हिल्बर्ट स्पेस पर कॉम्पैक्ट ऑपरेटर: Difference between revisions
(Created page with "{{Cleanup rewrite|it is written like a maths textbook, not an encyclopedia article|article|date=September 2017}} कार्यात्मक विश्लेषण...") |
No edit summary |
||
Line 1: | Line 1: | ||
[[कार्यात्मक विश्लेषण]] के गणितीय अनुशासन में, [[ हिल्बर्ट अंतरिक्ष ]] पर एक [[कॉम्पैक्ट ऑपरेटर]] की अवधारणा परिमित-आयामी वेक्टर स्पेस पर अभिनय करने वाले मैट्रिक्स की अवधारणा का विस्तार है; हिल्बर्ट स्पेस में, कॉम्पैक्ट ऑपरेटर [[ऑपरेटर मानदंड]] से प्रेरित [[टोपोलॉजी]] में [[परिमित-रैंक ऑपरेटर]]ों (परिमित-आयामी मैट्रिसेस द्वारा प्रतिनिधित्व योग्य) के ठीक से बंद होते हैं। जैसे, मैट्रिक्स सिद्धांत के परिणाम कभी-कभी समान तर्कों का उपयोग करके कॉम्पैक्ट ऑपरेटरों तक बढ़ाए जा सकते हैं। इसके विपरीत, अनंत-आयामी स्थानों पर सामान्य संचालकों के अध्ययन के लिए अक्सर वास्तव में अलग दृष्टिकोण की आवश्यकता होती है। | [[कार्यात्मक विश्लेषण]] के गणितीय अनुशासन में, [[ हिल्बर्ट अंतरिक्ष ]] पर एक [[कॉम्पैक्ट ऑपरेटर]] की अवधारणा परिमित-आयामी वेक्टर स्पेस पर अभिनय करने वाले मैट्रिक्स की अवधारणा का विस्तार है; हिल्बर्ट स्पेस में, कॉम्पैक्ट ऑपरेटर [[ऑपरेटर मानदंड]] से प्रेरित [[टोपोलॉजी]] में [[परिमित-रैंक ऑपरेटर]]ों (परिमित-आयामी मैट्रिसेस द्वारा प्रतिनिधित्व योग्य) के ठीक से बंद होते हैं। जैसे, मैट्रिक्स सिद्धांत के परिणाम कभी-कभी समान तर्कों का उपयोग करके कॉम्पैक्ट ऑपरेटरों तक बढ़ाए जा सकते हैं। इसके विपरीत, अनंत-आयामी स्थानों पर सामान्य संचालकों के अध्ययन के लिए अक्सर वास्तव में अलग दृष्टिकोण की आवश्यकता होती है। | ||
Revision as of 02:21, 17 May 2023
कार्यात्मक विश्लेषण के गणितीय अनुशासन में, हिल्बर्ट अंतरिक्ष पर एक कॉम्पैक्ट ऑपरेटर की अवधारणा परिमित-आयामी वेक्टर स्पेस पर अभिनय करने वाले मैट्रिक्स की अवधारणा का विस्तार है; हिल्बर्ट स्पेस में, कॉम्पैक्ट ऑपरेटर ऑपरेटर मानदंड से प्रेरित टोपोलॉजी में परिमित-रैंक ऑपरेटरों (परिमित-आयामी मैट्रिसेस द्वारा प्रतिनिधित्व योग्य) के ठीक से बंद होते हैं। जैसे, मैट्रिक्स सिद्धांत के परिणाम कभी-कभी समान तर्कों का उपयोग करके कॉम्पैक्ट ऑपरेटरों तक बढ़ाए जा सकते हैं। इसके विपरीत, अनंत-आयामी स्थानों पर सामान्य संचालकों के अध्ययन के लिए अक्सर वास्तव में अलग दृष्टिकोण की आवश्यकता होती है।
उदाहरण के लिए, बनच रिक्त स्थान पर कॉम्पैक्ट ऑपरेटरों के वर्णक्रमीय सिद्धांत एक ऐसा रूप लेता है जो मैट्रिसेस के जॉर्डन विहित रूप के समान है। हिल्बर्ट रिक्त स्थान के संदर्भ में, एक वर्ग मैट्रिक्स एकात्मक रूप से विकर्णीय है यदि और केवल यदि यह सामान्य ऑपरेटर है। हिल्बर्ट रिक्त स्थान पर सामान्य कॉम्पैक्ट ऑपरेटरों के लिए एक समान परिणाम होता है। अधिक आम तौर पर, कॉम्पैक्टनेस धारणा को छोड़ा जा सकता है। जैसा कि ऊपर कहा गया है, परिणामों को साबित करने के लिए इस्तेमाल की जाने वाली तकनीकें, उदाहरण के लिए, गैर-कॉम्पैक्ट मामले में वर्णक्रमीय प्रमेय, आमतौर पर भिन्न होती हैं, जिसमें स्पेक्ट्रम (कार्यात्मक विश्लेषण) पर ऑपरेटर-मूल्यवान माप (गणित) शामिल होते हैं।
हिल्बर्ट स्पेस पर कॉम्पैक्ट ऑपरेटरों के कुछ परिणामों पर चर्चा की जाएगी, कॉम्पैक्ट ऑपरेटरों के उपवर्गों पर विचार करने से पहले सामान्य गुणों के साथ शुरू करना।
परिभाषा
होने देना हिल्बर्ट स्पेस बनें और बंधे हुए ऑपरेटरों का सेट हो. फिर, एक ऑपरेटर एक कॉम्पैक्ट ऑपरेटर कहा जाता है यदि प्रत्येक बाउंड की छवि के तहत सेट किया गया हो अपेक्षाकृत कॉम्पैक्ट सबस्पेस है।
कुछ सामान्य गुण
हम इस खंड में कॉम्पैक्ट ऑपरेटरों के कुछ सामान्य गुण सूचीबद्ध करते हैं।
यदि X और Y वियोज्य हिल्बर्ट रिक्त स्थान हैं (वास्तव में, X Banach और Y मानक पर्याप्त होंगे), तो T : X → Y कॉम्पैक्ट है यदि और केवल यदि यह क्रमिक रूप से निरंतर है जब इसे कमजोर अभिसरण के साथ X से मानचित्र के रूप में देखा जाता है (हिल्बर्ट अंतरिक्ष) से वाई (मानक टोपोलॉजी के साथ)। (देखना (Zhu 2007, Theorem 1.14, p.11), और इस संदर्भ में ध्यान दें कि समान सीमा उस स्थिति में लागू होगी जहां F ⊆ X संतुष्ट करता है (∀φ ∈ Hom(X, K)) sup{x**(φ) = φ(x) : x} < ∞ , जहां K अंतर्निहित क्षेत्र है। समरूप सीमा सिद्धांत लागू होता है क्योंकि होम (एक्स, के) आदर्श टोपोलॉजी के साथ एक बैनाच स्पेस होगा, और मानचित्र x **: होम (एक्स, के) → के इस टोपोलॉजी के संबंध में निरंतर होमोमोर्फिज्म हैं।)
कॉम्पैक्ट ऑपरेटरों का परिवार एक मानक-बंद, दो-तरफा, *-एल (एच) में आदर्श है। नतीजतन, यदि एच अनंत-आयामी है तो एक कॉम्पैक्ट ऑपरेटर टी में एक बाध्य उलटा नहीं हो सकता है। यदि ST = TS = I, तो पहचान संकारक कॉम्पैक्ट होगा, एक विरोधाभास।
यदि परिबद्ध संकारकों का अनुक्रम Bn→ बी, सीn→ C मजबूत ऑपरेटर टोपोलॉजी में और T कॉम्पैक्ट है, फिर में विलीन हो जाता है आदर्श रूप में।[1] उदाहरण के लिए, हिल्बर्ट स्पेस पर विचार करें मानक आधार के साथ {ईn}. चलो पीm{ई के रैखिक विस्तार पर ओर्थोगोनल प्रक्षेपण हो1, ..., यह हैm}. अनुक्रम {पीm} आइडेंटिटी ऑपरेटर I में दृढ़ता से परिवर्तित होता है लेकिन समान रूप से नहीं। T को परिभाषित कीजिए टी कॉम्पैक्ट है, और, जैसा कि ऊपर दावा किया गया है, पीmटी → आईटी = टी यूनिफॉर्म ऑपरेटर टोपोलॉजी में: सभी एक्स के लिए,
कॉम्पैक्ट ऑपरेटरों के आदर्श के मानदंड-निकटता से, इसका विलोम भी सत्य है।
कॉम्पैक्ट ऑपरेटरों के एल (एच) मॉड्यूलो के अंश सी * - बीजगणित को कैल्किन बीजगणित कहा जाता है, जिसमें एक ऑपरेटर के गुणों को कॉम्पैक्ट गड़बड़ी तक माना जा सकता है।
कॉम्पैक्ट स्व-आसन्न ऑपरेटर
एक हिल्बर्ट स्पेस एच पर एक परिबद्ध ऑपरेटर टी को स्व-संबद्ध ऑपरेटर कहा जाता है | स्व-संयोजित यदि टी = टी *, या समकक्ष,
हर्मिटियन के लिए वर्गीकरण परिणाम n × n मेट्रिसेस स्पेक्ट्रल प्रमेय है: यदि एम = एम *, तो एम एकात्मक रूप से विकर्ण है, और एम के विकर्ण में वास्तविक प्रविष्टियाँ हैं। टी को एक हिल्बर्ट स्पेस एच पर एक कॉम्पैक्ट स्व-आसन्न ऑपरेटर होने दें। हम टी के लिए एक ही कथन साबित करेंगे: ऑपरेटर टी को ईजेनवेक्टरों के एक ऑर्थोनॉर्मल सेट द्वारा विकर्ण किया जा सकता है, जिनमें से प्रत्येक एक वास्तविक ईजेनवेल्यू से मेल खाता है।
स्पेक्ट्रल प्रमेय
प्रमेय एक वास्तविक या जटिल हिल्बर्ट स्पेस H पर प्रत्येक कॉम्पैक्ट स्व-आसन्न ऑपरेटर T के लिए, T के eigenvectors से मिलकर H का एक असामान्य आधार मौजूद है। अधिक विशेष रूप से, 'टी' के कर्नेल का ऑर्थोगोनल पूरक या तो टी के ईजेनवेक्टरों के परिमित ऑर्थोनॉर्मल आधार को स्वीकार करता है, या एक गणनीय सेट ऑर्थोनॉर्मल आधार {en} T के eigenvectors, इसी eigenvalues के साथ {λn} ⊂ R, ऐसा है कि λn → 0.
दूसरे शब्दों में, एक कॉम्पैक्ट स्व-आसन्न ऑपरेटर को एकात्मक रूप से विकर्ण किया जा सकता है। यह वर्णक्रमीय प्रमेय है।
जब एच वियोज्य स्थान है, तो कोई आधार {ई को मिला सकता हैn} टी के कर्नेल के लिए एक गणनीय सेट ऑर्थोनॉर्मल आधार के साथ, और एक ऑर्थोनॉर्मल आधार प्राप्त करें {fn} H के लिए, T के eigenvectors से मिलकर वास्तविक eigenvalues {μn} ऐसा है कि μn → 0.
कोरोलरी एक वास्तविक या जटिल वियोज्य अनंत-आयामी हिल्बर्ट स्पेस एच पर प्रत्येक कॉम्पैक्ट स्व-आसन्न ऑपरेटर टी के लिए, एक अनगिनत अनंत ऑर्थोनॉर्मल आधार मौजूद है {एफn} का H, T के eigenvectors से मिलकर बना है, इसी eigenvalues के साथ {μn} ⊂ R, ऐसा है कि μn → 0.
विचार
आइए पहले हम परिमित-विम उपपत्ति पर चर्चा करें। यह एक हर्मिटियन n × n मैट्रिक्स T के लिए वर्णक्रमीय प्रमेय को साबित करता है जो एक ईजेनवेक्टर x के अस्तित्व को दर्शाता है। एक बार यह हो जाने के बाद, हर्मिटिसिटी का अर्थ है कि एक्स (आयाम n-1 के) के रैखिक विस्तार और ऑर्थोगोनल पूरक दोनों टी के अपरिवर्तनीय उप-स्थान हैं। वांछित परिणाम तब के लिए प्रेरण द्वारा प्राप्त किया जाता है .
एक ईजेनवेक्टर के अस्तित्व को (कम से कम) दो वैकल्पिक तरीकों से दिखाया जा सकता है:
- कोई बीजगणितीय रूप से बहस कर सकता है: T की विशेषता बहुपद की एक जटिल जड़ है, इसलिए T का एक संबंधित ईजेनवेक्टर के साथ एक eigenvalue है।
- आइगेनवैल्यू को भिन्न रूप से चित्रित किया जा सकता है: सबसे बड़ा आइगेनवैल्यू फ़ंक्शन के बंद इकाई क्षेत्र पर अधिकतम है f: R2n → R द्वारा परिभाषित f(x) = x*Tx = ⟨Tx, x⟩.
टिप्पणी। परिमित-आयामी मामले में, पहले दृष्टिकोण का हिस्सा बहुत अधिक सामान्यता में काम करता है; किसी भी वर्ग मैट्रिक्स, जरूरी नहीं कि हर्मिटियन, में एक ईजेनवेक्टर हो। हिल्बर्ट स्पेस पर सामान्य ऑपरेटरों के लिए यह बिल्कुल सच नहीं है। अनंत आयामों में, यह भी तत्काल नहीं है कि विशिष्ट बहुपद की अवधारणा को सामान्य कैसे किया जाए।
कॉम्पैक्ट स्व-आसन्न मामले के लिए वर्णक्रमीय प्रमेय समान रूप से प्राप्त किया जा सकता है: ऊपर दूसरे परिमित-आयामी तर्क का विस्तार करके एक ईजेनवेक्टर पाता है, फिर प्रेरण लागू करें। हम पहले मेट्रिसेस के लिए तर्क को स्केच करते हैं।
चूंकि बंद इकाई क्षेत्र आर में एस है2n कॉम्पैक्ट है, और f निरंतर है, f(S) वास्तविक रेखा पर कॉम्पैक्ट है, इसलिए f किसी इकाई वेक्टर y पर S पर अधिकतम प्राप्त करता है। लैग्रेंज गुणक द्वारा | लैग्रेंज गुणक प्रमेय, y संतुष्ट करता है
वैकल्पिक रूप से, मान लीजिए z ∈ 'C'n कोई सदिश हो। ध्यान दें कि यदि एक इकाई सदिश y अधिकतम ⟨Tx, x⟩ इकाई क्षेत्र (या इकाई गेंद पर) पर है, तो यह रेले भागफल को भी अधिकतम करता है:
ध्यान दें कि जबकि लैग्रेंज गुणक अनंत-आयामी मामले के लिए सामान्यीकरण करते हैं, इकाई क्षेत्र की कॉम्पैक्टनेस खो जाती है। यह वह जगह है जहां ऑपरेटर 'टी' कॉम्पैक्ट होना उपयोगी है।
विवरण
दावा अगर टी गैर-शून्य हिल्बर्ट स्पेस एच पर एक कॉम्पैक्ट सेल्फ़-एडज्वाइंट ऑपरेटर है और
अगर m(T) = 0, तब T = 0 ध्रुवीकरण पहचान द्वारा, और यह मामला स्पष्ट है। समारोह पर विचार करें
बनच-अलाग्लू प्रमेय और एच की रिफ्लेक्सीविटी द्वारा, बंद यूनिट बॉल बी कमजोर रूप से कॉम्पैक्ट है। साथ ही, T की सघनता का अर्थ है (ऊपर देखें) कि T: X कमजोर टोपोलॉजी के साथ → X मानक टोपोलॉजी के साथ निरंतर है। इन दो तथ्यों का अर्थ है कि कमजोर टोपोलॉजी से लैस बी पर एफ निरंतर है, और एफ कुछ पर बी पर अधिकतम एम प्राप्त करता है y ∈ B. अधिकतमता से, जो बदले में यह दर्शाता है कि y रेले भागफल g(x) (ऊपर देखें) को भी अधिकतम करता है। इससे पता चलता है कि y, T का आइजनवेक्टर है, और दावे के प्रमाण को समाप्त करता है।
'टिप्पणी।' टी की कॉम्पैक्टनेस महत्वपूर्ण है। सामान्य तौर पर, यूनिट बॉल बी पर कमजोर टोपोलॉजी के लिए एफ को निरंतर होने की आवश्यकता नहीं है। उदाहरण के लिए, टी को पहचान ऑपरेटर होने दें, जो एच अनंत-आयामी होने पर कॉम्पैक्ट नहीं है। कोई भी असामान्य अनुक्रम लें {yn}. फिर वाईn0 पर कमजोर रूप से परिवर्तित होता है, लेकिन lim f(yn) = 1 ≠ 0 = f(0)।
बता दें कि टी हिल्बर्ट स्पेस एच पर एक कॉम्पैक्ट ऑपरेटर है। एक परिमित (संभवतः खाली) या अनगिनत अनंत ऑर्थोनॉर्मल अनुक्रमnT के eigenvectors का }, गैर-शून्य eigenvalues के साथ, निम्नानुसार प्रेरण द्वारा निर्मित किया गया है। चलो एच0 = एच और टी0 = टी। अगर एम (टी0) = 0, फिर T = 0 और निर्माण किसी भी ईजेनवेक्टर ई के उत्पादन के बिना रुक जाता हैn. मान लीजिए कि ऑर्थोनॉर्मल ईजेनवेक्टर e0, ..., en − 1 का टी पाया गया है। तब En := span(e0, ..., en − 1) टी के तहत अपरिवर्तनीय है, और स्व-आसन्नता से, ऑर्थोगोनल पूरक एचnई. काn T की एक अपरिवर्तनीय उपसमष्टि है। मान लीजिए TnT से H के प्रतिबंध को निरूपित करेंn. अगर एम (टीn) = 0, फिर टीn= 0, और निर्माण बंद हो जाता है। अन्यथा, टी पर लागू दावे सेn, एक आदर्श एक ईजेनवेक्टर ई हैnटी में एचn, इसी गैर-शून्य eigenvalue λ के साथn = ± m(Tn).
चलो एफ = (अवधि {ईn})⊥, जहां {ईn} आगमनात्मक प्रक्रिया द्वारा निर्मित परिमित या अनंत अनुक्रम है; स्व-आसन्नता द्वारा, F, T के अंतर्गत अपरिवर्तनीय है। मान लीजिए कि S, T से F के प्रतिबंध को निरूपित करता है। यदि अंतिम सदिश e के साथ, अंतिम रूप से कई चरणों के बाद प्रक्रिया को रोक दिया गया थाm−1, फिर एफ = एचmऔर एस = टीm= 0 निर्माण द्वारा। अनंत मामले में, T की सघनता और e का कमजोर-अभिसरणn0 से इसका मतलब है Ten = λnen → 0, इसलिए λn → 0. चूँकि F, H में समाहित हैnप्रत्येक n के लिए, यह अनुसरण करता है कि m(S) ≤ m({Tn}) = |एलn| प्रत्येक n के लिए, इसलिए m(S) = 0. इसका तात्पर्य यह है कि S = 0.
तथ्य यह है कि S = 0 का अर्थ है कि F, T के कर्नेल में समाहित है। इसके विपरीत, यदि x ∈ ker(T) तो आत्म-संलग्नता से, x प्रत्येक eigenvector {e के लिए ओर्थोगोनल हैn} गैर-शून्य eigenvalue के साथ। यह इस प्रकार है कि F = ker(T), और वह {ईn} टी के कर्नेल के ऑर्थोगोनल पूरक के लिए एक ऑर्थोनॉर्मल आधार है। कोई कर्नेल के ऑर्थोनॉर्मल आधार का चयन करके टी के विकर्णकरण को पूरा कर सकता है। यह वर्णक्रमीय प्रमेय सिद्ध करता है।
एक छोटा लेकिन अधिक सार प्रमाण इस प्रकार है: ज़ोर्न के लेम्मा द्वारा, निम्नलिखित तीन गुणों के साथ एच का अधिकतम उपसमुच्चय होने के लिए यू का चयन करें: यू के सभी तत्व टी के ईजेनवेक्टर हैं, उनके पास मानक एक है, और यू के दो अलग-अलग तत्व हैं। ओर्थोगोनल हैं। F को U के रैखिक विस्तार का ऑर्थोगोनल पूरक होने दें। यदि F ≠ {0} है, तो यह T का एक गैर-तुच्छ अपरिवर्तनीय उपस्थान है, और प्रारंभिक दावे से, F में T का एक आदर्श एक eigenvector y मौजूद होना चाहिए। लेकिन तब U ∪ {y}, U की अधिकतमता का खंडन करता है। यह F = {0} का अनुसरण करता है, इसलिए H में स्पैन (U) सघन है। इससे पता चलता है कि U, T के eigenvectors से मिलकर H का एक ऑर्थोनॉर्मल आधार है।
कार्यात्मक पथरी
यदि टी एक अनंत-आयामी हिल्बर्ट स्पेस एच पर कॉम्पैक्ट है, तो टी उलटा नहीं है, इसलिए σ(T), टी के स्पेक्ट्रम में हमेशा 0 होता है। वर्णक्रमीय प्रमेय से पता चलता है कि σ(T) में eigenvalues {λnT का } और 0 का (यदि 0 पहले से ही एक eigenvalue नहीं है)। सेट σ(T) जटिल संख्याओं का एक कॉम्पैक्ट उपसमुच्चय है, और σ(T) में eigenvalues सघन हैं।
किसी भी वर्णक्रमीय प्रमेय को क्रियात्मक कलन के रूप में पुनः निरूपित किया जा सकता है। वर्तमान संदर्भ में, हमारे पास:
'प्रमेय।' चलो C(σ(T)) σ(T) पर निरंतर कार्यों के C*-बीजगणित को दर्शाता है। एक अद्वितीय आइसोमेट्रिक समरूपता मौजूद है Φ : C(σ(T)) → L(H) जैसे कि Φ(1) = I और, यदि f पहचान फलन है f(λ) = λ, तब Φ(f) = T. इसके अतिरिक्त, σ(f(T)) = f(σ(T)).
कार्यात्मक कैलकुस मानचित्र Φ को प्राकृतिक तरीके से परिभाषित किया गया है: {ईn} H के लिए eigenvectors का एक सामान्य आधार हो, इसी eigenvalues {λ के साथn}; के लिए f ∈ C(σ(T)), ऑपरेटर Φ(f), ऑर्थोनॉर्मल आधार के संबंध में विकर्ण {en}, सेटिंग द्वारा परिभाषित किया गया है
हिल्बर्ट स्पेस पर किसी भी स्व-संलग्न (या यहां तक कि सामान्य, जटिल मामले में) सीमित रैखिक ऑपरेटर के लिए अधिक सामान्य निरंतर कार्यात्मक कलन को परिभाषित किया जा सकता है। यहाँ वर्णित कॉम्पैक्ट मामला इस कार्यात्मक कलन का एक विशेष रूप से सरल उदाहरण है।
एक साथ विकर्णकरण
हिल्बर्ट स्पेस एच पर विचार करें (उदाहरण के लिए परिमित-आयामी 'सी'n), और एक आने-जाने वाला सेट स्व-आसन्न ऑपरेटरों की। फिर उपयुक्त परिस्थितियों में, यह एक साथ (एकात्मक रूप से) विकर्ण हो सकता है। अर्थात, ऑपरेटरों के लिए सामान्य ईजेनवेक्टरों से मिलकर एक ऑर्थोनॉर्मल आधार क्यू मौजूद है - यानी,
Lemma — Suppose all the operators in are compact. Then every closed non-zero -invariant sub-space has a common eigenvector for .
Case I: all the operators have each exactly one eigenvalue on . Take any of unit length. It is a common eigenvector.
Case II: there is some operator with at least 2 eigenvalues on and let . Since T is compact and α is non-zero, we have is a finite-dimensional (and therefore closed) non-zero -invariant sub-space (because the operators all commute with T, we have for and , that ). In particular, since α is just one of the eigenvalues of on , we definitely have . Thus we could in principle argue by induction over dimension, yielding that has a common eigenvector for .
Theorem 1 — If all the operators in are compact then the operators can be simultaneously (unitarily) diagonalized.
The following set
Theorem 2 — If there is an injective compact operator in ; then the operators can be simultaneously (unitarily) diagonalized.
Fix compact injective. Then we have, by the spectral theory of compact symmetric operators on Hilbert spaces:
Theorem 3 — If H a finite-dimensional Hilbert space, and a commutative set of operators, each of which is diagonalisable; then the operators can be simultaneously diagonalized.
Case I: all operators have exactly one eigenvalue. Then any basis for H will do.
Case II: Fix an operator with at least two eigenvalues, and let so that is a symmetric operator. Now let α be an eigenvalue of . Then it is easy to see that both:
ध्यान दें कि हमें इस प्रमाण में मेट्रिसेस की मशीनरी का सीधे तौर पर उपयोग नहीं करना था। अन्य संस्करण हैं जो करते हैं।
हम उपरोक्त मामले को मजबूत कर सकते हैं जहां सभी ऑपरेटर केवल अपने आस-पास के साथ यात्रा करते हैं; इस मामले में हम विकर्णीकरण से ओर्थोगोनल शब्द को हटा देते हैं। वेइल-पीटर के कारण अभ्यावेदन से उत्पन्न होने वाले ऑपरेटरों के लिए कमजोर परिणाम हैं। G को एक निश्चित स्थानीय रूप से कॉम्पैक्ट हॉसडॉर्फ समूह होने दें, और (जी पर अद्वितीय-अप-टू-स्केल हार माप के संबंध में स्क्वायर इंटीग्रेबल मापने योग्य कार्यों का स्थान)। निरंतर बदलाव की कार्रवाई पर विचार करें:
कॉम्पैक्ट सामान्य ऑपरेटर
हर्मिटियन मेट्रिसेस का परिवार मेट्रिसेस का एक उचित उपसमुच्चय है जो एकात्मक रूप से विकर्ण हैं। एक मैट्रिक्स एम एकात्मक रूप से विकर्णीय है अगर और केवल अगर यह सामान्य है, यानी, एम * एम = एमएम *। इसी तरह के बयान कॉम्पैक्ट सामान्य ऑपरेटरों के लिए हैं।
टी को कॉम्पैक्ट होने दें और टी * टी = टीटी *। T: परिभाषित करने के लिए कार्तीय अपघटन लागू करें
एक हाइपोनॉर्मल ऑपरेटर (विशेष रूप से, एक असामान्य ऑपरेटर ) सामान्य होता है।
एकात्मक संचालक
एकात्मक ऑपरेटर यू का स्पेक्ट्रम जटिल विमान में यूनिट सर्कल पर स्थित है; यह संपूर्ण इकाई चक्र हो सकता है। हालांकि, अगर यू पहचान और एक कॉम्पैक्ट परेशानी है, तो यू में केवल एक गणनीय स्पेक्ट्रम है, जिसमें 1 और संभवतः, एक परिमित सेट या यूनिट सर्कल पर 1 के लिए एक अनुक्रम होता है। अधिक सटीक, मान लीजिए U = I + C जहां सी कॉम्पैक्ट है। समीकरण UU* = U*U = I और C = U − I दिखाएं कि सी सामान्य है। सी के स्पेक्ट्रम में 0 होता है, और संभवतः, एक परिमित सेट या अनुक्रम 0. के बाद से होता है U = I + C, U का स्पेक्ट्रम C के स्पेक्ट्रम को 1 से स्थानांतरित करके प्राप्त किया जाता है।
उदाहरण
- माना H = Lp स्पेस|L2([0, 1]). गुणन ऑपरेटर एम द्वारा परिभाषित H पर एक परिबद्ध स्व-आसन्न संकारक है जिसका कोई ईजेनवेक्टर नहीं है और इसलिए, वर्णक्रमीय प्रमेय द्वारा, सघन नहीं हो सकता है।
- K(x, y) को [0, 1] पर वर्ग-पूर्णांक होने दें2 और T को परिभाषित करेंK एच पर तब टीKएच पर कॉम्पैक्ट है; यह एक हिल्बर्ट-श्मिट ऑपरेटर है।
- मान लीजिए कि कर्नेल K(x, y) हर्मिटिसिटी स्थिति को संतुष्ट करता है: तब टीKएच पर कॉम्पैक्ट और स्व-संलग्न है; अगर {φn} eigenvectors का एक अलौकिक आधार है, eigenvalues {λ के साथn}, यह सिद्ध किया जा सकता हैजहां कार्यों की श्रृंखला का योग एल के रूप में समझा जाता है2 Lebesgue माप के लिए अभिसरण on [0, 1]2. मर्सर का प्रमेय ऐसी स्थितियाँ देता है जिसके तहत श्रृंखला K(x, y) बिंदुवार और समान रूप से परिवर्तित होती है on [0, 1]2.
यह भी देखें
- Calkin algebra
- Compact operator
- Decomposition of spectrum (functional analysis) − यदि सघनता धारणा को हटा दिया जाता है, तो ऑपरेटरों के पास सामान्य रूप से गणनीय स्पेक्ट्रम की आवश्यकता नहीं होती है।
- Fredholm operator
- Singular value decomposition#Bounded operators on Hilbert spaces − विलक्षण मूल्यों की धारणा को मैट्रिसेस से कॉम्पैक्ट ऑपरेटरों तक बढ़ाया जा सकता है।
- Spectral theory of compact operators
- Strictly singular operator
संदर्भ
- ↑ Widom, H. (1976). "ब्लॉक टोप्लिट्ज मैट्रिसेस और निर्धारकों का स्पर्शोन्मुख व्यवहार। द्वितीय". Advances in Mathematics. 21 (1): 1–29. doi:10.1016/0001-8708(76)90113-4.
- J. Blank, P. Exner, and M. Havlicek, Hilbert Space Operators in Quantum Physics, American Institute of Physics, 1994.
- M. Reed and B. Simon, Methods of Modern Mathematical Physics I: Functional Analysis, Academic Press, 1972.
- Zhu, Kehe (2007), Operator Theory in Function Spaces, Mathematical surveys and monographs, vol. 138, American Mathematical Society, ISBN 978-0-8218-3965-2