लुक-एंड-से अनुक्रम: Difference between revisions
No edit summary |
(text) |
||
Line 87: | Line 87: | ||
=== ब्रह्माण्ड संबंधी क्षय === | === ब्रह्माण्ड संबंधी क्षय === | ||
कॉनवे के ब्रह्मांडिकीय प्रमेय का दावा है कि प्रत्येक अनुक्रम अंततः परमाणु तत्वों के अनुक्रम में विभाजित (क्षय) करता है, जो परिमित अनुवर्ती हैं जो फिर कभी अपने प्रतिवैस के साथ परस्पर प्रभाव नहीं करते हैं। केवल 1, 2, और 3 अंक वाले 92 तत्व हैं, जिन्हें जॉन कॉनवे ने [[यूरेनियम]] तक प्राकृतिक रूप से पाए जाने वाले 92 [[रासायनिक तत्व]]ों के नाम पर रखा है, जो अनुक्रम को श्रव्यसक्रिय कहते हैं। 1, 2, और 3 के अतिरिक्त प्रत्येक अंक के लिए दो [[ट्रांसयूरानिक|परायूरेनियम]] तत्व (Np और Pu) भी हैं।<ref name="Martin2006"/><ref>Ekhad, S. B., Zeilberger, D.: [https://www.ams.org/journals/era/1997-03-11/S1079-6762-97-00026-7/home.html Proof of Conway's lost cosmological theorem], Electronic Research Announcements of the American Mathematical Society, August 21, 1997, Vol. 5, pp. 78–82. Retrieved July 4, 2011.</ref> नीचे ऐसे सभी तत्वों की तालिका दी गई है: | |||
{| class="wikitable mw-collapsible mw-collapsed" | {| class="wikitable mw-collapsible mw-collapsed" | ||
! colspan="5" |सभी "परमाणु तत्व" (जहां एक E<sub>k</sub> को Np और Pu को छोड़कर E<sub>k+1</sub> के व्युत्पन्न में सम्मिलित किया गया है)<ref name="Conway-original-article" /> | ! colspan="5" |सभी "परमाणु तत्व" (जहां एक E<sub>k</sub> को Np और Pu को छोड़कर E<sub>k+1</sub> के व्युत्पन्न में सम्मिलित किया गया है)<ref name="Conway-original-article" /> | ||
Line 666: | Line 666: | ||
=== लंबाई में वृद्धि === | === लंबाई में वृद्धि === | ||
शब्द अंततः प्रति पीढ़ी लगभग 30% की लंबाई में बढ़ते हैं। विशेष रूप से, यदि | शब्द अंततः प्रति पीढ़ी लगभग 30% की लंबाई में बढ़ते हैं। विशेष रूप से, यदि L<sub>''n''</sub> अनुक्रम के n-वें इकाई के अंकों की संख्या को दर्शाता है, फिर अनुपात की [[सीमा (गणित)]] <math>\frac{L_{n + 1}}{L_n}</math> उपस्थित है और इसके द्वारा निम्नलिखित दिया गया है | ||
<math display="block">\lim_{n \to \infty} \frac{L_{n+1}}{L_{n}} = \lambda</math> | <math display="block">\lim_{n \to \infty} \frac{L_{n+1}}{L_{n}} = \lambda</math> | ||
जहां λ = 1.303577269034... {{OEIS|id=A014715}} | जहां λ = 1.303577269034... {{OEIS|id=A014715}} घात 71 की एक [[बीजगणितीय संख्या]] है।<ref name="Martin2006"/> यह तथ्य कॉनवे द्वारा सिद्ध किया गया था, और निरंतर λ को कॉनवे के [[गणितीय स्थिरांक]] के रूप में जाना जाता है। वही परिणाम 22 के अतिरिक्त किसी भी बीज से प्रारम्भ होने वाले अनुक्रम के प्रत्येक प्रकार के लिए भी होता है। | ||
==== कॉनवे स्थिरांक एक [[बहुपद]] मूल के रूप में ==== | ==== कॉनवे स्थिरांक एक [[बहुपद]] मूल के रूप में ==== | ||
Line 683: | Line 683: | ||
\end{matrix} | \end{matrix} | ||
</math> | </math> | ||
कॉनवे के मूल यूरेका लेख में यह बहुपद सही ढंग से दिया गया था,<ref name="Conway-original-article" />लेकिन कवर और गोपीनाथ द्वारा संपादित पुस्तक में पुनर्मुद्रित संस्करण में<ref name="Conway-original-article" />शब्द <math>x^{35}</math> गलत तरीके से सामने एक ऋण चिह्न के साथ मुद्रित किया गया था।<ref> | कॉनवे के मूल यूरेका लेख में यह बहुपद सही ढंग से दिया गया था,<ref name="Conway-original-article" /> लेकिन कवर और गोपीनाथ द्वारा संपादित पुस्तक में पुनर्मुद्रित संस्करण में <ref name="Conway-original-article" /> शब्द <math>x^{35}</math> गलत तरीके से सामने एक ऋण चिह्न के साथ मुद्रित किया गया था।<ref> | ||
{{Cite book | {{Cite book | ||
| last = Vardi | | last = Vardi | ||
Line 696: | Line 696: | ||
== लोकप्रियता == | == लोकप्रियता == | ||
बीजलेखक [[रॉबर्ट मॉरिस (क्रिप्टोग्राफर)|रॉबर्ट मॉरिस (बीजलेखक)]] के बाद लुक-एंड-से अनुक्रम को मॉरिस अंक अनुक्रम के रूप में भी जाना जाता है, और पहेली अनुक्रम 1, 11, 21, 1211, 111221 में अगली संख्या क्या है? [[क्लिफर्ड स्टोल]] की किताब ''द कोयल्स एग'' में मॉरिस के वर्णन से इसे कभी-कभी कुक्कू के अंडे के रूप में संदर्भित किया जाता है।<ref>[http://jamesthornton.com/fun/robert-morris-sequence.html Robert Morris Sequence<!-- Bot generated title -->]</ref><ref>[https://web.archive.org/web/20110803133359/http://www.ocf.berkeley.edu/~stoll/number_sequence.html FAQ about Morris Number Sequence<!-- Bot generated title -->]</ref> | |||
== रूपांतर == | == रूपांतर == | ||
{{Unreferenced section|date=May 2022}} | {{Unreferenced section|date=May 2022}} | ||
देखने और कहने के क्रम को उत्पन्न करने के लिए उपयोग किए जाने वाले नियम पर कई संभावित भिन्नताएं हैं। उदाहरण के लिए, | देखने और कहने के क्रम को उत्पन्न करने के लिए उपयोग किए जाने वाले नियम पर कई संभावित भिन्नताएं हैं। उदाहरण के लिए, पी पतिरूप बनाने के लिए पिछले शब्द को पढ़ता है और प्रत्येक अंक के सभी उदाहरणों को उनकी पहली उपस्थिति के क्रम में सूचीबद्ध करता है, न कि केवल एक लगातार ब्लॉक में होने वाले। तो बीज 1 से प्रारम्भ करते हुए, पी पतिरूप 1, 11 (एक 1), 21 (दो 1), 1211 (एक 2 और एक 1), 3112 (तीन 1 और एक 2), 132112 (एक 3, दो 1) आगे बढ़ता है। और एक 2), 311322 (तीन 1s, एक 3 और दो 2s), आदि। पी पतिरूप का यह संस्करण अंततः दो परमाणु स्तिथियों 23322114 और 32232114 के साथ एक चक्र बनाता है। | ||
पी पतिरूप के अन्य संस्करण भी संभव हैं; उदाहरण के लिए, अंकों को पढ़ने के स्थान पर जैसे वे पहली बार दिखाई देते हैं, बल्कि उन्हें आरोही क्रम में पढ़ सकते हैं। इस स्थिति में, 21 के बाद का पद 1112 (एक 1, एक 2) होगा और 3112 के बाद का पद 211213 (दो 1, एक 2 और एक 3) होगा। | |||
ये क्रम देखने-और-कहने के क्रम से कई उल्लेखनीय तरीकों से भिन्न हैं। विशेष रूप से, कॉनवे अनुक्रमों के विपरीत, | ये क्रम देखने-और-कहने के क्रम से कई उल्लेखनीय तरीकों से भिन्न हैं। विशेष रूप से, कॉनवे अनुक्रमों के विपरीत, पी पतिरूप का एक दिया गया पद विशिष्ट रूप से पूर्ववर्ती शब्द को परिभाषित नहीं करता है। इसके अतिरिक्त, किसी भी बीज के लिए पी का पतिरूप बंधी हुई लंबाई की स्तिथियाँ उत्पन्न करता है: यह सीमा सामान्यतः अधिक नहीं होगी {{nobr| 2 × ''[[मूल]]'' + 2 अंक}} ([[दशमलव]] के लिए 22 अंक: {{nobr|मूल {{=}} 10}}) और केवल अधिक हो सकता है {{nobr| 3 × ''[[मूल]]'' अंक}} (दशमलव मूलांक के लिए 30 अंक) लंबे, पतित, प्रारंभिक बीजों (100 इकाइयों का क्रम, आदि) के लिए लंबाई में। इन चरम स्तिथियों के लिए, दशमलव अनुक्रम के अलग-अलग तत्व तुरंत स्वरुप {{nobr|{{math| ''a''0 ''b''1 ''c''2 ''d''3 ''e''4 ''f''5 ''g''6 ''h''7 ''i''8 ''j''9 }} }} के क्रम[[परिवर्तन]] में व्यवस्थित हो जाते है यहाँ जहाँ पत्र {{math| ''a''–''j'' }} पूर्ववर्ती अनुक्रम तत्व से अंकों की संख्या के लिए परोक्षी हैं। | ||
चूंकि अनुक्रम अनंत है, और प्रत्येक तत्व की लंबाई सीमित है, इसे | चूंकि अनुक्रम अनंत है, और प्रत्येक तत्व की लंबाई सीमित है, इसे कोष्ठ सिद्धांत के कारण अंततः पुनरावृत्ति करनी होगी। नतीजतन, पी पतिरूप अनुक्रम हमेशा अंततः [[आवधिक अनुक्रम]] होते हैं। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 723: | Line 723: | ||
== बाहरी संबंध == | == बाहरी संबंध == | ||
* [https://www.youtube.com/watch?v=ea7lJkEhytA | * [https://www.youtube.com/watch?v=ea7lJkEhytA इस क्रम के बारे में बोलते हुए कॉनवे] और यह बताते हुए कि इस क्रम को समझने के लिए उन्हें कुछ स्पष्टीकरण की आवश्यकता थी. | ||
* [https://www.rosettacode.org/wiki/Look-and-say_sequence | * [https://www.rosettacode.org/wiki/Look-and-say_sequence कई प्रोग्रामिंग भाषाओं में कार्यान्वयन] रोसेटा कोड पर | ||
* {{MathWorld|urlname=LookandSaySequence|title=Look and Say Sequence}} | * {{MathWorld|urlname=LookandSaySequence|title=Look and Say Sequence}} | ||
* [http://www.se16.info/js/looknsay.htm Look and Say sequence generator] p | * [http://www.se16.info/js/looknsay.htm Look and Say sequence generator] p |
Revision as of 20:42, 7 May 2023
गणित में, देखने-और-कहने का क्रम निम्न प्रकार से प्रारम्भ होने वाला पूर्णांक क्रम है:
- 1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, 31131211131221, ... (sequence A005150 in the OEIS).
पिछले इकाई से अनुक्रम का एक इकाई उत्पन्न करने के लिए, पिछले इकाई के अंकों को पढ़ें, उसी अंक के समूहों में अंकों की संख्या की गणना करें। उदाहरण के लिए:
- 1 को एक 1 या 11 के रूप में पढ़ा जाता है।
- 11 को दो 1 या 21 के रूप में पढ़ा जाता है।
- 21 को एक 2, एक 1 या 1211 के रूप में पढ़ा जाता है।
- 1211 को एक 1, एक 2, दो 1s या 111221 के रूप में पढ़ा जाता है।
- 111221 को तीन 1s, दो 2s, एक 1 या 312211 के रूप में पढ़ा जाता है।
जॉन हॉर्टन कॉनवे द्वारा लुक-एंड-सीक्वेंस का विश्लेषण किया गया था[1] एक पार्टी में उनके एक छात्र द्वारा उनका परिचय कराने के बाद।[2][3] लुक-एंड-से सीक्वेंस का विचार प्रवाह-लंबाई संकेतन के समान है।
यदि 0 से 9 तक किसी भी अंक d से प्रारंभ किया जाता है तो d अनुक्रम के अंतिम अंक के रूप में अनिश्चित काल तक बना रहेगा। 1 के अतिरिक्त किसी भी d के लिए, क्रम इस प्रकार प्रारम्भ होता है:
- d, 1d, 111d, 311d, 13211d, 111312211d, 31131122211d, …
इलन वर्दी ने इस अनुक्रम को d = 3 से प्रारम्भ होने वाला 'कॉनवे अनुक्रम' कहा है। (sequence A006715 in the OEIS). (d = 2 के लिए, देखें OEIS: A006751)[4]
मूल गुण
विकास
क्रम अनिश्चित काल तक बढ़ता है। वास्तव में, एक अलग पूर्णांक बीज संख्या के साथ प्रारम्भ होने से परिभाषित कोई भी संस्करण (अंततः) भी अध: पतन (गणित) अनुक्रम: 22, 22, 22, 22, ... को छोड़कर अनिश्चित काल तक बढ़ेगा, (sequence A010861 in the OEIS)[5]
अंक उपस्थिति सीमा
1, 2, और 3 के अतिरिक्त कोई भी अंक अनुक्रम में प्रकट नहीं होता है, जब तक कि बीज संख्या में ऐसा अंक न हो या एक ही अंक के तीन से अधिक का प्रवाह न हो।[5]
ब्रह्माण्ड संबंधी क्षय
कॉनवे के ब्रह्मांडिकीय प्रमेय का दावा है कि प्रत्येक अनुक्रम अंततः परमाणु तत्वों के अनुक्रम में विभाजित (क्षय) करता है, जो परिमित अनुवर्ती हैं जो फिर कभी अपने प्रतिवैस के साथ परस्पर प्रभाव नहीं करते हैं। केवल 1, 2, और 3 अंक वाले 92 तत्व हैं, जिन्हें जॉन कॉनवे ने यूरेनियम तक प्राकृतिक रूप से पाए जाने वाले 92 रासायनिक तत्वों के नाम पर रखा है, जो अनुक्रम को श्रव्यसक्रिय कहते हैं। 1, 2, और 3 के अतिरिक्त प्रत्येक अंक के लिए दो परायूरेनियम तत्व (Np और Pu) भी हैं।[5][6] नीचे ऐसे सभी तत्वों की तालिका दी गई है:
सभी "परमाणु तत्व" (जहां एक Ek को Np और Pu को छोड़कर Ek+1 के व्युत्पन्न में सम्मिलित किया गया है)[1] | ||||
---|---|---|---|---|
परमाणु क्रमांक (n) | तत्व का नाम (Ek) | अनुक्रम | अपक्षय [5] | बहुलता |
1 | H | 22 | H | 91790.383216 |
2 | He | 13112221133211322112211213322112 | Hf.Pa.H.Ca.Li | 3237.2968588 |
3 | Li | 312211322212221121123222112 | He | 4220.0665982 |
4 | Be | 111312211312113221133211322112211213322112 | Ge.Ca.Li | 2263.8860325 |
5 | B | 1321132122211322212221121123222112 | Be | 2951.1503716 |
6 | C | 3113112211322112211213322112 | B | 3847.0525419 |
7 | N | 111312212221121123222112 | C | 5014.9302464 |
8 | O | 132112211213322112 | N | 6537.3490750 |
9 | F | 31121123222112 | O | 8521.9396539 |
10 | Ne | 111213322112 | F | 11109.006696 |
11 | Na | 123222112 | Ne | 14481.448773 |
12 | Mg | 3113322112 | Pm.Na | 18850.441228 |
13 | Al | 1113222112 | Mg | 24573.006696 |
14 | Si | 1322112 | Al | 32032.812960 |
15 | P | 311311222112 | Ho.Si | 14895.886658 |
16 | S | 1113122112 | P | 19417.939250 |
17 | Cl | 132112 | S | 25312.784218 |
18 | Ar | 3112 | Cl | 32997.170122 |
19 | K | 1112 | Ar | 43014.360913 |
20 | Ca | 12 | K | 56072.543129 |
21 | Sc | 3113112221133112 | Ho.Pa.H.Ca.Co | 9302.0974443 |
22 | Ti | 11131221131112 | Sc | 12126.002783 |
23 | V | 13211312 | Ti | 15807.181592 |
24 | Cr | 31132 | V | 20605.882611 |
25 | Mn | 111311222112 | Cr.Si | 26861.360180 |
26 | Fe | 13122112 | Mn | 35015.858546 |
27 | Co | 32112 | Fe | 45645.877256 |
28 | Ni | 11133112 | Zn.Co | 13871.123200 |
29 | Cu | 131112 | Ni | 18082.082203 |
30 | Zn | 312 | Cu | 23571.391336 |
31 | Ga | 13221133122211332 | Eu.Ca.Ac.H.Ca.Zn | 1447.8905642 |
32 | Ge | 31131122211311122113222 | Ho.Ga | 1887.4372276 |
33 | As | 11131221131211322113322112 | Ge.Na | 27.246216076 |
34 | Se | 13211321222113222112 | As | 35.517547944 |
35 | Br | 3113112211322112 | Se | 46.299868152 |
36 | Kr | 11131221222112 | Br | 60.355455682 |
37 | Rb | 1321122112 | Kr | 78.678000089 |
38 | Sr | 3112112 | Rb | 102.56285249 |
39 | Y | 1112133 | Sr.U | 133.69860315 |
40 | Zr | 12322211331222113112211 | Y.H.Ca.Tc | 174.28645997 |
41 | Nb | 1113122113322113111221131221 | Er.Zr | 227.19586752 |
42 | Mo | 13211322211312113211 | Nb | 296.16736852 |
43 | Tc | 311322113212221 | Mo | 386.07704943 |
44 | Ru | 132211331222113112211 | Eu.Ca.Tc | 328.99480576 |
45 | Rh | 311311222113111221131221 | Ho.Ru | 428.87015041 |
46 | Pd | 111312211312113211 | Rh | 559.06537946 |
47 | Ag | 132113212221 | Pd | 728.78492056 |
48 | Cd | 3113112211 | Ag | 950.02745646 |
49 | In | 11131221 | Cd | 1238.4341972 |
50 | Sn | 13211 | In | 1614.3946687 |
51 | Sb | 3112221 | Pm.Sn | 2104.4881933 |
52 | Te | 1322113312211 | Eu.Ca.Sb | 2743.3629718 |
53 | I | 311311222113111221 | Ho.Te | 3576.1856107 |
54 | Xe | 11131221131211 | I | 4661.8342720 |
55 | Cs | 13211321 | Xe | 6077.0611889 |
56 | Ba | 311311 | Cs | 7921.9188284 |
57 | La | 11131 | Ba | 10326.833312 |
58 | Ce | 1321133112 | La.H.Ca.Co | 13461.825166 |
59 | Pr | 31131112 | Ce | 17548.529287 |
60 | Nd | 111312 | Pr | 22875.863883 |
61 | Pm | 132 | Nd | 29820.456167 |
62 | Sm | 311332 | Pm.Ca.Zn | 15408.115182 |
63 | Eu | 1113222 | Sm | 20085.668709 |
64 | Gd | 13221133112 | Eu.Ca.Co | 21662.972821 |
65 | Tb | 3113112221131112 | Ho.Gd | 28239.358949 |
66 | Dy | 111312211312 | Tb | 36812.186418 |
67 | Ho | 1321132 | Dy | 47987.529438 |
68 | Er | 311311222 | Ho.Pm | 1098.5955997 |
69 | Tm | 11131221133112 | Er.Ca.Co | 1204.9083841 |
70 | Yb | 1321131112 | Tm | 1570.6911808 |
71 | Lu | 311312 | Yb | 2047.5173200 |
72 | Hf | 11132 | Lu | 2669.0970363 |
73 | Ta | 13112221133211322112211213322113 | Hf.Pa.H.Ca.W | 242.07736666 |
74 | W | 312211322212221121123222113 | Ta | 315.56655252 |
75 | Re | 111312211312113221133211322112211213322113 | Ge.Ca.W | 169.28801808 |
76 | Os | 1321132122211322212221121123222113 | Re | 220.68001229 |
77 | Ir | 3113112211322112211213322113 | Os | 287.67344775 |
78 | Pt | 111312212221121123222113 | Ir | 375.00456738 |
79 | Au | 132112211213322113 | Pt | 488.84742982 |
80 | Hg | 31121123222113 | Au | 637.25039755 |
81 | Tl | 111213322113 | Hg | 830.70513293 |
82 | Pb | 123222113 | Tl | 1082.8883285 |
83 | Bi | 3113322113 | Pm.Pb | 1411.6286100 |
84 | Po | 1113222113 | Bi | 1840.1669683 |
85 | At | 1322113 | Po | 2398.7998311 |
86 | Rn | 311311222113 | Ho.At | 3127.0209328 |
87 | Fr | 1113122113 | Rn | 4076.3134078 |
88 | Ra | 132113 | Fr | 5313.7894999 |
89 | Ac | 3113 | Ra | 6926.9352045 |
90 | Th | 1113 | Ac | 7581.9047125 |
91 | Pa | 13 | Th | 9883.5986392 |
92 | U | 3 | Pa | 102.56285249 |
Transuranic elements | ||||
93 | Np | 1311222113321132211221121332211n[note 1] | Hf.Pa.H.Ca.Pu | 0 |
94 | Pu | 31221132221222112112322211n[note 1] | Np | 0 |
लंबाई में वृद्धि
शब्द अंततः प्रति पीढ़ी लगभग 30% की लंबाई में बढ़ते हैं। विशेष रूप से, यदि Ln अनुक्रम के n-वें इकाई के अंकों की संख्या को दर्शाता है, फिर अनुपात की सीमा (गणित) उपस्थित है और इसके द्वारा निम्नलिखित दिया गया है
कॉनवे स्थिरांक एक बहुपद मूल के रूप में
कॉनवे स्थिरांक निम्नलिखित बहुपद का अद्वितीय धनात्मक वास्तविक मूल है (sequence A137275 in the OEIS):
लोकप्रियता
बीजलेखक रॉबर्ट मॉरिस (बीजलेखक) के बाद लुक-एंड-से अनुक्रम को मॉरिस अंक अनुक्रम के रूप में भी जाना जाता है, और पहेली अनुक्रम 1, 11, 21, 1211, 111221 में अगली संख्या क्या है? क्लिफर्ड स्टोल की किताब द कोयल्स एग में मॉरिस के वर्णन से इसे कभी-कभी कुक्कू के अंडे के रूप में संदर्भित किया जाता है।[8][9]
रूपांतर
This section does not cite any sources. (May 2022) (Learn how and when to remove this template message) |
देखने और कहने के क्रम को उत्पन्न करने के लिए उपयोग किए जाने वाले नियम पर कई संभावित भिन्नताएं हैं। उदाहरण के लिए, पी पतिरूप बनाने के लिए पिछले शब्द को पढ़ता है और प्रत्येक अंक के सभी उदाहरणों को उनकी पहली उपस्थिति के क्रम में सूचीबद्ध करता है, न कि केवल एक लगातार ब्लॉक में होने वाले। तो बीज 1 से प्रारम्भ करते हुए, पी पतिरूप 1, 11 (एक 1), 21 (दो 1), 1211 (एक 2 और एक 1), 3112 (तीन 1 और एक 2), 132112 (एक 3, दो 1) आगे बढ़ता है। और एक 2), 311322 (तीन 1s, एक 3 और दो 2s), आदि। पी पतिरूप का यह संस्करण अंततः दो परमाणु स्तिथियों 23322114 और 32232114 के साथ एक चक्र बनाता है।
पी पतिरूप के अन्य संस्करण भी संभव हैं; उदाहरण के लिए, अंकों को पढ़ने के स्थान पर जैसे वे पहली बार दिखाई देते हैं, बल्कि उन्हें आरोही क्रम में पढ़ सकते हैं। इस स्थिति में, 21 के बाद का पद 1112 (एक 1, एक 2) होगा और 3112 के बाद का पद 211213 (दो 1, एक 2 और एक 3) होगा।
ये क्रम देखने-और-कहने के क्रम से कई उल्लेखनीय तरीकों से भिन्न हैं। विशेष रूप से, कॉनवे अनुक्रमों के विपरीत, पी पतिरूप का एक दिया गया पद विशिष्ट रूप से पूर्ववर्ती शब्द को परिभाषित नहीं करता है। इसके अतिरिक्त, किसी भी बीज के लिए पी का पतिरूप बंधी हुई लंबाई की स्तिथियाँ उत्पन्न करता है: यह सीमा सामान्यतः अधिक नहीं होगी 2 × मूल + 2 अंक (दशमलव के लिए 22 अंक: मूल = 10) और केवल अधिक हो सकता है 3 × मूल अंक (दशमलव मूलांक के लिए 30 अंक) लंबे, पतित, प्रारंभिक बीजों (100 इकाइयों का क्रम, आदि) के लिए लंबाई में। इन चरम स्तिथियों के लिए, दशमलव अनुक्रम के अलग-अलग तत्व तुरंत स्वरुप a0 b1 c2 d3 e4 f5 g6 h7 i8 j9 के क्रमपरिवर्तन में व्यवस्थित हो जाते है यहाँ जहाँ पत्र a–j पूर्ववर्ती अनुक्रम तत्व से अंकों की संख्या के लिए परोक्षी हैं।
चूंकि अनुक्रम अनंत है, और प्रत्येक तत्व की लंबाई सीमित है, इसे कोष्ठ सिद्धांत के कारण अंततः पुनरावृत्ति करनी होगी। नतीजतन, पी पतिरूप अनुक्रम हमेशा अंततः आवधिक अनुक्रम होते हैं।
यह भी देखें
- गिजस्विज्त का क्रम
- कोलाकोस्की अनुक्रम
- हस्ताक्षर
टिप्पणियाँ
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 Conway, J. H. (January 1986). "The Weird and Wonderful Chemistry of Audioactive Decay" (PDF). Eureka. 46: 5–16. Reprinted as Conway, J. H. (1987). "The Weird and Wonderful Chemistry of Audioactive Decay". In Cover, Thomas M.; Gopinath, B. (eds.). Open Problems in Communication and Computation. Springer-Verlag. pp. 173–188. ISBN 0-387-96621-8.
- ↑ Roberts, Siobhan (2015). Genius at Play: The Curious Mind of John Horton Conway. Bloomsbury. ISBN 978-1-62040-593-2.
- ↑ Look-and-Say Numbers (feat John Conway) - Numberphile on YouTube
- ↑ Conway Sequence, MathWorld, accessed on line February 4, 2011.
- ↑ 5.0 5.1 5.2 5.3 5.4 Martin, Oscar (2006). "Look-and-Say Biochemistry: Exponential RNA and Multistranded DNA" (PDF). American Mathematical Monthly. Mathematical association of America. 113 (4): 289–307. doi:10.2307/27641915. ISSN 0002-9890. JSTOR 27641915. Archived from the original (PDF) on 2006-12-24. Retrieved January 6, 2010.
- ↑ Ekhad, S. B., Zeilberger, D.: Proof of Conway's lost cosmological theorem, Electronic Research Announcements of the American Mathematical Society, August 21, 1997, Vol. 5, pp. 78–82. Retrieved July 4, 2011.
- ↑ Vardi, Ilan (1991). Computational Recreations in Mathematica. Addison-Wesley. ISBN 0-201-52989-0.
- ↑ Robert Morris Sequence
- ↑ FAQ about Morris Number Sequence
बाहरी संबंध
- इस क्रम के बारे में बोलते हुए कॉनवे और यह बताते हुए कि इस क्रम को समझने के लिए उन्हें कुछ स्पष्टीकरण की आवश्यकता थी.
- कई प्रोग्रामिंग भाषाओं में कार्यान्वयन रोसेटा कोड पर
- Weisstein, Eric W. "Look and Say Sequence". MathWorld.
- Look and Say sequence generator p
- OEIS sequence A014715 (Decimal expansion of Conway's constant)
- A Derivation of Conway’s Degree-71 “Look-and-Say” Polynomial