सघन सम्मुच्य: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[टोपोलॉजी]] और गणित के संबंधित क्षेत्रों में, एक [[टोपोलॉजिकल स्पेस|टोपोलॉजिकल रिक्त स्थान]] ''X'' के एक ''A'' उपसमुच्चय के ''X में को'' ''''घना'''<nowiki/>' कहा जाता है। यदि X का प्रत्येक बिंदु <math>A</math> से संबंधित है या फिर अनगिनत रूप से <math>A</math> के सदस्य के पास है। उदाहरण के लिए, [[तर्कसंगत संख्या|परिमेय संख्याएँ]] [[वास्तविक संख्या|वास्तविक संख्याओं]] का '''घना''' उपसमुच्चय होती हैं क्योंकि प्रत्येक वास्तविक संख्या एक परिमेय संख्या होती है या उसके पास एक परिमेय संख्या होती है। ([[डायोफैंटाइन सन्निकटन]] देखें)।
[[टोपोलॉजी]] और गणित के संबंधित क्षेत्रों में, एक [[टोपोलॉजिकल स्पेस|टोपोलॉजिकल रिक्त स्थान]] ''X'' के एक उपसमुच्चय को ''X'' में ''''घना'''<nowiki/>' कहा जाता है। यदि X का प्रत्येक बिंदु <math>A</math> से संबंधित है या फिर अनगिनत रूप से <math>A</math> के सदस्य के निकट है। उदाहरण के लिए, [[तर्कसंगत संख्या|परिमेय संख्याएँ]] [[वास्तविक संख्या|वास्तविक संख्याओं]] का '''घना''' उपसमुच्चय होती हैं क्योंकि प्रत्येक वास्तविक संख्या एक परिमेय संख्या होती है या उसके पास परिमेय संख्या होती है। ([[डायोफैंटाइन सन्निकटन]] देखें)।


औपचारिक रूप से एक टोपोलॉजिकल रिक्त स्थान X का घनत्व के घना उपसमुच्चय X की सबसे कम कार्डिनैलिटी है।<ref name="CEIT">{{Citation|last=Steen|first=L. A.|last2=Seebach|first2=J. A.|title=Counterexamples in Topology|publisher=Dover|year=1995|isbn=0-486-68735-X|title-link=Counterexamples in Topology}}</ref>  
औपचारिक रूप से टोपोलॉजिकल रिक्त स्थान का घनत्व X के घना उपसमुच्चय X की सबसे कम कार्डिनैलिटी है।<ref name="CEIT">{{Citation|last=Steen|first=L. A.|last2=Seebach|first2=J. A.|title=Counterexamples in Topology|publisher=Dover|year=1995|isbn=0-486-68735-X|title-link=Counterexamples in Topology}}</ref>  
== परिभाषा ==
== परिभाषा ==



Revision as of 07:57, 30 May 2023

टोपोलॉजी और गणित के संबंधित क्षेत्रों में, एक टोपोलॉजिकल रिक्त स्थान X के एक उपसमुच्चय को X में 'घना' कहा जाता है। यदि X का प्रत्येक बिंदु से संबंधित है या फिर अनगिनत रूप से के सदस्य के निकट है। उदाहरण के लिए, परिमेय संख्याएँ वास्तविक संख्याओं का घना उपसमुच्चय होती हैं क्योंकि प्रत्येक वास्तविक संख्या एक परिमेय संख्या होती है या उसके पास परिमेय संख्या होती है। (डायोफैंटाइन सन्निकटन देखें)।

औपचारिक रूप से टोपोलॉजिकल रिक्त स्थान का घनत्व X के घना उपसमुच्चय X की सबसे कम कार्डिनैलिटी है।[1]

परिभाषा

टोपोलॉजिकल रिक्त स्थान का उपसमुच्चय को का घना उपसमुच्चय कहा जाता है। यदि निम्नलिखित समकक्ष नियमों में से कोई भी संतुष्ट है:

  1. का सबसे छोटा विवृत समुच्चय स्वयं है, जो से युक्त है।
  2. में का क्लोजर (टोपोलॉजी) के बराबर है। जो कि है।
  3. के पूरक (सेट सिद्धांत) का आंतरिक भाग (टोपोलॉजी) रिक्त है। जो कि है।
  4. में प्रत्येक बिंदु या तो से संबंधित होता है या का एक लिमिट प्वॉइंट है।
  5. प्रत्येक के लिए, का प्रत्येक निकटतम (गणित) , को प्रतिच्छेदित है। जो कि है।
  6. X का प्रत्येक गैर-रिक्त संवृत उपसमुच्चय को प्रतिच्छेदित है और यदि टोपोलॉजी के लिए पर संवृत समुच्चयों का आधार (टोपोलॉजी) है। जिससे इस सूची को सम्मिलित करने के लिए बढ़ाया जा सकता है।
  7. प्रत्येक के लिए, का प्रत्येकआधार निकटतम (गणित) को प्रतिच्छेदित करती है।
  • मीट्रिक रिक्त स्थान में घनत्व

    मीट्रिक रिक्त स्थान में घना सेट की एक वैकल्पिक परिभाषा निम्नलिखित है। जब की टोपोलॉजी (संरचना) एक मीट्रिक (गणित) के द्वारा दी गयी है। में का टोपोलॉजिकल क्लोजर संघ (सेट सिद्धांत) और में तत्वों के अनुक्रमों की सभी सीमाओं का समुच्चय (इसकी सीमा अंक) है।

    तब में घना है। यदि-

    यदि एक पूर्ण मीट्रिक स्थान में घना संवृत समुच्चय का एक क्रम है। तब में भी घना है। यह तथ्य बेयर श्रेणी प्रमेय के समकक्ष रूपों में से एक समान है।

    उदाहरण

    सामान्य टोपोलॉजी के साथ वास्तविक संख्याओं में एक गणना करने योग्य समुच्चय घने उपसमुच्चय के रूप में परिमेय संख्याएँ होती हैं, जो यह प्रदर्शित करती हैं कि एक टोपोलॉजिकल रिक्त स्थान के घने उपसमुच्चय की प्रमुखता स्वयं अंतरिक्ष की प्रधानता से तेजी से छोटी हो सकती है। अपरिमेय संख्याएं एक और घना उपसमुच्चय हैं, जो यह प्रदर्शित करती हैं कि एक टोपोलॉजिकल रिक्त स्थान में कई असंयुक्त घना उपसमुच्चय हो सकते हैं (विशेष रूप से, दो घना उपसमुच्चय एक दूसरे के पूरक हो सकते हैं) और उन्हें एक ही कार्डिनैलिटी की आवश्यकता नहीं होती है। संभवतः इससे भी अधिक आश्चर्यजनक रूप से परिमेय और अपरिमेय दोनों में रिक्त आंतरिक भाग होते हैं। यह प्रदर्शित करता है कि घना समुच्चय में कोई गैर-रिक्त संवृत समुच्चय नहीं होना चाहिए। टोपोलॉजिकल रिक्त स्थान के दो घने संवृत उपसमुच्चय का प्रतिच्छेदन पुनः से घना और संवृत होता है। रिक्त समुच्चय स्वयं का घना उपसमुच्चय होता है। किन्तु गैर-रिक्त स्थान का प्रत्येक घना उपसमुच्चय भी गैर-रिक्त होना चाहिए।

    विअरस्ट्रास सन्निकटन प्रमेय द्वारा, कोई भी दी गई सम्मिश्र संख्या एक विवृत अंतराल पर परिभाषित जटिल-मूल्यवान सतत फलन एक बहुपद फलन द्वारा वांछित के रूप में एकसमान अभिसरण हो सकता है। दूसरे शब्दों में अंतरिक्ष में बहुपद कार्य घना अंतराल पर निरंतर जटिल-मूल्यवान कार्यों की सर्वोच्च मानदंड से आच्छादित होता हैं।

    प्रत्येक मीट्रिक स्थान अपने समापन (मीट्रिक स्थान) में घना है।

    विशेषताएँं

    प्रत्येक टोपोलॉजिकल रिक्त स्थान स्वयं में एक घना उपसमुच्चय है। असतत टोपोलॉजी से आच्छादित समुच्चय के लिए, संपूर्ण स्थान ही एकमात्र घना उपसमुच्चय है। एक उपसमुच्चय का एक टोपोलॉजिकल रिक्त स्थान का का सीमा बिन्दु कहा जाता है। ट्रिवियल टोपोलॉजी से आच्छादित एक समुच्चय का प्रत्येक गैर-रिक्त उपसमुच्चय सघन है, और प्रत्येक टोपोलॉजी जिसके लिए प्रत्येक गैर-रिक्त उपसमुच्चय घना है, जिसे आवस्यक रूप से ट्रिवयल होना चाहिए।

    घनत्व सकर्मक संबंध है: तीन उपसमुच्चय और एक टोपोलॉजिकल रिक्त स्थान का साथ दिये गये हैं। ऐसा है कि में घना है और में घना है (संबंधित सबरिक्त स्थान टोपोलॉजी में)। तब में भी घना है।

  • निरंतर कार्य (टोपोलॉजी) फलन के अनुसार एक घना उपसमुच्चय की इमेज (गणित) फिर से घना होती है। एक टोपोलॉजिकल रिक्त स्थान का घनत्व (इसके घने उपसमुच्चय की कम से कम प्रमुख) एक टोपोलॉजिकल इनवेरिएंट होती है।
  • जुड़ा हुआ स्थान घना उपसमुच्चय के साथ एक टोपोलॉजिकल रिक्त स्थान आवस्य़क है कि वह स्वयं जुड़ा हो।
  • हौसडॉर्फ रिक्त स्थान में निरंतर कार्य घने उपसमुच्चय पर उनके मूल्यों द्वारा निर्धारित किए जाते हैं: यदि दो निरंतर फलन हॉसडॉर्फ अंतरिक्ष में के घना उपसमुच्चय पर सन्तुष्ट हैं। तब वे सभी पर सन्तुष्ठ होते हैं।
  • मीट्रिक रिक्त स्थान के लिए यूनिवर्सल रिक्त स्थान हैं। जिसमें दिए गए घनत्व के सभी रिक्त स्थान एम्बेडिंग हो सकते हैं। घनत्व का एक मीट्रिक स्थान की एक उपसमष्टि के लिए सममित होता है। इकाई अंतराल की प्रतियों के उत्पाद पर वास्तविक निरंतर फलनों का स्थान होता है।[2]

    संबंधित धारणाएँ

    टोपोलॉजिकल स्पेस के उपसमुच्चय A का एक बिंदु x, X को A का एक सीमा बिंदु कहा जाता है (में x)। यदि प्रत्येक निकटतम x में स्वयं x के अतिरिक्त A का एक बिंदु भी होता है और अन्यथा A का एक अलग बिंदु होता है। अलग-अलग बिंदुओं के बिना एक उपसमुच्चय को घना कहा जाता है।

    टोपोलॉजिकल स्पेस का एक उपसमुच्चय A, X को कहीं भी घना नहीं कहा जाता है (X में) यदि X में कोई निकटतम नहीं है, जिस पर A घना है। समान रूप से, एक टोपोलॉजिकल स्पेस का एक उपसमुच्चय कहीं भी घना नहीं है, यदि और केवल यदि इसके विवृत होने का आंतरिक भाग रिक्त है। कहीं नहीं सघन सेट के पूरक का आंतरिक भाग हमेशा सघन होता है। एक बंद कहीं नहीं घने सेट का पूरक एक घना खुला सेट है। एक टोपोलॉजिकल स्पेस X दिया गया है, X का एक सबसेट A, जिसे कई घने उपसमुच्चय के संघ के रूप में व्यक्त किया जा सकता है, X को अल्प कहा जाता है। परिमेय संख्याएँ, जबकि वास्तविक संख्या में घना हैं, वास्तविक के उपसमुच्चय के रूप में अल्प हैं।

    एक गणनीय घना उपसमुच्चय के साथ एक सामयिक स्थान को वियोज्य स्थान कहा जाता है। टोपोलॉजिकल रिक्त स्थान एक बेयर स्पेस है। यदि और केवल यदि कई घने संवृत समुच्चयों का इन्टरसेक्शन सदैव घना होता है। टोपोलॉजिकल रिक्त स्थान को हल करने योग्य स्थान कहा जाता है, यदि यह दो अलग-अलग घने उपसमुच्चय का मिलान हो। अधिक सामान्यतः एक टोपोलॉजिकल रिक्त स्थान को मूलभूत संख्या κ के लिए κ-रिज़ॉल्वेबल कहा जाता है। यदि इसमें κ युग्म अलग-अलग घने समुच्चय होते हैं।

    एक टोपोलॉजिकल रिक्त स्थान का एक एम्बेडिंग एक घना स्थान के एक घना उपसमुच्चय के रूप में का एक संघनन (गणित) कहा जाता है।

  • टोपोलॉजिकल वेक्टर रिक्त स्थान के बीच एक रैखिक ऑपरेटर और घना रूप से परिभाषित ऑपरेटर कहा जाता है। यदि किसी फलन का डोमेन का एक घना उपसमुच्चय है और यदि किसी फलन की इमेज इसके अन्दर स्थित है। सतत रैखिक विस्तार भी देखें।
  • टोपोलॉजिकल रिक्त स्थान हाइपरकनेक्टेड रिक्त स्थान है। यदि और केवल यदि हर गैर-रिक्त संवृत समुच्चय में घना है। टोपोलॉजिकल रिक्त स्थान सबमैक्सिमल रिक्त स्थान है। यदि और केवल यदि प्रत्येक घना उपसमुच्चय संवृत है।
  • यदि एक मीट्रिक स्थान है, फिर एक गैर-रिक्त उपसमुच्चय , -घना कहा गया है। यदि-
    तभी कोई दिखा सकता है में घना है। यदि और केवल यदि यह प्रत्येक के लिए ε-घना है।

    यह भी देखें

    • ब्लमबर्ग प्रमेय – Any real function on R admits a continuous restriction on a dense subset of R - R पर कोई वास्तविक फलन R के घने उपसमुच्चय पर निरंतर प्रतिबंध स्वीकार करता है।
    • डेन्स ऑडर - आंशिक क्रम जहां प्रत्येक दो अलग-अलग तत्वों के बीच उनके बीच एक और तत्व स्थित होता है।
    • घना (लैटिस सिद्धांत)

    संदर्भ

    1. Steen, L. A.; Seebach, J. A. (1995), Counterexamples in Topology, Dover, ISBN 0-486-68735-X
    2. Kleiber, Martin; Pervin, William J. (1969). "एक सामान्यीकृत बनच-मजूर प्रमेय". Bull. Austral. Math. Soc. 1 (2): 169–173. doi:10.1017/S0004972700041411.

    proofs


    सामान्य संदर्भ


    श्रेणी:सामान्य टोपोलॉजी