेणी है,
* एक 0-श्रेणी एक सेट है,
* An (+ 1)-श्रेणी n-'Cat' श्रेणी की तुलना में एक श्रेणी [[समृद्ध श्रेणी]] है।
*An (n +-1)-श्रेणी एक श्रेणी है जो श्रेणी n-Cat से अधिक [[समृद्ध श्रेणी]] है।


तो 1-श्रेणी सिर्फ एक ([[स्थानीय रूप से छोटी श्रेणी]]) श्रेणी है।
तो 1-श्रेणी सिर्फ एक ([[स्थानीय रूप से छोटी]]) श्रेणी है।


'सेट' की [[मोनोइडल श्रेणी]] संरचना कार्टेसियन उत्पाद द्वारा टेंसर के रूप में दी गई है और इकाई के रूप में एक [[सिंगलटन सेट]] है। वास्तव में परिमित [[उत्पाद (श्रेणी सिद्धांत)]] वाली किसी भी श्रेणी को एक मोनोइडल संरचना दी जा सकती है। N-'Cat' का पुनरावर्ती निर्माण ठीक काम करता है क्योंकि यदि एक श्रेणी {{math|C}} में परिमित उत्पाद हैं, की श्रेणी {{math|C}}-समृद्ध श्रेणियों के उत्पाद भी सीमित हैं।
सेट की [[मोनोइडल श्रेणी]] संरचना कार्टेशियन उत्पाद द्वारा टेंसर के रूप में और एक [[सिंगलटन सेट]] को इकाई के रूप में दी गई है। वास्तव में परिमित [[उत्पाद (श्रेणी सिद्धांत)]] वाली किसी भी श्रेणी को एक मोनोइडल संरचना दी जा सकती है। N-'Cat' का पुनरावर्ती निर्माण ठीक काम करता है क्योंकि यदि श्रेणी सी में परिमित उत्पाद हैं, तो {{math|C}}-समृद्ध श्रेणियों की श्रेणी में परिमित उत्पाद भी हैं।


हालांकि यह अवधारणा कुछ उद्देश्यों के लिए बहुत सख्त है, उदाहरण के लिए, होमोटॉपी सिद्धांत, जहां कमजोर संरचनाएं उच्च श्रेणियों के रूप में उत्पन्न होती हैं,<ref>{{harvnb|Baez|Dolan|1998|p=6}}</ref> होमोलॉजी सिद्धांत और होमोटॉपी सिद्धांत के बीच की सीमा पर बीजगणितीय टोपोलॉजी के लिए एक नई नींव देने के रूप में सख्त क्यूबिकल उच्च होमोटॉपी ग्रुपोइड्स भी उत्पन्न हुए हैं; नीचे दी गई पुस्तक में संदर्भित लेख [[नॉनबेलियन बीजगणितीय टोपोलॉजी]] देखें।
हालांकि यह अवधारणा कुछ उद्देश्यों के लिए बहुत सख्त है, उदाहरण के लिए, होमोटॉपी सिद्धांत, जहां "कमजोर" संरचनाएं उच्च श्रेणियों के रूप में उत्पन्न होती हैं,<ref>{{harvnb|Baez|Dolan|1998|p=6}}</ref> सख्त क्यूबिकल उच्च होमोटॉपी ग्रुपोइड्स भी बीजगणितीय टोपोलॉजी के लिए एक नई नींव देने के रूप में उत्पन्न हुए हैं। समरूपता और समरूपता सिद्धांत के बीच की सीमा; नीचे दी गई पुस्तक में संदर्भित लेख [[नॉनबेलियन बीजगणितीय टोपोलॉजी]] को देखा जा सकता है।


== कमजोर उच्च श्रेणियां ==
== कमजोर उच्च श्रेणियां ==
{{main|Weak n-category}}
{{main|कमजोर एन-श्रेणी}}
कमजोर में {{nowrap|''n''-categories}}, साहचर्य और पहचान की शर्तें अब सख्त नहीं हैं (अर्थात, वे समानता द्वारा नहीं दी जाती हैं), बल्कि अगले स्तर के एक समरूपता तक संतुष्ट हैं। [[टोपोलॉजी]] में एक उदाहरण [[पथ (टोपोलॉजी)]] की रचना है, जहां पहचान और संघ की स्थिति केवल [[ मानकीकरण ]] तक होती है, और इसलिए [[होमोटॉपी]] तक, जो कि है {{nowrap|2-isomorphism}} इसके लिए {{nowrap|2-category}}. ये और-समरूपता सजातीय समूहों के बीच सबसे अच्छा व्यवहार करते हैं और इसे व्यक्त करना कमजोर की परिभाषा में कठिनाई है {{nowrap|''n''-categories}}. कमज़ोर {{nowrap|2-categories}}, जिसे [[द्विश्रेणी]] भी कहा जाता है, सबसे पहले स्पष्ट रूप से परिभाषित किए गए थे। इनमें से एक विशिष्टता यह है कि एक वस्तु के साथ एक द्विश्रेणी वास्तव में एक मोनोइडल श्रेणी है, ताकि द्विश्रेणियों को कई वस्तुओं के साथ मोनोइडल श्रेणियां कहा जा सके। कमज़ोर {{nowrap|3-categories}}, जिसे [[tricategory]] भी कहा जाता है, और उच्च-स्तरीय सामान्यीकरण स्पष्ट रूप से परिभाषित करने के लिए कठिन होते जा रहे हैं। कई परिभाषाएँ दी गई हैं, और यह बताना कि वे कब समतुल्य हैं, और किस अर्थ में, श्रेणी सिद्धांत में अध्ययन का एक नया उद्देश्य बन गया है।
 
कमजोर n-श्रेणियों में, साहचर्य और पहचान की शर्तें अब सख्त नहीं हैं (अर्थात, वे समानता द्वारा नहीं दी जाती हैं), बल्कि अगले स्तर के एक तुल्याकारिता तक संतुष्ट हैं। [[टोपोलॉजी]] में एक उदाहरण [[पथ (टोपोलॉजी)]] की संरचना है, जहां पहचान और संघ की स्थिति केवल [[ मानकीकरण |मानकीकरण]] तक होती है, और इसलिए [[होमोटॉपी]] तक, जो इस 2-श्रेणी के लिए 2-समरूपता है। ये और-आइसोमॉर्फिज्म होम-सेट के बीच सबसे अच्छा व्यवहार करते हैं और इसे व्यक्त करना कमजोर एन-श्रेणियों की परिभाषा में कठिनाई है। कमजोर 2-श्रेणियाँ, जिन्हें द्विश्रेणियाँ भी कहा जाता है, सबसे पहले स्पष्ट रूप से परिभाषित की गई थीं। इनमें से एक विशिष्टता यह है कि एक वस्तु के साथ एक [[द्विश्रेणी]] वास्तव में एक मोनोइडल श्रेणी है, जिससे कि द्विश्रेणियों को "कई वस्तुओं के साथ मोनोइडल श्रेणियां" कहा जा सकता है। कमजोर 3-श्रेणियाँ, जिन्हें [[त्रिश्रेणियाँ]] भी कहा जाता है, और उच्च-स्तरीय सामान्यीकरण स्पष्ट रूप से परिभाषित करने के लिए कठिन होते जा रहे हैं। कई परिभाषाएँ दी गई हैं, और यह बताना कि वे कब समतुल्य हैं, और किस अर्थ में, श्रेणी सिद्धांत में अध्ययन का एक नया उद्देश्य बन गया है।


== अर्ध-श्रेणियां ==
== अर्ध-श्रेणियां ==


{{main|Quasi-category}}
{{main|अर्ध-श्रेणी}}
कमजोर कान परिसर, या अर्ध-श्रेणियां, कान की स्थिति के कमजोर संस्करण को संतुष्ट करने वाले साधारण सेट हैं। आंद्रे जोयल ने दिखाया कि वे उच्च श्रेणी के सिद्धांत के लिए एक अच्छा आधार हैं। हाल ही में, 2009 में, इस सिद्धांत को [[जैकब लुरी]] द्वारा आगे व्यवस्थित किया गया है, जो उन्हें केवल अनंत श्रेणियां कहते हैं, हालांकि बाद वाला शब्द भी किसी भी k के लिए (अनंत, k) श्रेणियों के सभी मॉडलों के लिए एक सामान्य शब्द है।
 
कमजोर कैन परिसर, या अर्ध-श्रेणियां, कान की स्थिति के कमजोर संस्करण को संतुष्ट करने वाले साधारण सेट हैं। आंद्रे जोयल ने दिखाया कि वे उच्च श्रेणी के सिद्धांत के लिए एक अच्छा आधार हैं। हाल ही में, 2009 में, इस सिद्धांत को [[जैकब लुरी]] द्वारा आगे व्यवस्थित किया गया है, जो उन्हें केवल अनंत श्रेणियां कहते हैं, हालांकि बाद वाला शब्द भी किसी भी k के लिए (अनंत, k) श्रेणियों के सभी मॉडलों के लिए एक सामान्य शब्द है।


==सरल रूप से समृद्ध श्रेणियाँ==
==सरल रूप से समृद्ध श्रेणियाँ==


{{main|Simplicially enriched category}}
{{main|सरलता से समृद्ध श्रेणी}}
सरल रूप से समृद्ध श्रेणियां, या सरलीकृत श्रेणियां, सरलीकृत सेटों पर समृद्ध श्रेणियां हैं। हालांकि, जब हम उन्हें (अनंत, 1)-श्रेणी | (अनंत, 1)-श्रेणियों के लिए एक मॉडल के रूप में देखते हैं, तो कई स्पष्ट धारणाएँ (जैसे, [[सीमा (श्रेणी सिद्धांत)]]) इस अर्थ में संबंधित धारणाओं से सहमत नहीं होती हैं। समृद्ध श्रेणियों की। अन्य समृद्ध मॉडलों के लिए समान, जैसे स्थलाकृतिक रूप से समृद्ध श्रेणियां।


== स्थलीय रूप से समृद्ध श्रेणियां ==
सरल रूप से समृद्ध श्रेणियां, या सरलीकृत श्रेणियां, सरलीकृत सेटों पर समृद्ध श्रेणियां हैं। हालांकि, जब हम उन्हें (अनंत, -1) श्रेणी के लिए एक मॉडल के रूप में देखते हैं, तो कई स्पष्ट धारणाएं (जैसे, [[सीमा (श्रेणी सिद्धांत)]]) समृद्ध श्रेणियों के अर्थ में संबंधित धारणाओं से सहमत नहीं होती हैं। अन्य समृद्ध मॉडलों के लिए समान, जैसे स्थलाकृतिक रूप से समृद्ध श्रेणियां होती है।


{{main|Topological category}}
== स्थलाकृतिक रूप से समृद्ध श्रेणियां ==
टोपोलॉजिकल रूप से समृद्ध श्रेणियां (कभी-कभी केवल टोपोलॉजिकल श्रेणियां कहलाती हैं) टोपोलॉजिकल स्पेस की कुछ सुविधाजनक श्रेणी से समृद्ध श्रेणियां हैं, उदा। सघन रूप से उत्पन्न स्थान हौसडॉर्फ रिक्त स्थान की श्रेणी।
 
{{main|टोपोलॉजिकल श्रेणी}}
 
टोपोलॉजिकल रूप से समृद्ध श्रेणियां (कभी-कभी केवल टोपोलॉजिकल श्रेणियां कहलाती हैं) वे श्रेणियां हैं, उदाहरण के लिए कॉम्पैक्ट रूप से उत्पन्न हौसडॉर्फ स्पेस की श्रेणीजो टोपोलॉजिकल स्पेस की कुछ सुविधाजनक श्रेणी से समृद्ध होती हैं।


== सेगल श्रेणियां ==
== सेगल श्रेणियां ==
{{main|Segal category}}
{{main|सेगल श्रेणी}}
ये 1998 में हिर्शोविट्ज़ और सिम्पसन द्वारा शुरू की गई उच्च श्रेणियों के मॉडल हैं,<ref>{{cite arXiv |first1=André |last1=Hirschowitz |first2=Carlos |last2=Simpson |title=एन-स्टैक के लिए अवरोहण|date=2001 |eprint=math/9807049 }}</ref> आंशिक रूप से 1974 में ग्रीम सहगल के परिणामों से प्रेरित।
 
ये 1998 में हिर्शोवित्ज़ और सिम्पसन द्वारा शुरू की गई उच्च श्रेणियों के मॉडल हैं,<ref>{{cite arXiv |first1=André |last1=Hirschowitz |first2=Carlos |last2=Simpson |title=एन-स्टैक के लिए अवरोहण|date=2001 |eprint=math/9807049 }}</ref> आंशिक रूप से 1974 में ग्रीम सेगल के परिणामों से प्रेरित हैं।


== यह भी देखें ==
== यह भी देखें{{Portal|Mathematics}}==
{{Portal|Mathematics}}
* [[उच्च आयामी बीजगणित]]
* [[उच्च आयामी बीजगणित]]
* [[सामान्य सार बकवास]]
* [[सामान्य सार बकवास]]

Revision as of 22:57, 8 May 2023

गणित में, उच्च श्रेणी सिद्धांत उच्च क्रम पर श्रेणी सिद्धांत का हिस्सा है, जिसका अर्थ है कि कुछ समानताओं को स्पष्ट तीरों द्वारा प्रतिस्थापित किया जाता है, ताकि उन समानताओं के पीछे की संरचना का स्पष्ट रूप से अध्ययन किया जा सकता है, उच्च श्रेणी के सिद्धांत को अक्सर बीजगणितीय टोपोलॉजी (विशेष रूप से होमोटॉपी सिद्धांत) में लागू किया जाता है, जैसे कि उनके मौलिक समूह ∞-ग्रुपॉइड जहां कोई टोपोलॉजिकल स्पेस के बीजगणितीय अपरिवर्तनीय (गणित) का अध्ययन करता है।

सख्त उच्च श्रेणियां

एक सामान्य श्रेणी (गणित) में वस्तु (श्रेणी सिद्धांत) और आकारिकी होती हैं, जिन्हें उच्च श्रेणी के सिद्धांत के संदर्भ में 1-रूपवाद कहा जाता है। एक 2-श्रेणी 1-मोर्फिज्म के बीच 2-मॉर्फिज्म को शामिल करके इसे सामान्यीकृत करती है। इसे (n − 1)-मॉर्फिज्म के बीच n-मॉर्फिज्म तक जारी रखने से एक n-श्रेणी मिलती है।

जिस तरह कैट के नाम से जानी जाने वाली श्रेणी, जो कि छोटी श्रेणियों और मज़दूरों की श्रेणी है, वास्तव में एक 2-श्रेणी है, जिसमें इसके 2-मोर्फिज्म के रूप में प्राकृतिक परिवर्तन होते हैं, श्रेणी n-Cat की (छोटी) n-श्रेणियाँ वास्तव में एक (n +1)-श्रेणी होती हैं।

एक n-श्रेणी को n पर प्रेरण द्वारा परिभाषित किया गया है:

  • एक 0-श्रेणी एक सेट है,
  • An (n +-1)-श्रेणी एक श्रेणी है जो श्रेणी n-Cat से अधिक समृद्ध श्रेणी है।

तो 1-श्रेणी सिर्फ एक (स्थानीय रूप से छोटी) श्रेणी है।

सेट की मोनोइडल श्रेणी संरचना कार्टेशियन उत्पाद द्वारा टेंसर के रूप में और एक सिंगलटन सेट को इकाई के रूप में दी गई है। वास्तव में परिमित उत्पाद (श्रेणी सिद्धांत) वाली किसी भी श्रेणी को एक मोनोइडल संरचना दी जा सकती है। N-'Cat' का पुनरावर्ती निर्माण ठीक काम करता है क्योंकि यदि श्रेणी सी में परिमित उत्पाद हैं, तो C-समृद्ध श्रेणियों की श्रेणी में परिमित उत्पाद भी हैं।

हालांकि यह अवधारणा कुछ उद्देश्यों के लिए बहुत सख्त है, उदाहरण के लिए, होमोटॉपी सिद्धांत, जहां "कमजोर" संरचनाएं उच्च श्रेणियों के रूप में उत्पन्न होती हैं,[1] सख्त क्यूबिकल उच्च होमोटॉपी ग्रुपोइड्स भी बीजगणितीय टोपोलॉजी के लिए एक नई नींव देने के रूप में उत्पन्न हुए हैं। समरूपता और समरूपता सिद्धांत के बीच की सीमा; नीचे दी गई पुस्तक में संदर्भित लेख नॉनबेलियन बीजगणितीय टोपोलॉजी को देखा जा सकता है।

कमजोर उच्च श्रेणियां

कमजोर n-श्रेणियों में, साहचर्य और पहचान की शर्तें अब सख्त नहीं हैं (अर्थात, वे समानता द्वारा नहीं दी जाती हैं), बल्कि अगले स्तर के एक तुल्याकारिता तक संतुष्ट हैं। टोपोलॉजी में एक उदाहरण पथ (टोपोलॉजी) की संरचना है, जहां पहचान और संघ की स्थिति केवल मानकीकरण तक होती है, और इसलिए होमोटॉपी तक, जो इस 2-श्रेणी के लिए 2-समरूपता है। ये और-आइसोमॉर्फिज्म होम-सेट के बीच सबसे अच्छा व्यवहार करते हैं और इसे व्यक्त करना कमजोर एन-श्रेणियों की परिभाषा में कठिनाई है। कमजोर 2-श्रेणियाँ, जिन्हें द्विश्रेणियाँ भी कहा जाता है, सबसे पहले स्पष्ट रूप से परिभाषित की गई थीं। इनमें से एक विशिष्टता यह है कि एक वस्तु के साथ एक द्विश्रेणी वास्तव में एक मोनोइडल श्रेणी है, जिससे कि द्विश्रेणियों को "कई वस्तुओं के साथ मोनोइडल श्रेणियां" कहा जा सकता है। कमजोर 3-श्रेणियाँ, जिन्हें त्रिश्रेणियाँ भी कहा जाता है, और उच्च-स्तरीय सामान्यीकरण स्पष्ट रूप से परिभाषित करने के लिए कठिन होते जा रहे हैं। कई परिभाषाएँ दी गई हैं, और यह बताना कि वे कब समतुल्य हैं, और किस अर्थ में, श्रेणी सिद्धांत में अध्ययन का एक नया उद्देश्य बन गया है।

अर्ध-श्रेणियां

कमजोर कैन परिसर, या अर्ध-श्रेणियां, कान की स्थिति के कमजोर संस्करण को संतुष्ट करने वाले साधारण सेट हैं। आंद्रे जोयल ने दिखाया कि वे उच्च श्रेणी के सिद्धांत के लिए एक अच्छा आधार हैं। हाल ही में, 2009 में, इस सिद्धांत को जैकब लुरी द्वारा आगे व्यवस्थित किया गया है, जो उन्हें केवल अनंत श्रेणियां कहते हैं, हालांकि बाद वाला शब्द भी किसी भी k के लिए (अनंत, k) श्रेणियों के सभी मॉडलों के लिए एक सामान्य शब्द है।

सरल रूप से समृद्ध श्रेणियाँ

सरल रूप से समृद्ध श्रेणियां, या सरलीकृत श्रेणियां, सरलीकृत सेटों पर समृद्ध श्रेणियां हैं। हालांकि, जब हम उन्हें (अनंत, -1) श्रेणी के लिए एक मॉडल के रूप में देखते हैं, तो कई स्पष्ट धारणाएं (जैसे, सीमा (श्रेणी सिद्धांत)) समृद्ध श्रेणियों के अर्थ में संबंधित धारणाओं से सहमत नहीं होती हैं। अन्य समृद्ध मॉडलों के लिए समान, जैसे स्थलाकृतिक रूप से समृद्ध श्रेणियां होती है।

स्थलाकृतिक रूप से समृद्ध श्रेणियां

टोपोलॉजिकल रूप से समृद्ध श्रेणियां (कभी-कभी केवल टोपोलॉजिकल श्रेणियां कहलाती हैं) वे श्रेणियां हैं, उदाहरण के लिए कॉम्पैक्ट रूप से उत्पन्न हौसडॉर्फ स्पेस की श्रेणीजो टोपोलॉजिकल स्पेस की कुछ सुविधाजनक श्रेणी से समृद्ध होती हैं।

सेगल श्रेणियां

ये 1998 में हिर्शोवित्ज़ और सिम्पसन द्वारा शुरू की गई उच्च श्रेणियों के मॉडल हैं,[2] आंशिक रूप से 1974 में ग्रीम सेगल के परिणामों से प्रेरित हैं।

यह भी देखें

टिप्पणियाँ

  1. Baez & Dolan 1998, p. 6
  2. Hirschowitz, André; Simpson, Carlos (2001). "एन-स्टैक के लिए अवरोहण". arXiv:math/9807049.


संदर्भ


बाहरी संबंध