कुल भिन्नता: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Measure of local oscillation behavior}} {{distinguish|Total variation distance of probability measures}} {{primary sources|date=February 2012}} गणि...")
 
No edit summary
Line 1: Line 1:
{{Short description|Measure of local oscillation behavior}}
{{Short description|Measure of local oscillation behavior}}
{{distinguish|Total variation distance of probability measures}}
{{distinguish|संभाव्यता उपायों की कुल भिन्नता दूरी}}
{{primary sources|date=February 2012}}


गणित में, कुल भिन्नता कई अलग-अलग अवधारणाओं की पहचान करती है, जो किसी फ़ंक्शन (गणित) या एक माप (गणित) के [[कोडोमेन]] की ([[स्थानीय संपत्ति]] या वैश्विक) संरचना से संबंधित होती है। एक [[वास्तविक संख्या]] के लिए | वास्तविक-मूल्यवान [[निरंतर कार्य]] ''f'', एक [[अंतराल (गणित)]] [''a'', ''b''] ⊂ R पर परिभाषित, परिभाषा के अंतराल पर इसकी कुल भिन्नता एक उपाय है पैरामीट्रिक समीकरण ''x'' ↦ ''f''(''x''), ''x'' ∈ [''a'', ''b'' के साथ वक्र के एक-आयामी चाप की लम्बाई ]। ऐसे कार्य जिनकी कुल भिन्नता परिमित है, परिमित भिन्नता कहलाती है।
गणित में, कुल भिन्नता कई अलग-अलग अवधारणाओं की पहचान करती है, जो किसी कार्य (गणित) या एक माप (गणित) के [[कोडोमेन]] की ([[स्थानीय संपत्ति]] या वैश्विक) संरचना से संबंधित होती है। एक [[वास्तविक संख्या]] के लिए वास्तविक-मूल्यवान [[निरंतर कार्य]] ''f'', एक [[अंतराल (गणित)]] [''a'', ''b''] ⊂ R पर परिभाषित, परिभाषा के अंतराल पर इसकी कुल भिन्नता एक उपाय है पैरामीट्रिक समीकरण ''x'' ↦ ''f''(''x''), ''x'' ∈ [''a'', ''b''] के साथ वक्र के एक-आयामी चाप की लम्बाई ऐसे कार्य जिनकी कुल भिन्नता परिमित है, परिमित भिन्नता कहलाती है।


== ऐतिहासिक नोट ==
== ऐतिहासिक नोट ==
एक वास्तविक चर के कार्यों के लिए कुल भिन्नता की अवधारणा को पहली बार [[केमिली जॉर्डन]] द्वारा पेपर में पेश किया गया था {{Harv|Jordan|1881}}.<ref>According to {{Harvtxt|Golubov|Vitushkin|2001}}.</ref> उन्होंने असंतुलित कार्य आवधिक कार्यों की फूरियर श्रृंखला के लिए एक अभिसरण प्रमेय को साबित करने के लिए नई अवधारणा का उपयोग किया, जिसकी भिन्नता परिबद्ध भिन्नता है। एक से अधिक चर के कार्यों के लिए अवधारणा का विस्तार हालांकि विभिन्न कारणों से सरल नहीं है।
एक वास्तविक चर के कार्यों के लिए कुल भिन्नता की अवधारणा को पहली बार [[केमिली जॉर्डन]] द्वारा पेपर में प्रस्तुत किया गया था {{Harv|Jordan|1881}}.<ref>According to {{Harvtxt|Golubov|Vitushkin|2001}}.</ref> उन्होंने असंतुलित कार्य आवधिक कार्यों की फूरियर श्रृंखला के लिए एक अभिसरण प्रमेय को सिद्ध करने के लिए नई अवधारणा का उपयोग किया, जिसकी भिन्नता परिबद्ध भिन्नता है। एक से अधिक चर के कार्यों के लिए अवधारणा का विस्तार चूँकि विभिन्न कारणों से सरल नहीं है।


== परिभाषाएँ ==
== परिभाषाएँ ==


=== एक वास्तविक चर === के कार्यों के लिए कुल भिन्नता
==== एक वास्तविक चर के कार्यों के लिए कुल भिन्नता ====
{{EquationRef|1|Definition 1.1.}} वास्तविक संख्या-मूल्यवान (या अधिक सामान्यतः [[जटिल संख्या]]-मूल्यवान) फ़ंक्शन (गणित) की कुल भिन्नता <math>f</math>, एक अंतराल पर परिभाषित (गणित) <math> [a , b] \subset \mathbb{R}</math> मात्रा है
{{EquationRef|1|Definition 1.1.}} वास्तविक संख्या-मूल्यवान (या अधिक सामान्यतः [[जटिल संख्या]]-मूल्यवान) कार्य (गणित) की कुल भिन्नता <math>f</math>, एक अंतराल पर परिभाषित (गणित) <math> [a , b] \subset \mathbb{R}</math> मात्रा है


:<math> V_a^b(f)=\sup_{\mathcal{P}} \sum_{i=0}^{n_P-1} | f(x_{i+1})-f(x_i) |, </math>
:<math> V_a^b(f)=\sup_{\mathcal{P}} \sum_{i=0}^{n_P-1} | f(x_{i+1})-f(x_i) |, </math>
जहां एक अंतराल के सभी विभाजनों के [[सेट (गणित)]] पर [[अंतिम]] चलता है <math> \mathcal{P} = \left\{P=\{ x_0, \dots , x_{n_P}\} \mid P\text{ is a partition of } [a,b] \right\} </math> दिए गए अंतराल (गणित) का।
जहां एक अंतराल के सभी विभाजनों के [[सेट (गणित)]] पर [[अंतिम]] चलता है <math> \mathcal{P} = \left\{P=\{ x_0, \dots , x_{n_P}\} \mid P\text{ is a partition of } [a,b] \right\} </math> दिए गए अंतराल (गणित) का।


=== n > 1 वास्तविक चर === के कार्यों के लिए कुल भिन्नता
जहां सर्वोच्च सभी विभाजनों के सेट पर चलता है <math> \mathcal{P} = \left\{P=\{ x_0, \dots , x_{n_P}\} \mid P\text{ is a partition of } [a,b] \right\} </math> का विभाजन है।
 
==== n > 1 वास्तविक चर के कार्यों के लिए कुल भिन्नता ====
{{citation needed section|date=September 2022}}
{{citation needed section|date=September 2022}}
{{EquationRef|2|Definition 1.2.}} मान लीजिए Ω, R का एक [[खुला उपसमुच्चय]] है<sup>एन</sup>. L से संबंधित एक फ़ंक्शन f दिया गया है<sup>1</sup>(Ω), Ω में ''f'' की कुल विविधता को इस रूप में परिभाषित किया गया है
{{EquationRef|2|Definition 1.2.}} मान लीजिए Ω, R का एक [[खुला उपसमुच्चय]] है<sup>एन</sup>. L से संबंधित एक कार्य f दिया गया है<sup>1</sup>(Ω), Ω में ''f'' की कुल विविधता को इस रूप में परिभाषित किया गया है


:<math> V(f,\Omega):=\sup\left\{\int_\Omega f(x) \operatorname{div} \phi(x) \, \mathrm{d}x \colon \phi\in  C_c^1(\Omega,\mathbb{R}^n),\ \Vert \phi\Vert_{L^\infty(\Omega)}\le 1\right\}, </math>
:<math> V(f,\Omega):=\sup\left\{\int_\Omega f(x) \operatorname{div} \phi(x) \, \mathrm{d}x \colon \phi\in  C_c^1(\Omega,\mathbb{R}^n),\ \Vert \phi\Vert_{L^\infty(\Omega)}\le 1\right\}, </math>
Line 25: Line 26:
* <math> \Vert\;\Vert_{L^\infty(\Omega)}</math> आवश्यक सुप्रीम नॉर्म (गणित) है, और
* <math> \Vert\;\Vert_{L^\infty(\Omega)}</math> आवश्यक सुप्रीम नॉर्म (गणित) है, और
* <math>\operatorname{div}</math> [[विचलन]] ऑपरेटर है।
* <math>\operatorname{div}</math> [[विचलन]] ऑपरेटर है।
इस परिभाषा के लिए किसी फ़ंक्शन के डोमेन की आवश्यकता नहीं है <math>\Omega \subseteq \mathbb{R}^n</math> दिए गए फ़ंक्शन का एक परिबद्ध सेट हो।
इस परिभाषा के लिए किसी कार्य के डोमेन की आवश्यकता नहीं है <math>\Omega \subseteq \mathbb{R}^n</math> दिए गए कार्य का एक परिबद्ध सेट हो।


=== माप सिद्धांत में कुल भिन्नता ===
=== माप सिद्धांत में कुल भिन्नता ===
Line 47: Line 48:


==== कुल भिन्नता मानदंड की आधुनिक परिभाषा ====
==== कुल भिन्नता मानदंड की आधुनिक परिभाषा ====
{{Harvtxt|Saks|1937|p=11}} हैन अपघटन प्रमेय को साबित करने के लिए ऊपरी और निचले विविधताओं का उपयोग करता है। हैन-जॉर्डन अपघटन: इस प्रमेय के अपने संस्करण के अनुसार, ऊपरी और निचले भिन्नता क्रमशः गैर-नकारात्मक और गैर-सकारात्मक उपाय (गणित) हैं। अधिक आधुनिक संकेतन का उपयोग करते हुए, परिभाषित करें
{{Harvtxt|Saks|1937|p=11}} हैन अपघटन प्रमेय को सिद्ध करने के लिए ऊपरी और निचले विविधताओं का उपयोग करता है। हैन-जॉर्डन अपघटन: इस प्रमेय के अपने संस्करण के अनुसार, ऊपरी और निचले भिन्नता क्रमशः गैर-नकारात्मक और गैर-सकारात्मक उपाय (गणित) हैं। अधिक आधुनिक संकेतन का उपयोग करते हुए, परिभाषित करें


:<math>\mu^+(\cdot)=\overline{\mathrm{W}}(\mu,\cdot)\,,</math>
:<math>\mu^+(\cdot)=\overline{\mathrm{W}}(\mu,\cdot)\,,</math>
Line 91: Line 92:


=== अलग-अलग कार्यों की कुल भिन्नता ===
=== अलग-अलग कार्यों की कुल भिन्नता ===
ए की कुल भिन्नता <math>C^1(\overline{\Omega})</math> समारोह <math>f</math> परिभाषाओं के [[कार्यात्मक (गणित)]] के सर्वोच्च के बजाय दिए गए फ़ंक्शन को शामिल करने वाले [[अभिन्न]] अंग के रूप में व्यक्त किया जा सकता है {{EquationNote|1|1.1}} और {{EquationNote|2|1.2}}.
ए की कुल भिन्नता <math>C^1(\overline{\Omega})</math> समारोह <math>f</math> परिभाषाओं के [[कार्यात्मक (गणित)]] के सर्वोच्च के बजाय दिए गए कार्य को शामिल करने वाले [[अभिन्न]] अंग के रूप में व्यक्त किया जा सकता है {{EquationNote|1|1.1}} और {{EquationNote|2|1.2}}.


==== एक चर के अवकलनीय फलन की कुल भिन्नता का रूप ====
==== एक चर के अवकलनीय फलन की कुल भिन्नता का रूप ====
Line 97: Line 98:


:<math> V_a^b(f) = \int _a^b |f'(x)|\mathrm{d}x</math>
:<math> V_a^b(f) = \int _a^b |f'(x)|\mathrm{d}x</math>
अगर <math> f</math> अवकलनीय और [[मोनोटोनिक फ़ंक्शन]] है, तो उपरोक्त को सरल करता है
अगर <math> f</math> अवकलनीय और [[मोनोटोनिक फ़ंक्शन|मोनोटोनिक]] कार्य है, तो उपरोक्त को सरल करता है
:<math> V_a^b(f) = |f(a) - f(b)|</math>
:<math> V_a^b(f) = |f(a) - f(b)|</math>
किसी भी भिन्न कार्य के लिए <math>f</math>, हम डोमेन अंतराल को विघटित कर सकते हैं <math>[a,b]</math>, उपअंतराल में <math>[a,a_1], [a_1,a_2], \dots, [a_N,b]</math> (साथ <math>a<a_1<a_2<\cdots<a_N<b </math>) जिसमें <math>f</math> स्थानीय रूप से मोनोटोनिक है, तो की कुल भिन्नता <math> f</math> ऊपर <math>[a,b]</math> उन उपअंतरालों पर स्थानीय विविधताओं के योग के रूप में लिखा जा सकता है:
किसी भी भिन्न कार्य के लिए <math>f</math>, हम डोमेन अंतराल को विघटित कर सकते हैं <math>[a,b]</math>, उपअंतराल में <math>[a,a_1], [a_1,a_2], \dots, [a_N,b]</math> (साथ <math>a<a_1<a_2<\cdots<a_N<b </math>) जिसमें <math>f</math> स्थानीय रूप से मोनोटोनिक है, तो की कुल भिन्नता <math> f</math> ऊपर <math>[a,b]</math> उन उपअंतरालों पर स्थानीय विविधताओं के योग के रूप में लिखा जा सकता है:
Line 113: Line 114:


===== प्रमाण=====
===== प्रमाण=====
सबूत में पहला कदम पहले एक समानता साबित करना है जो गॉस-ओस्ट्रोग्रैडस्की प्रमेय से अनुसरण करता है।
सबूत में पहला कदम पहले एक समानता सिद्ध करना है जो गॉस-ओस्ट्रोग्रैडस्की प्रमेय से अनुसरण करता है।


== लेम्मा ==
== लेम्मा ==
Line 161: Line 162:
कुल भिन्नता एक आदर्श (गणित) है जो परिबद्ध भिन्नता के उपायों के स्थान पर परिभाषित है। सेट के σ-बीजगणित पर उपायों का स्थान एक [[बनच स्थान]] है, जिसे इस मानक के सापेक्ष सीए स्थान कहा जाता है। यह बड़े बनच अंतरिक्ष में समाहित है, जिसे [[बा अंतरिक्ष]] कहा जाता है, जिसमें एक ही मानदंड के साथ-साथ परिमित योगात्मक उपाय (गणना करने योग्य योज्य के विपरीत) उपाय भी शामिल हैं। मानदंड से जुड़ा [[दूरी समारोह]] दो उपायों μ और ν के बीच कुल भिन्नता दूरी को जन्म देता है।
कुल भिन्नता एक आदर्श (गणित) है जो परिबद्ध भिन्नता के उपायों के स्थान पर परिभाषित है। सेट के σ-बीजगणित पर उपायों का स्थान एक [[बनच स्थान]] है, जिसे इस मानक के सापेक्ष सीए स्थान कहा जाता है। यह बड़े बनच अंतरिक्ष में समाहित है, जिसे [[बा अंतरिक्ष]] कहा जाता है, जिसमें एक ही मानदंड के साथ-साथ परिमित योगात्मक उपाय (गणना करने योग्य योज्य के विपरीत) उपाय भी शामिल हैं। मानदंड से जुड़ा [[दूरी समारोह]] दो उपायों μ और ν के बीच कुल भिन्नता दूरी को जन्म देता है।


'आर' पर परिमित उपायों के लिए, माप μ की कुल भिन्नता और फ़ंक्शन की कुल भिन्नता के बीच की कड़ी, जैसा कि ऊपर वर्णित है, इस प्रकार है। दिए गए μ, एक फ़ंक्शन को परिभाषित करें <math>\varphi\colon \mathbb{R}\to \mathbb{R}</math> द्वारा
'आर' पर परिमित उपायों के लिए, माप μ की कुल भिन्नता और कार्य की कुल भिन्नता के बीच की कड़ी, जैसा कि ऊपर वर्णित है, इस प्रकार है। दिए गए μ, एक कार्य को परिभाषित करें <math>\varphi\colon \mathbb{R}\to \mathbb{R}</math> द्वारा
:<math>\varphi(t) = \mu((-\infty,t])~.</math>
:<math>\varphi(t) = \mu((-\infty,t])~.</math>
फिर, हस्ताक्षरित माप μ की कुल भिन्नता फ़ंक्शन के उपरोक्त अर्थ में, कुल भिन्नता के बराबर है <math>\varphi</math>. सामान्य तौर पर, एक हस्ताक्षरित माप की कुल भिन्नता को हैन अपघटन प्रमेय का उपयोग करके परिभाषित किया जा सकता है। जॉर्डन के अपघटन प्रमेय द्वारा
फिर, हस्ताक्षरित माप μ की कुल भिन्नता कार्य के उपरोक्त अर्थ में, कुल भिन्नता के बराबर है <math>\varphi</math>. सामान्य तौर पर, एक हस्ताक्षरित माप की कुल भिन्नता को हैन अपघटन प्रमेय का उपयोग करके परिभाषित किया जा सकता है। जॉर्डन के अपघटन प्रमेय द्वारा
:<math>\|\mu\|_{TV} = \mu_+(X) + \mu_-(X)~,</math>
:<math>\|\mu\|_{TV} = \mu_+(X) + \mu_-(X)~,</math>
मापने योग्य स्थान पर किसी हस्ताक्षरित माप μ के लिए <math>(X,\Sigma)</math>.
मापने योग्य स्थान पर किसी हस्ताक्षरित माप μ के लिए <math>(X,\Sigma)</math>.


== अनुप्रयोग ==
== अनुप्रयोग ==
कुल भिन्नता को वास्तविक संख्या के स्थान पर परिभाषित एक गैर-नकारात्मक वास्तविक संख्या-मूल्यवान कार्यात्मक (गणित) के रूप में देखा जा सकता है। वास्तविक-मूल्यवान फ़ंक्शन (गणित) एस (एक चर के कार्यों के मामले के लिए) या पूर्णांक के स्थान पर कार्य (कई चर के कार्यों के मामले में)। एक कार्यात्मक के रूप में, कुल भिन्नता गणित और इंजीनियरिंग की कई शाखाओं में अनुप्रयोगों को ढूंढती है, जैसे कि [[इष्टतम नियंत्रण]], [[संख्यात्मक विश्लेषण]] और [[विविधताओं की गणना]], जहां एक निश्चित समस्या का समाधान [[मैक्सिमा और मिनिमा]] है। एक उदाहरण के रूप में, निम्नलिखित दो प्रकार की समस्याओं में कुल भिन्नता कार्यात्मक का उपयोग आम है
कुल भिन्नता को वास्तविक संख्या के स्थान पर परिभाषित एक गैर-नकारात्मक वास्तविक संख्या-मूल्यवान कार्यात्मक (गणित) के रूप में देखा जा सकता है। वास्तविक-मूल्यवान कार्य (गणित) एस (एक चर के कार्यों के मामले के लिए) या पूर्णांक के स्थान पर कार्य (कई चर के कार्यों के मामले में)। एक कार्यात्मक के रूप में, कुल भिन्नता गणित और इंजीनियरिंग की कई शाखाओं में अनुप्रयोगों को ढूंढती है, जैसे कि [[इष्टतम नियंत्रण]], [[संख्यात्मक विश्लेषण]] और [[विविधताओं की गणना]], जहां एक निश्चित समस्या का समाधान [[मैक्सिमा और मिनिमा]] है। एक उदाहरण के रूप में, निम्नलिखित दो प्रकार की समस्याओं में कुल भिन्नता कार्यात्मक का उपयोग आम है


* अवकल समीकरणों का संख्यात्मक विश्लेषण: यह अवकल समीकरणों के सन्निकट हल खोजने का विज्ञान है। इन समस्याओं के लिए कुल भिन्नता के अनुप्रयोगों का विस्तृत विवरण 'कुल भिन्नता ह्रासमान' लेख में दिया गया है।
* अवकल समीकरणों का संख्यात्मक विश्लेषण: यह अवकल समीकरणों के सन्निकट हल खोजने का विज्ञान है। इन समस्याओं के लिए कुल भिन्नता के अनुप्रयोगों का विस्तृत विवरण 'कुल भिन्नता ह्रासमान' लेख में दिया गया है।

Revision as of 10:25, 17 May 2023

गणित में, कुल भिन्नता कई अलग-अलग अवधारणाओं की पहचान करती है, जो किसी कार्य (गणित) या एक माप (गणित) के कोडोमेन की (स्थानीय संपत्ति या वैश्विक) संरचना से संबंधित होती है। एक वास्तविक संख्या के लिए वास्तविक-मूल्यवान निरंतर कार्य f, एक अंतराल (गणित) [a, b] ⊂ R पर परिभाषित, परिभाषा के अंतराल पर इसकी कुल भिन्नता एक उपाय है पैरामीट्रिक समीकरण xf(x), x ∈ [a, b] के साथ वक्र के एक-आयामी चाप की लम्बाई ऐसे कार्य जिनकी कुल भिन्नता परिमित है, परिमित भिन्नता कहलाती है।

ऐतिहासिक नोट

एक वास्तविक चर के कार्यों के लिए कुल भिन्नता की अवधारणा को पहली बार केमिली जॉर्डन द्वारा पेपर में प्रस्तुत किया गया था (Jordan 1881).[1] उन्होंने असंतुलित कार्य आवधिक कार्यों की फूरियर श्रृंखला के लिए एक अभिसरण प्रमेय को सिद्ध करने के लिए नई अवधारणा का उपयोग किया, जिसकी भिन्नता परिबद्ध भिन्नता है। एक से अधिक चर के कार्यों के लिए अवधारणा का विस्तार चूँकि विभिन्न कारणों से सरल नहीं है।

परिभाषाएँ

एक वास्तविक चर के कार्यों के लिए कुल भिन्नता

Definition 1.1. वास्तविक संख्या-मूल्यवान (या अधिक सामान्यतः जटिल संख्या-मूल्यवान) कार्य (गणित) की कुल भिन्नता , एक अंतराल पर परिभाषित (गणित) मात्रा है

जहां एक अंतराल के सभी विभाजनों के सेट (गणित) पर अंतिम चलता है दिए गए अंतराल (गणित) का।

जहां सर्वोच्च सभी विभाजनों के सेट पर चलता है का विभाजन है।

n > 1 वास्तविक चर के कार्यों के लिए कुल भिन्नता

Definition 1.2. मान लीजिए Ω, R का एक खुला उपसमुच्चय हैएन. L से संबंधित एक कार्य f दिया गया है1(Ω), Ω में f की कुल विविधता को इस रूप में परिभाषित किया गया है

कहाँ

  • चिकना कार्य वेक्टर-मूल्यवान फ़ंक्शन ऑफ सपोर्ट (गणित) का सेट (गणित) है#कॉम्पैक्ट सपोर्ट इसमें निहित है ,
  • आवश्यक सुप्रीम नॉर्म (गणित) है, और
  • विचलन ऑपरेटर है।

इस परिभाषा के लिए किसी कार्य के डोमेन की आवश्यकता नहीं है दिए गए कार्य का एक परिबद्ध सेट हो।

माप सिद्धांत में कुल भिन्नता

शास्त्रीय कुल भिन्नता परिभाषा

अगले Saks (1937, p. 10), एक हस्ताक्षरित उपाय पर विचार करें एक सिग्मा-बीजगणित पर : तब दो सेट कार्यों को परिभाषित करना संभव है और , क्रमशः ऊपरी भिन्नता और निम्न भिन्नता कहा जाता है

स्पष्ट रूप से

Definition 1.3. हस्ताक्षरित माप की भिन्नता (जिसे निरपेक्ष भिन्नता भी कहा जाता है)। सेट फंक्शन है

और इसकी कुल भिन्नता को परिभाषा के पूरे स्थान पर इस माप के मूल्य के रूप में परिभाषित किया गया है, अर्थात।


कुल भिन्नता मानदंड की आधुनिक परिभाषा

Saks (1937, p. 11) हैन अपघटन प्रमेय को सिद्ध करने के लिए ऊपरी और निचले विविधताओं का उपयोग करता है। हैन-जॉर्डन अपघटन: इस प्रमेय के अपने संस्करण के अनुसार, ऊपरी और निचले भिन्नता क्रमशः गैर-नकारात्मक और गैर-सकारात्मक उपाय (गणित) हैं। अधिक आधुनिक संकेतन का उपयोग करते हुए, परिभाषित करें

तब और दो गैर-ऋणात्मक माप (गणित) ऐसे हैं कि

अंतिम उपाय को कभी-कभी अंकन के दुरुपयोग से, कुल भिन्नता माप कहा जाता है।

जटिल उपायों की कुल भिन्नता मानदंड

यदि माप जटिल संख्या है | जटिल-मूल्यवान यानी एक जटिल उपाय है, इसकी ऊपरी और निचली विविधता को परिभाषित नहीं किया जा सकता है और हैन-जॉर्डन अपघटन प्रमेय को केवल इसके वास्तविक और काल्पनिक भागों पर लागू किया जा सकता है। हालाँकि, इसका पालन करना संभव है Rudin (1966, pp. 137–139) और जटिल-मूल्यवान माप की कुल भिन्नता को परिभाषित करें निम्नलिखित नुसार

Definition 1.4. जटिल-मूल्यवान माप की भिन्नता सेट फंक्शन है

जहां सभी विभाजनों पर सुप्रीमम लिया जाता है एक मापने योग्य सेट का असंयुक्त मापने योग्य उपसमुच्चयों की एक गणनीय संख्या में।

यह परिभाषा उपरोक्त परिभाषा से मेल खाती है वास्तविक मूल्यवान हस्ताक्षरित उपायों के मामले में।

वेक्टर-मूल्यवान उपायों का कुल भिन्नता मानदंड

परिभाषित भिन्नता एक सकारात्मक उपाय है (देखें Rudin (1966, p. 139)) और इसके द्वारा परिभाषित एक के साथ मेल खाता है 1.3 कब एक हस्ताक्षरित उपाय है: इसकी कुल भिन्नता को ऊपर के रूप में परिभाषित किया गया है। यह परिभाषा भी काम करती है अगर एक सदिश माप है: भिन्नता को तब निम्न सूत्र द्वारा परिभाषित किया जाता है

जहां सुप्रीम ऊपर जैसा है। यह परिभाषा इसके द्वारा दी गई परिभाषा से थोड़ी अधिक सामान्य है Rudin (1966, p. 138) क्योंकि इसके लिए केवल स्थान के परिमित विभाजनों पर विचार करना आवश्यक है : इसका तात्पर्य है कि इसका उपयोग सिग्मा योगात्मकता पर कुल भिन्नता को परिभाषित करने के लिए भी किया जा सकता है। परिमित-योगात्मक उपाय।

संभाव्यता उपायों की कुल भिन्नता

किसी भी संभाव्यता माप की कुल भिन्नता बिल्कुल एक है, इसलिए यह ऐसे उपायों के गुणों की जांच के साधन के रूप में दिलचस्प नहीं है। हालाँकि, जब μ और ν संभाव्यता उपाय हैं, तो संभाव्यता उपायों की कुल भिन्नता दूरी को इस रूप में परिभाषित किया जा सकता है जहां मानदंड हस्ताक्षरित उपायों का कुल भिन्नता मानदंड है। संपत्ति का उपयोग करना , हम अंततः समतुल्य परिभाषा पर पहुँचते हैं

और इसके मूल्य गैर-तुच्छ हैं। कारण ऊपर आमतौर पर गिरा दिया जाता है (जैसा कि लेख में परिपाटी है संभाव्यता उपायों की कुल भिन्नता दूरी)। अनौपचारिक रूप से, यह संभावनाओं के बीच सबसे बड़ा संभावित अंतर है कि दो संभावना वितरण एक ही घटना को निर्दिष्ट कर सकते हैं। एक श्रेणीबद्ध वितरण के लिए कुल भिन्नता दूरी को निम्नानुसार लिखना संभव है

इसे मानों में सामान्यीकृत भी किया जा सकता है पिछली परिभाषा को निम्नानुसार आधा करके

[2]


मूल गुण

अलग-अलग कार्यों की कुल भिन्नता

ए की कुल भिन्नता समारोह परिभाषाओं के कार्यात्मक (गणित) के सर्वोच्च के बजाय दिए गए कार्य को शामिल करने वाले अभिन्न अंग के रूप में व्यक्त किया जा सकता है 1.1 और 1.2.

एक चर के अवकलनीय फलन की कुल भिन्नता का रूप

Theorem 1. अवकलनीय फलन का कुल परिवर्तन , एक अंतराल पर परिभाषित (गणित) , निम्नलिखित अभिव्यक्ति है अगर रीमैन इंटीग्रेबल है

अगर अवकलनीय और मोनोटोनिक कार्य है, तो उपरोक्त को सरल करता है

किसी भी भिन्न कार्य के लिए , हम डोमेन अंतराल को विघटित कर सकते हैं , उपअंतराल में (साथ ) जिसमें स्थानीय रूप से मोनोटोनिक है, तो की कुल भिन्नता ऊपर उन उपअंतरालों पर स्थानीय विविधताओं के योग के रूप में लिखा जा सकता है:


कई चरों के एक अवकलनीय फलन की कुल भिन्नता का रूप

Theorem 2. दिए गए ए समारोह एक बाउंडेड सेट खुला सेट पर परिभाषित , साथ कक्षा का , की कुल भिन्नता निम्नलिखित अभिव्यक्ति है

.
प्रमाण

सबूत में पहला कदम पहले एक समानता सिद्ध करना है जो गॉस-ओस्ट्रोग्रैडस्की प्रमेय से अनुसरण करता है।

लेम्मा

प्रमेय की शर्तों के तहत, निम्नलिखित समानता रखती है:


=== लेम्मा का प्रमाण

गॉस-ओस्ट्रोग्रैडस्की प्रमेय से:

प्रतिस्थापित करके , अपने पास:

कहाँ की सीमा पर शून्य है परिभाषा से:


समानता का प्रमाण

प्रमेय की शर्तों के तहत, लेम्मा से हमारे पास:

पिछले भाग में छोड़ा जा सकता है, क्योंकि परिभाषा के अनुसार इसकी आवश्यक श्रेष्ठता अधिक से अधिक एक है।

दूसरी ओर, हम मानते हैं और जो कि ऊपर है का अनुमान में समान अभिन्न के साथ। हम इसे तब से कर सकते हैं में घना है . अब फिर से लेम्मा में प्रतिस्थापन:

इसका मतलब है कि हमारे पास एक अभिसारी क्रम है कि करने के लिए जाता है साथ ही हम यह जानते हैं . Q.E.D.

यह प्रमाण से देखा जा सकता है कि श्रेष्ठता कब प्राप्त होती है

समारोह (गणित) निश्चित रूप से परिमित भिन्नता वाला कहा जाता है यदि इसकी कुल विविधता परिमित है।

माप की कुल भिन्नता

कुल भिन्नता एक आदर्श (गणित) है जो परिबद्ध भिन्नता के उपायों के स्थान पर परिभाषित है। सेट के σ-बीजगणित पर उपायों का स्थान एक बनच स्थान है, जिसे इस मानक के सापेक्ष सीए स्थान कहा जाता है। यह बड़े बनच अंतरिक्ष में समाहित है, जिसे बा अंतरिक्ष कहा जाता है, जिसमें एक ही मानदंड के साथ-साथ परिमित योगात्मक उपाय (गणना करने योग्य योज्य के विपरीत) उपाय भी शामिल हैं। मानदंड से जुड़ा दूरी समारोह दो उपायों μ और ν के बीच कुल भिन्नता दूरी को जन्म देता है।

'आर' पर परिमित उपायों के लिए, माप μ की कुल भिन्नता और कार्य की कुल भिन्नता के बीच की कड़ी, जैसा कि ऊपर वर्णित है, इस प्रकार है। दिए गए μ, एक कार्य को परिभाषित करें द्वारा

फिर, हस्ताक्षरित माप μ की कुल भिन्नता कार्य के उपरोक्त अर्थ में, कुल भिन्नता के बराबर है . सामान्य तौर पर, एक हस्ताक्षरित माप की कुल भिन्नता को हैन अपघटन प्रमेय का उपयोग करके परिभाषित किया जा सकता है। जॉर्डन के अपघटन प्रमेय द्वारा

मापने योग्य स्थान पर किसी हस्ताक्षरित माप μ के लिए .

अनुप्रयोग

कुल भिन्नता को वास्तविक संख्या के स्थान पर परिभाषित एक गैर-नकारात्मक वास्तविक संख्या-मूल्यवान कार्यात्मक (गणित) के रूप में देखा जा सकता है। वास्तविक-मूल्यवान कार्य (गणित) एस (एक चर के कार्यों के मामले के लिए) या पूर्णांक के स्थान पर कार्य (कई चर के कार्यों के मामले में)। एक कार्यात्मक के रूप में, कुल भिन्नता गणित और इंजीनियरिंग की कई शाखाओं में अनुप्रयोगों को ढूंढती है, जैसे कि इष्टतम नियंत्रण, संख्यात्मक विश्लेषण और विविधताओं की गणना, जहां एक निश्चित समस्या का समाधान मैक्सिमा और मिनिमा है। एक उदाहरण के रूप में, निम्नलिखित दो प्रकार की समस्याओं में कुल भिन्नता कार्यात्मक का उपयोग आम है

  • अवकल समीकरणों का संख्यात्मक विश्लेषण: यह अवकल समीकरणों के सन्निकट हल खोजने का विज्ञान है। इन समस्याओं के लिए कुल भिन्नता के अनुप्रयोगों का विस्तृत विवरण 'कुल भिन्नता ह्रासमान' लेख में दिया गया है।
  • छवि denoising: छवि प्रसंस्करण में, denoising एक छवि में इलेक्ट्रॉनिक शोर को कम करने के लिए उपयोग की जाने वाली विधियों का एक संग्रह है, जिसे इलेक्ट्रॉनिक माध्यमों से प्राप्त डेटा से पुनर्निर्मित किया जाता है, उदाहरण के लिए डेटा ट्रांसमिशन या सेंसर। छवि शोर में कमी के लिए कुल भिन्नता के आवेदन के लिए कुल भिन्नता denoising नाम है; अधिक विवरण के कागजात में पाया जा सकता है (Rudin, Osher & Fatemi 1992) और (Caselles, Chambolle & Novaga 2007). छवियों को रंगीन करने के लिए इस मॉडल का एक समझदार विस्तार, जिसे कलर टीवी कहा जाता है, में पाया जा सकता है (Blomgren & Chan 1998).

यह भी देखें

टिप्पणियाँ

  1. According to Golubov & Vitushkin (2001).
  2. Gibbs, Alison; Francis Edward Su (2002). "संभाव्यता मेट्रिक्स को चुनने और सीमित करने पर" (PDF). p. 7. Retrieved 8 April 2017.


ऐतिहासिक संदर्भ

संदर्भ


बाहरी संबंध

One variable

One and more variables

Measure theory



अनुप्रयोग

  • Blomgren, Peter; Chan, Tony F. (1998), "Color TV: total variation methods for restoration of vector-valued images", IEEE Transactions on Image Processing, Image Processing, IEEE Transactions on, vol. 7, no. 3: 304-309, 7 (3): 304, Bibcode:1998ITIP....7..304B, doi:10.1109/83.661180, PMID 18276250.


श्रेणी:गणितीय विश्लेषण