जेट (गणित): Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
गणित में, जेट एक संक्रिया है जो एक भिन्न फलन '' | गणित में, जेट एक संक्रिया है जो एक भिन्न फलन ''f'' लेता है और अपने कार्यक्षेत्र के प्रत्येक बिंदु पर एक [[बहुपद]], ''f'' का छोटा [[टेलर बहुपद]] उत्पन्न करता है। हालाँकि यह एक जेट की परिभाषा है, जेट का सिद्धांत इन बहुपदों को बहुपद फलनों के बजाय अमूर्त बहुपद मानता है। | ||
यह आलेख पहले एक वास्तविक चर में एक वास्तविक मूल्यवान फलन के जेट की धारणा की | यह आलेख पहले एक वास्तविक चर में एक वास्तविक मूल्यवान फलन के जेट की धारणा की खोज करता है, इसके बाद कई वास्तविक चर के सामान्यीकरण की चर्चा होती है। इसके बाद यह [[यूक्लिडियन स्थान|यूक्लिडीय समष्टियों]] के मध्य जेट और जेट समष्टि का एक कठोर निर्माण देता है। यह [[ कई गुना |बहुविध]] के मध्य जेट्स के विवरण के साथ समाप्त होता है और इन जेट्स को आंतरिक रूप से कैसे बनाया जा सकता है। इस अधिक सामान्य संदर्भ में, यह [[विभेदक ज्यामिति]] और [[विभेदक समीकरण|विभेदक समीकरणों]] के सिद्धांत में जेट के कुछ अनुप्रयोगों का सारांश प्रस्तुत करता है। | ||
==यूक्लिडीय | ==यूक्लिडीय समष्टियों के मध्य फलनों के जेट== | ||
जेट की कठोर परिभाषा देने से पहले, कुछ विशेष स्थितियों की जांच करना उपयोगी है। | जेट की कठोर परिभाषा देने से पहले, कुछ विशेष स्थितियों की जांच करना उपयोगी है। | ||
===एक-आयामी | ===एक-आयामी स्थिति=== | ||
मान लीजिए कि <math>f: {\mathbb R}\rightarrow{\mathbb R}</math> एक वास्तविक-मूल्यवान फलन है जिसमें बिंदु <math>x_0</math> के [[पड़ोस (गणित)|प्रतिवेश]] U में कम-से-कम k + 1 अवकलज है फिर टेलर के प्रमेय द्वारा, | |||
:<math>f(x)=f(x_0)+f'(x_0)(x-x_0)+\cdots+\frac{f^{(k)}(x_0)}{k!}(x-x_0)^{k}+\frac{R_{k+1}(x)}{(k+1)!}(x-x_0)^{k+1}</math> | :<math>f(x)=f(x_0)+f'(x_0)(x-x_0)+\cdots+\frac{f^{(k)}(x_0)}{k!}(x-x_0)^{k}+\frac{R_{k+1}(x)}{(k+1)!}(x-x_0)^{k+1}</math> | ||
जहाँ | जहाँ | ||
:<math>|R_{k+1}(x)|\le\sup_{x\in U} |f^{(k+1)}(x)| | :<math>|R_{k+1}(x)|\le\sup_{x\in U} |f^{(k+1)}(x)|</math> | ||
फिर बिंदु पर ''f'' का ''k''-जेट <math>x_0</math> बहुपद के रूप में परिभाषित किया गया है | फिर बिंदु पर ''f'' का '''''k''-जेट''' <math>x_0</math> को बहुपद के रूप में परिभाषित किया गया है: | ||
:<math>(J^k_{x_0}f)(z) | :<math>(J^k_{x_0}f)(z) | ||
=\sum_{i=0}^k \frac{f^{(i)}(x_0)}{i!}z^i | =\sum_{i=0}^k \frac{f^{(i)}(x_0)}{i!}z^i | ||
=f(x_0)+f'(x_0)z+\cdots+\frac{f^{(k)}(x_0)}{k!}z^k | =f(x_0)+f'(x_0)z+\cdots+\frac{f^{(k)}(x_0)}{k!}z^k</math> | ||
जेट को सामान्यतः चर z में बहुपद | जेट को सामान्यतः चर z में अमूर्त बहुपद के रूप में माना जाता है, न कि उस चर में वास्तविक बहुपद फलनों के रूप में माना जाता है। दूसरे शब्दों में, z एक [[अनिश्चित (चर)|अनिश्चित चर]] है जो जेट के मध्य विभिन्न [[अमूर्त बीजगणित|बीजीय]] करने की संचालन करने की अनुमति देता है। वास्तव में यह आधार-बिंदु <math>x_0</math>है, जिससे जेट अपनी कार्यात्मक निर्भरता प्राप्त करते हैं। इस प्रकार, आधार-बिंदु को अलग-अलग करके, एक जेट प्रत्येक बिंदु पर अधिकतम k क्रम का बहुपद उत्पन्न करता है। यह जेट और संक्षिप्त टेलर श्रृंखला के मध्य एक महत्वपूर्ण वैचारिक अंतर को दर्शाता है: सामान्यतः टेलर श्रृंखला को इसके आधार-बिंदु के बजाय इसके चर पर कार्यात्मक रूप से निर्भर माना जाता है। दूसरी ओर, जेट, टेलर श्रृंखला के बीजगणितीय गुणों को उनके कार्यात्मक गुणों से अलग करते हैं। हम लेख में बाद में इस विभाजन के कारणों और अनुप्रयोगों पर चर्चा करेंगे। | ||
===एक यूक्लिडीय | ===एक यूक्लिडीय समष्टि से दूसरे तक मानचित्रण=== | ||
मान लीजिए कि <math>f:{\mathbb R}^n\rightarrow{\mathbb R}^m</math> एक यूक्लिडीय समष्टि से दूसरे यूक्लिडीय समष्टि में कम-से-कम (k + 1) अवकलज वाला एक फलन है। इस स्थिति में, टेलर का प्रमेय इस बात पर जोर देता है: | |||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
f(x)=f(x_0)+ (Df(x_0))\cdot(x-x_0)+ {} & \frac{1}{2}(D^2f(x_0))\cdot (x-x_0)^{\otimes 2} + \cdots \\[4pt] | f(x)=f(x_0)+ (Df(x_0))\cdot(x-x_0)+ {} & \frac{1}{2}(D^2f(x_0))\cdot (x-x_0)^{\otimes 2} + \cdots \\[4pt] | ||
& \cdots +\frac{D^kf(x_0)}{k!}\cdot(x-x_0)^{\otimes k}+\frac{R_{k+1}(x)}{(k+1)!}\cdot(x-x_0)^{\otimes (k+1)} | & \cdots +\frac{D^kf(x_0)}{k!}\cdot(x-x_0)^{\otimes k}+\frac{R_{k+1}(x)}{(k+1)!}\cdot(x-x_0)^{\otimes (k+1)} | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
तब f के k-जेट को बहुपद के रूप में परिभाषित किया जाता है | तब f के k-जेट को बहुपद के रूप में परिभाषित किया जाता है: | ||
:<math>(J^k_{x_0}f)(z)=f(x_0)+(Df(x_0))\cdot z+\frac{1}{2}(D^2f(x_0))\cdot z^{\otimes 2} + \cdots + \frac{D^kf(x_0)}{k!}\cdot z^{\otimes k}</math> | :<math>(J^k_{x_0}f)(z)=f(x_0)+(Df(x_0))\cdot z+\frac{1}{2}(D^2f(x_0))\cdot z^{\otimes 2} + \cdots + \frac{D^kf(x_0)}{k!}\cdot z^{\otimes k}</math> | ||
<math>{\mathbb R}[z]</math>में, जहाँ <math>z=(z_1,\ldots,z_n)</math> है। | |||
===जेट्स के बीजगणितीय | ===जेट्स के बीजगणितीय गुणधर्म=== | ||
दो बुनियादी बीजगणितीय संरचनाएँ हैं जिन्हें जेट ले जा सकते हैं। पहला उत्पाद संरचना है, हालाँकि अंततः यह सबसे कम महत्वपूर्ण सिद्ध होता है। दूसरा जेटों की संरचना की संरचना है। | दो बुनियादी बीजगणितीय संरचनाएँ हैं जिन्हें जेट ले जा सकते हैं। पहला उत्पाद संरचना है, हालाँकि अंततः यह सबसे कम महत्वपूर्ण सिद्ध होता है। दूसरा जेटों की संरचना की संरचना है। | ||
Line 40: | Line 40: | ||
यदि <math>f,g:{\mathbb R}^n\rightarrow {\mathbb R}</math> वास्तविक-मूल्यवान फलनों का एक युग्म है, तो हम उनके जेट के उत्पाद को इसके माध्यम से परिभाषित कर सकते हैं | यदि <math>f,g:{\mathbb R}^n\rightarrow {\mathbb R}</math> वास्तविक-मूल्यवान फलनों का एक युग्म है, तो हम उनके जेट के उत्पाद को इसके माध्यम से परिभाषित कर सकते हैं | ||
:<math>J^k_{x_0}f\cdot J^k_{x_0}g=J^k_{x_0}(f\cdot g) | :<math>J^k_{x_0}f\cdot J^k_{x_0}g=J^k_{x_0}(f\cdot g)</math> | ||
यहां हमने अनिश्चित z को दबा दिया है, क्योंकि यह समझा जाता है कि जेट औपचारिक बहुपद हैं। यह उत्पाद केवल z, | यहां हमने अनिश्चित z को दबा दिया है, क्योंकि यह समझा जाता है कि जेट औपचारिक बहुपद हैं। यह उत्पाद केवल z, मापांको (शब्दजाल) में सामान्य बहुपदों का उत्पाद है <math>z^{k+1}</math>. दूसरे शब्दों में, यह वलय में गुणन है <math>{\mathbb R}[z]/(z^{k+1})</math>, जहाँ <math>(z^{k+1})</math> क्रम ≥ k + 1 के सजातीय बहुपदों द्वारा उत्पन्न [[आदर्श (रिंग सिद्धांत)|आदर्श (वलय सिद्धांत)]] है। | ||
अब हम जेटों की संरचना की ओर बढ़ते हैं। अनावश्यक तकनीकीताओं से बचने के लिए, हम फलनों के जेट पर विचार करते हैं जो मूल को मूल से मैप करते हैं। यदि <math>f:{\mathbb R}^m\rightarrow{\mathbb R}^\ell</math> और <math>g:{\mathbb R}^n\rightarrow{\mathbb R}^m</math> फिर f(0)=0 और g(0)=0 के साथ <math>f\circ g:{\mathbb R}^n \rightarrow{\mathbb R}^\ell</math>. जेट की संरचना को परिभाषित किया गया है | अब हम जेटों की संरचना की ओर बढ़ते हैं। अनावश्यक तकनीकीताओं से बचने के लिए, हम फलनों के जेट पर विचार करते हैं जो मूल को मूल से मैप करते हैं। यदि <math>f:{\mathbb R}^m\rightarrow{\mathbb R}^\ell</math> और <math>g:{\mathbb R}^n\rightarrow{\mathbb R}^m</math> फिर f(0)=0 और g(0)=0 के साथ <math>f\circ g:{\mathbb R}^n \rightarrow{\mathbb R}^\ell</math>. जेट की संरचना को परिभाषित किया गया है | ||
<math>J^k_0 f\circ J^k_0 g=J^k_0 (f\circ g).</math> | <math>J^k_0 f\circ J^k_0 g=J^k_0 (f\circ g).</math> | ||
[[श्रृंखला नियम]] का उपयोग करके इसे सरलता से सत्यापित किया जाता है, कि यह मूल में जेट के | [[श्रृंखला नियम]] का उपयोग करके इसे सरलता से सत्यापित किया जाता है, कि यह मूल में जेट के समष्टि पर एक सहयोगी गैर-अनुवांशिक संचालन का गठन करता है। | ||
वास्तव में, के-जेट्स की संरचना बहुपद | वास्तव में, के-जेट्स की संरचना बहुपद मापांको की संरचना से अधिक कुछ नहीं है, क्रम के सजातीय बहुपदों का आदर्श <math>> k</math> | ||
उदाहरण: | उदाहरण: | ||
*एक आयाम में, चलो <math>f(x)=\log(1-x)</math> और <math>g(x)=\sin\,x</math> | *एक आयाम में, चलो <math>f(x)=\log(1-x)</math> और <math>g(x)=\sin\,x</math> तब | ||
:<math>(J^3_0f)(x)=-x-\frac{x^2}{2}-\frac{x^3}{3}</math> | :<math>(J^3_0f)(x)=-x-\frac{x^2}{2}-\frac{x^3}{3}</math> | ||
Line 67: | Line 67: | ||
===विश्लेषणात्मक परिभाषा=== | ===विश्लेषणात्मक परिभाषा=== | ||
निम्नलिखित परिभाषा जेट और जेट समष्टि को परिभाषित करने के लिए [[गणितीय विश्लेषण]] के विचारों का उपयोग करती है। इसे [[बानाच स्थान]] | निम्नलिखित परिभाषा जेट और जेट समष्टि को परिभाषित करने के लिए [[गणितीय विश्लेषण]] के विचारों का उपयोग करती है। इसे [[बानाच स्थान|बानाच]] समष्टियों के मध्य [[सुचारू कार्य|सुचारू]] फलनों, वास्तविक या [[जटिल विश्लेषण]] के मध्य [[विश्लेषणात्मक कार्य|विश्लेषणात्मक]] फलनों, [[पी-एडिक विश्लेषण|p-एडिक विश्लेषण]] और विश्लेषण के अन्य क्षेत्रों के लिए सामान्यीकृत किया जा सकता है। | ||
मान लीजिए कि <math>C^\infty({\mathbb R}^n,{\mathbb R}^m)</math> [[सुचारू कार्य|सुचारू]] फलनों का सदिश | मान लीजिए कि <math>C^\infty({\mathbb R}^n,{\mathbb R}^m)</math> [[सुचारू कार्य|सुचारू]] फलनों का सदिश समष्टि बनें <math>f:{\mathbb R}^n\rightarrow {\mathbb R}^m</math>. मान लीजिए कि k एक गैर-ऋणात्मक पूर्णांक है, और मान लीजिए कि p एक बिंदु है <math>{\mathbb R}^n</math>. हम एक तुल्यता संबंध को परिभाषित करते हैं <math>E_p^k</math> इस समष्टि पर यह घोषणा करके कि दो फलन f और g अनुक्रम के के बराबर हैं यदि f और g का p पर समान मूल्य है, और उनके सभी आंशिक अवकलज अपने k-वें-अनुक्रम अवकलज तक (और इसमें सम्मिलित) p पर सहमत हैं। संक्षेप में,<math>f \sim g \,\!</math> आईff <math> f-g = 0 </math> से k-वें क्रम तक. | ||
का k-वें-अनुक्रम जेट समष्टि' <math>C^\infty({\mathbb R}^n,{\mathbb R}^m)</math> p पर समतुल्य वर्गों के समुच्चय <math>E^k_p</math> के रूप में परिभाषित किया गया है, और <math>J^k_p({\mathbb R}^n,{\mathbb R}^m)</math> द्वारा दर्शाया गया है | का k-वें-अनुक्रम जेट समष्टि' <math>C^\infty({\mathbb R}^n,{\mathbb R}^m)</math> p पर समतुल्य वर्गों के समुच्चय <math>E^k_p</math> के रूप में परिभाषित किया गया है, और <math>J^k_p({\mathbb R}^n,{\mathbb R}^m)</math> द्वारा दर्शाया गया है | ||
Line 78: | Line 78: | ||
निम्नलिखित परिभाषा जेट और जेट समष्टि की धारणा स्थापित करने के लिए [[बीजगणितीय ज्यामिति]] और [[क्रमविनिमेय बीजगणित]] के विचारों का उपयोग करती है। हालाँकि यह परिभाषा बीजगणितीय ज्यामिति में उपयोग के लिए विशेष रूप से उपयुक्त नहीं है, क्योंकि इसे सहज श्रेणी में रखा गया है, इसे सरलता से ऐसे उपयोगों के अनुरूप बनाया जा सकता है। | निम्नलिखित परिभाषा जेट और जेट समष्टि की धारणा स्थापित करने के लिए [[बीजगणितीय ज्यामिति]] और [[क्रमविनिमेय बीजगणित]] के विचारों का उपयोग करती है। हालाँकि यह परिभाषा बीजगणितीय ज्यामिति में उपयोग के लिए विशेष रूप से उपयुक्त नहीं है, क्योंकि इसे सहज श्रेणी में रखा गया है, इसे सरलता से ऐसे उपयोगों के अनुरूप बनाया जा सकता है। | ||
मान लीजिए कि <math>C_p^\infty({\mathbb R}^n,{\mathbb R}^m)</math> सुचारू फलनों के [[रोगाणु (गणित)]] का सदिश | मान लीजिए कि <math>C_p^\infty({\mathbb R}^n,{\mathbb R}^m)</math> सुचारू फलनों के [[रोगाणु (गणित)]] का सदिश समष्टि बनें <math>f:{\mathbb R}^n\rightarrow {\mathbb R}^m</math> एक बिंदु पर p में <math>{\mathbb R}^n</math>. मान लीजिए कि <math>{\mathfrak m}_p</math> फलनों के रोगाणुओं से युक्त आदर्श बनें जो p पर लुप्त हो जाते हैं। (यह [[स्थानीय रिंग|समष्टिीय वलय]] के लिए [[अधिकतम आदर्श]] है <math>C_p^\infty({\mathbb R}^n,{\mathbb R}^m)</math>.) फिर आदर्श <math>{\mathfrak m}_p^{k+1}</math> इसमें सभी कार्यशील रोगाणु सम्मिलित होते हैं जो p पर k क्रम में लुप्त हो जाते हैं। अब हम 'जेट समष्टि' को p द्वारा परिभाषित कर सकते हैं | ||
:<math>J^k_p({\mathbb R}^n,{\mathbb R}^m)=C_p^\infty({\mathbb R}^n,{\mathbb R}^m)/{\mathfrak m}_p^{k+1}</math> | :<math>J^k_p({\mathbb R}^n,{\mathbb R}^m)=C_p^\infty({\mathbb R}^n,{\mathbb R}^m)/{\mathfrak m}_p^{k+1}</math> | ||
Line 84: | Line 84: | ||
:<math>J^k_pf=f \pmod {{\mathfrak m}_p^{k+1}}</math> | :<math>J^k_pf=f \pmod {{\mathfrak m}_p^{k+1}}</math> | ||
यह अधिक सामान्य निर्माण है. | यह अधिक सामान्य निर्माण है. समष्टिीय रूप से वलयित समष्टि के लिए|<math>\mathbb{F}</math>-समष्टि <math>M</math>, मान लीजिए कि <math>\mathcal{F}_p</math> [[संरचना शीफ]] का आधार (शेफ) बनें <math>p</math> और जाने <math>{\mathfrak m}_p</math> समष्टिीय वलय का अधिकतम आदर्श बनें <math>\mathcal{F}_p</math>. केथ जेट समष्टि पर <math>p</math> वलय के रूप में परिभाषित किया गया है <math>J^k_p(M)=\mathcal{F}_p/{\mathfrak m}_p^{k+1}</math>(<math>{\mathfrak m}_p^{k+1}</math> आदर्श (वलय सिद्धांत)#आदर्श संचालन) है। | ||
===टेलर का प्रमेय=== | ===टेलर का प्रमेय=== | ||
परिभाषा के बावजूद, टेलर का प्रमेय सदिश | परिभाषा के बावजूद, टेलर का प्रमेय सदिश समष्टियों के मध्य एक विहित समरूपता <math>J^k_p({\mathbb R}^n,{\mathbb R}^m)</math> और <math>{\mathbb R}^m[z_1, \dotsc, z_n]/(z_1, \dotsc, z_n)^{k+1}</math> स्थापित करता है, तो यूक्लिडीय संदर्भ में, जेट को सामान्यतः इस समरूपता के अंतर्गत उनके बहुपद प्रतिनिधियों के साथ पहचाना जाता है। | ||
===एक बिंदु से एक बिंदु तक जेट | ===एक बिंदु से एक बिंदु तक जेट समष्टि=== | ||
हमने समष्टि | हमने समष्टि <math>J^k_p({\mathbb R}^n,{\mathbb R}^m)</math>, एक बिंदु पर जेट की <math>p\in {\mathbb R}^n</math>को परिभाषित किया है। इसका उपसमष्टि फलन f के जेटों से युक्त है जिससे कि f(p)=q द्वारा निरूपित किया जाता है: | ||
:<math>J^k_p({\mathbb R}^n,{\mathbb R}^m)_q=\left\{J^kf\in J^k_p({\mathbb R}^n,{\mathbb R}^m) \mid f(p) = q \right\}</math> | :<math>J^k_p({\mathbb R}^n,{\mathbb R}^m)_q=\left\{J^kf\in J^k_p({\mathbb R}^n,{\mathbb R}^m) \mid f(p) = q \right\}</math> | ||
Line 99: | Line 99: | ||
===वास्तविक रेखा से बहुविध तक फलनों के जेट=== | ===वास्तविक रेखा से बहुविध तक फलनों के जेट=== | ||
मान लीजिए कि m एक सहज बहुविध है जिसमें एक बिंदु p है। हम p के माध्यम से [[वक्र]]ों के जेट को परिभाषित करेंगे, जिसके द्वारा अब हमारा तात्पर्य सुचारू फलनों से है <math>f:{\mathbb R}\rightarrow M</math> ऐसा कि f(0)=p. तुल्यता संबंध को परिभाषित करें <math>E_p^k</math> निम्नलिखित नुसार। मान लीजिए कि f और g, p से होकर गुजरने वाले वक्रों का एक युग्म हैं। हम तब कहेंगे कि | मान लीजिए कि m एक सहज बहुविध है जिसमें एक बिंदु p है। हम p के माध्यम से [[वक्र]]ों के जेट को परिभाषित करेंगे, जिसके द्वारा अब हमारा तात्पर्य सुचारू फलनों से है <math>f:{\mathbb R}\rightarrow M</math> ऐसा कि f(0)=p. तुल्यता संबंध को परिभाषित करें <math>E_p^k</math> निम्नलिखित नुसार। मान लीजिए कि f और g, p से होकर गुजरने वाले वक्रों का एक युग्म हैं। हम तब कहेंगे कि f और जी p पर अनुक्रम के के बराबर हैं यदि p का कुछ [[पड़ोस (गणित)|प्रतिवेश (गणित)]] यू है, जैसे कि, हर सुचारू कार्य के लिए <math>\varphi : U \rightarrow {\mathbb R}</math>, <math>J^k_0 (\varphi\circ f)=J^k_0 (\varphi\circ g)</math>. ध्यान दें कि ये जेट समग्र फलनों के बाद से अच्छी तरह से परिभाषित हैं <math>\varphi\circ f</math> और <math>\varphi\circ g</math> वास्तविक लाइन से स्वयं तक केवल मैपिंग हैं। इस तुल्यता संबंध को कभी-कभी p पर वक्रों के मध्य के-वें-क्रम संपर्क (गणित) कहा जाता है। | ||
अब हम p से p तक वक्र के 'k-जेट' को f के समतुल्य वर्ग के रूप में परिभाषित करते हैं <math>E^k_p</math>, निरूपित <math>J^k\! f\,</math> या <math>J^k_0f</math>. ''के''-वें-अनुक्रम जेट समष्टि <math>J^k_0({\mathbb R},M)_p</math> फिर p पर के-जेट्स का सेट है। | अब हम p से p तक वक्र के 'k-जेट' को f के समतुल्य वर्ग के रूप में परिभाषित करते हैं <math>E^k_p</math>, निरूपित <math>J^k\! f\,</math> या <math>J^k_0f</math>. ''के''-वें-अनुक्रम जेट समष्टि <math>J^k_0({\mathbb R},M)_p</math> फिर p पर के-जेट्स का सेट है। | ||
Line 105: | Line 105: | ||
चूँकि p, M से भिन्न होता है, <math>J^k_0({\mathbb R},M)_p</math> m के ऊपर एक [[फाइबर बंडल|फाइबर समूह]] बनाता है: के-वें-क्रम [[स्पर्शरेखा बंडल|स्पर्शरेखा समूह]], जिसे प्रायः साहित्य में टी द्वारा दर्शाया जाता है<sup>क</sup>M (हालाँकि यह संकेतन कभी-कभी भ्रम उत्पन्न कर सकता है)। स्थिति में k=1, तो प्रथम-क्रम स्पर्शरेखा समूह सामान्य स्पर्शरेखा समूह है: T<sup>1</sup>M=TM. | चूँकि p, M से भिन्न होता है, <math>J^k_0({\mathbb R},M)_p</math> m के ऊपर एक [[फाइबर बंडल|फाइबर समूह]] बनाता है: के-वें-क्रम [[स्पर्शरेखा बंडल|स्पर्शरेखा समूह]], जिसे प्रायः साहित्य में टी द्वारा दर्शाया जाता है<sup>क</sup>M (हालाँकि यह संकेतन कभी-कभी भ्रम उत्पन्न कर सकता है)। स्थिति में k=1, तो प्रथम-क्रम स्पर्शरेखा समूह सामान्य स्पर्शरेखा समूह है: T<sup>1</sup>M=TM. | ||
यह सिद्ध करने के लिए कि टी<sup>के</sup>m वास्तव में एक फाइबर समूह है, इसके गुणों की जांच करना शिक्षाप्रद है <math>J^k_0({\mathbb R},M)_p</math> | यह सिद्ध करने के लिए कि टी<sup>के</sup>m वास्तव में एक फाइबर समूह है, इसके गुणों की जांच करना शिक्षाप्रद है <math>J^k_0({\mathbb R},M)_p</math> समष्टिीय निर्देशांक में. चलो (x<sup>i</sup>)= (x<sup>1</sup>,...,x<sup>n</sup>) p के प्रतिवेश यू में m के लिए एक समष्टिीय समन्वय प्रणाली बनें। अंकन का थोड़ा दुरुपयोग, हम (x) पर विचार कर सकते हैं<sup>i</sup>) एक समष्टिीय [[भिन्नता]] के रूप में <math>(x^i):M\rightarrow\R^n</math>. | ||
दावा करना। p से होकर गुजरने वाले दो वक्र | दावा करना। p से होकर गुजरने वाले दो वक्र f और जी समतुल्य मॉड्यूल हैं <math>E_p^k</math> यदि और केवल यदि <math>J^k_0\left((x^i)\circ f\right)=J^k_0\left((x^i)\circ g\right)</math>. | ||
:दरअसल, केवल तभी भाग स्पष्ट है, क्योंकि प्रत्येक n कार्य x करता है<sup>1</sup>,...,x<sup>n</sup>M से एक सुचारु कार्य है <math>{\mathbb R}</math>. तो तुल्यता संबंध की परिभाषा के अनुसार <math>E_p^k</math>, दो समतुल्य वक्र होने चाहिए <math>J^k_0(x^i\circ f)=J^k_0(x^i\circ g)</math>. | :दरअसल, केवल तभी भाग स्पष्ट है, क्योंकि प्रत्येक n कार्य x करता है<sup>1</sup>,...,x<sup>n</sup>M से एक सुचारु कार्य है <math>{\mathbb R}</math>. तो तुल्यता संबंध की परिभाषा के अनुसार <math>E_p^k</math>, दो समतुल्य वक्र होने चाहिए <math>J^k_0(x^i\circ f)=J^k_0(x^i\circ g)</math>. | ||
:इसके विपरीत, मान लीजिए <math>\varphi</math>; p के | :इसके विपरीत, मान लीजिए <math>\varphi</math>; p के प्रतिवेश में m पर एक सहज वास्तविक-मूल्यवान फलन है। चूँकि प्रत्येक सुचारु कार्य की एक समष्टिीय समन्वय अभिव्यक्ति होती है, हम व्यक्त कर सकते हैं <math>\varphi</math>; निर्देशांक में एक फलन के रूप में। विशेष रूप से, यदि q, p के निकट M का एक बिंदु है, तो | ||
::<math>\varphi(q)=\psi(x^1(q),\dots,x^n(q))</math> | ::<math>\varphi(q)=\psi(x^1(q),\dots,x^n(q))</math> | ||
:एन वास्तविक चर के कुछ सहज वास्तविक-मूल्यवान फलन ψ के लिए। इसलिए, p से होकर गुजरने वाले दो वक्रों | :एन वास्तविक चर के कुछ सहज वास्तविक-मूल्यवान फलन ψ के लिए। इसलिए, p से होकर गुजरने वाले दो वक्रों f और जी के लिए, हमारे पास है | ||
::<math>\varphi\circ f=\psi(x^1\circ f,\dots,x^n\circ f)</math> | ::<math>\varphi\circ f=\psi(x^1\circ f,\dots,x^n\circ f)</math> | ||
Line 123: | Line 123: | ||
:जो f के बजाय g के विरुद्ध मूल्यांकन करने पर समान अभिव्यक्ति के बराबर है, यह याद करते हुए कि f(0)=g(0)=p और f और g समन्वय प्रणाली में k-वें-क्रम संपर्क में हैं (x)<sup>मैं</sup>). | :जो f के बजाय g के विरुद्ध मूल्यांकन करने पर समान अभिव्यक्ति के बराबर है, यह याद करते हुए कि f(0)=g(0)=p और f और g समन्वय प्रणाली में k-वें-क्रम संपर्क में हैं (x)<sup>मैं</sup>). | ||
इसलिए प्रत्यक्ष फाइबर समूह टी<sup>के</sup>m प्रत्येक समन्वयित | इसलिए प्रत्यक्ष फाइबर समूह टी<sup>के</sup>m प्रत्येक समन्वयित प्रतिवेश में समष्टिीय तुच्छीकरण को स्वीकार करता है। इस बिंदु पर, यह सिद्ध करने के लिए कि यह प्रत्यक्ष फाइबर समूह वास्तव में एक फाइबर समूह है, यह स्थापित करना पर्याप्त है कि इसमें निर्देशांक के परिवर्तन के अंतर्गत गैर-एकवचन परिवर्ती कार्य हैं। मान लीजिए कि <math>(y^i):M\rightarrow{\mathbb R}^n</math> एक अलग समन्वय प्रणाली बनें और चलो <math>\rho=(x^i)\circ (y^i)^{-1}:{\mathbb R}^n\rightarrow {\mathbb R}^n</math> यूक्लिडीय समष्टि के निर्देशांक भिन्नता के संबंधित परिवर्तन स्वयं से संबंधित हों। के एक [[एफ़िन परिवर्तन|f़िन परिवर्तन]] के माध्यम से <math>{\mathbb R}^n</math>, हम व्यापकता खोए बिना यह मान सकते हैं कि ρ(0)=0. इस धारणा के साथ, यह सिद्ध करने के लिए पर्याप्त है <math>J^k_0\rho:J^k_0({\mathbb R}^n,{\mathbb R}^n)\rightarrow J^k_0({\mathbb R}^n,{\mathbb R}^n)</math> जेट संरचना के अंतर्गत एक व्युत्क्रम परिवर्तन है। ([[जेट समूह]] भी देखें।) लेकिन चूँकि ρ एक भिन्नरूपता है, <math>\rho^{-1}</math> यह एक सहज मानचित्रण भी है। इस तरह, | ||
:<math>I=J^k_0I=J^k_0(\rho\circ\rho^{-1})=J^k_0(\rho)\circ J^k_0(\rho^{-1})</math> | :<math>I=J^k_0I=J^k_0(\rho\circ\rho^{-1})=J^k_0(\rho)\circ J^k_0(\rho^{-1})</math> | ||
जो यह सिद्ध करता है <math>J^k_0\rho</math> गैर-एकवचन है. इसके अतिरिक्त, यह सहज है, हालाँकि हम यहाँ उस तथ्य को सिद्ध नहीं करते हैं। | जो यह सिद्ध करता है <math>J^k_0\rho</math> गैर-एकवचन है. इसके अतिरिक्त, यह सहज है, हालाँकि हम यहाँ उस तथ्य को सिद्ध नहीं करते हैं। | ||
सहज रूप से, इसका अर्थ यह है कि हम m पर | सहज रूप से, इसका अर्थ यह है कि हम m पर समष्टिीय निर्देशांक में टेलर श्रृंखला के संदर्भ में p के माध्यम से एक वक्र के जेट को व्यक्त कर सकते हैं। | ||
समष्टिीय निर्देशांक में उदाहरण: | |||
* जैसा कि पहले संकेत दिया गया है, p के माध्यम से वक्र का 1-जेट एक स्पर्शरेखा सदिश है। p पर एक स्पर्शरेखा सदिश एक प्रथम-क्रम अंतर प्रचालक है जो p पर सुचारू वास्तविक-मूल्य वाले फलनों पर कार्य करता है। | * जैसा कि पहले संकेत दिया गया है, p के माध्यम से वक्र का 1-जेट एक स्पर्शरेखा सदिश है। p पर एक स्पर्शरेखा सदिश एक प्रथम-क्रम अंतर प्रचालक है जो p पर सुचारू वास्तविक-मूल्य वाले फलनों पर कार्य करता है। समष्टिीय निर्देशांक में, प्रत्येक स्पर्शरेखा सदिश का रूप होता है | ||
::<math>v=\sum_iv^i\frac{\partial}{\partial x^i}</math> | ::<math>v=\sum_iv^i\frac{\partial}{\partial x^i}</math> | ||
:ऐसे स्पर्शरेखा सदिश v को देखते हुए, मान लीजिए कि x में दिया गया वक्र f है<sup>मैं</sup>द्वारा समन्वय प्रणाली <math>x^i\circ f(t)=tv^i</math>. यदि φ(p)=0 के साथ p के | :ऐसे स्पर्शरेखा सदिश v को देखते हुए, मान लीजिए कि x में दिया गया वक्र f है<sup>मैं</sup>द्वारा समन्वय प्रणाली <math>x^i\circ f(t)=tv^i</math>. यदि φ(p)=0 के साथ p के प्रतिवेश में एक सुचारू फलन है, तो | ||
::<math>\varphi\circ f:{\mathbb R}\rightarrow {\mathbb R}</math> | ::<math>\varphi\circ f:{\mathbb R}\rightarrow {\mathbb R}</math> | ||
Line 143: | Line 143: | ||
:जो यह सिद्ध करता है कि कोई व्यक्ति स्वाभाविक रूप से उस बिंदु से गुजरने वाले वक्रों के 1-जेट के साथ एक बिंदु पर स्पर्शरेखा सदिश की पहचान कर सकता है। | :जो यह सिद्ध करता है कि कोई व्यक्ति स्वाभाविक रूप से उस बिंदु से गुजरने वाले वक्रों के 1-जेट के साथ एक बिंदु पर स्पर्शरेखा सदिश की पहचान कर सकता है। | ||
* एक बिंदु से होकर गुजरने वाले वक्रों के 2-जेटों का | * एक बिंदु से होकर गुजरने वाले वक्रों के 2-जेटों का समष्टि। | ||
: एक | : एक समष्टिीय समन्वय प्रणाली में x<sup>i</sup> एक बिंदु p पर केन्द्रित, हम वक्र f(t) से p तक के दूसरे क्रम के टेलर बहुपद को व्यक्त कर सकते हैं | ||
::<math>J_0^2(x^i(f))(t)=t\frac{dx^i(f)}{dt}(0)+\frac{t^2}{2}\frac{d^2x^i(f)}{dt^2}(0).</math> | ::<math>J_0^2(x^i(f))(t)=t\frac{dx^i(f)}{dt}(0)+\frac{t^2}{2}\frac{d^2x^i(f)}{dt^2}(0).</math> | ||
:तो x समन्वय प्रणाली में, p के माध्यम से वक्र के 2-जेट को वास्तविक संख्याओं की सूची से पहचाना जाता है <math>(\dot{x}^i,\ddot{x}^i)</math>. एक बिंदु पर स्पर्शरेखा सदिशों (वक्रों के 1-जेट्स) की तरह, वक्रों के 2-जेट्स समन्वय | :तो x समन्वय प्रणाली में, p के माध्यम से वक्र के 2-जेट को वास्तविक संख्याओं की सूची से पहचाना जाता है <math>(\dot{x}^i,\ddot{x}^i)</math>. एक बिंदु पर स्पर्शरेखा सदिशों (वक्रों के 1-जेट्स) की तरह, वक्रों के 2-जेट्स समन्वय परिवर्ती फलनों के अनुप्रयोग पर एक परिवर्तन नियम का पालन करते हैं। | ||
:चलो (य<sup>i</sup>) एक और समन्वय प्रणाली बनें। शृंखला नियम से, | :चलो (य<sup>i</sup>) एक और समन्वय प्रणाली बनें। शृंखला नियम से, | ||
Line 165: | Line 165: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
:ध्यान दें कि 2-जेट के लिए परिवर्तन नियम समन्वय | :ध्यान दें कि 2-जेट के लिए परिवर्तन नियम समन्वय परिवर्ती फलनों में दूसरे क्रम का है। | ||
===बहुविध से बहुविध तक फलनों के जेट=== | ===बहुविध से बहुविध तक फलनों के जेट=== | ||
अब हम किसी फलन के जेट को बहुविध से बहुविध तक परिभाषित करने के लिए तैयार हैं। | अब हम किसी फलन के जेट को बहुविध से बहुविध तक परिभाषित करने के लिए तैयार हैं। | ||
मान लीजिए कि m और एन दो चिकने बहुविध हैं। मान लीजिए p, M का एक बिंदु है। | मान लीजिए कि m और एन दो चिकने बहुविध हैं। मान लीजिए p, M का एक बिंदु है। समष्टि पर विचार करें <math>C^\infty_p(M,N)</math> चिकने मानचित्रों से युक्त <math>f:M\rightarrow N</math> p के कुछ प्रतिवेश में परिभाषित। हम एक तुल्यता संबंध को परिभाषित करते हैं <math>E^k_p</math> पर <math>C^\infty_p(M,N)</math> निम्नलिखित नुसार। दो मानचित्र f और g को समतुल्य कहा जाता है यदि, प्रत्येक वक्र γ से p के लिए (याद रखें कि हमारे सम्मेलनों के अनुसार यह एक मानचित्रण है) <math>\gamma:{\mathbb R}\rightarrow M</math> ऐसा है कि <math>\gamma(0)=p</math>), अपने पास <math>J^k_0(f\circ \gamma)=J^k_0(g\circ \gamma)</math> 0 के कुछ प्रतिवेश पर. | ||
जेट समष्टि <math>J^k_p(M,N)</math> फिर इसे समतुल्य वर्गों के समुच्चय के रूप में परिभाषित किया गया है <math>C^\infty_p(M,N)</math> तुल्यता संबंध | जेट समष्टि <math>J^k_p(M,N)</math> फिर इसे समतुल्य वर्गों के समुच्चय के रूप में परिभाषित किया गया है <math>C^\infty_p(M,N)</math> तुल्यता संबंध मापांको <math>E^k_p</math>. ध्यान दें कि क्योंकि लक्ष्य समष्टि N में कोई बीजगणितीय संरचना होनी आवश्यक नहीं है, <math>J^k_p(M,N)</math> ऐसी संरचना की भी आवश्यकता नहीं है। वास्तव में, यह यूक्लिडीय समष्टि के स्थिति से एकदम विपरीत है। | ||
यदि <math>f:M\rightarrow N</math> p के पास परिभाषित एक सहज | यदि <math>f:M\rightarrow N</math>, p के पास परिभाषित एक सहज फलन है, तो हम p पर f के k-जेट को परिभाषित करते हैं, <math>J^k_pf</math>, f मापांको का समतुल्य वर्ग <math>E^k_p</math> है। | ||
===मल्टीजेट्स=== | ===मल्टीजेट्स=== | ||
[[जॉन माथेर (गणितज्ञ)]] ने मल्टीजेट की धारणा | [[जॉन माथेर (गणितज्ञ)]] ने मल्टीजेट की धारणा प्रस्तुत की। संक्षेप में कहें तो, मल्टीजेट विभिन्न आधार-बिंदुओं पर जेटों की एक सीमित सूची है। माथेर ने मल्टीजेट [[ट्रांसवर्सेलिटी प्रमेय|अनुप्रस्थता प्रमेय]] को सिद्ध किया, जिसका उपयोग उन्होंने स्थिर प्रतिचित्रण के अपने अध्ययन में किया। | ||
==खंडों के जेट== | ==खंडों के जेट== | ||
मान लीजिए कि | मान लीजिए कि E प्रक्षेपण <math>\pi:E\rightarrow M</math> के साथ बहुविध m पर एक परिमित-आयामी सहज सदिश समूह है। फिर E के अनुभाग सहज फलन <math>s:M\rightarrow E</math>, ऐसा है कि <math>\pi\circ s</math>, m की पहचान [[ स्वचालितता |स्वसमाकृतिकता]] है। एक बिंदु p के प्रतिवेश पर एक खंड s का जेट, p पर M से E तक इस सहज फलन का जेट है। | ||
p पर अनुभागों के जेट | p पर अनुभागों के जेट की समष्टियों <math>J^k_p(M,E)</math> को निरूपित किया जाता है। यद्यपि यह संकेतन दो बहुविधों के मध्य फलनों के अधिक सामान्य जेट समष्टियों के साथ भ्रम उत्पन्न कर सकता है, संदर्भ सामान्यतः ऐसी किसी भी अस्पष्टता को समाप्त कर देता है। | ||
एक बहुविध से दूसरे बहुविध में फलनों के जेट के विपरीत, p पर अनुभागों के जेट का | एक बहुविध से दूसरे बहुविध में फलनों के जेट के विपरीत, p पर अनुभागों के जेट का समष्टि स्वयं अनुभागों पर सदिश समष्टि संरचना से विरासत में मिली सदिश समष्टि की संरचना का वहन करता है। चूंकि p, m पर भिन्न होता है, जेट समष्टि <math>J^k_p(M,E)</math>, m के ऊपर एक सदिश समूह बनाता है, जो कि E का k-वें-अनुक्रम जेट समूह है, जिसे ''J<sup>k</sup>''(''E'') द्वारा दर्शाया जाता है। | ||
* उदाहरण: स्पर्शरेखा समूह का प्रथम-क्रम जेट | * उदाहरण: स्पर्शरेखा समूह का प्रथम-क्रम जेट समूह है। | ||
:हम एक बिंदु पर | :हम एक बिंदु पर समष्टिीय निर्देशांक में कार्य करते हैं और [[ आइंस्टीन संकेतन |आइंस्टीन संकेतन]] का उपयोग करते हैं। एक सदिश क्षेत्र पर विचार करें: | ||
::<math>v=v^i(x)\partial/\partial x^i</math> | ::<math>v=v^i(x)\partial/\partial x^i</math> | ||
:m में p के | :m में p के प्रतिवेश में है। v का 1-जेट सदिश क्षेत्र के गुणांक के पहले क्रम के टेलर बहुपद को लेकर प्राप्त किया जाता है: | ||
::<math>J_0^1v^i(x)=v^i(0)+x^j\frac{\partial v^i}{\partial x^j}(0)=v^i+v^i_jx^j | ::<math>J_0^1v^i(x)=v^i(0)+x^j\frac{\partial v^i}{\partial x^j}(0)=v^i+v^i_jx^j</math> | ||
: | :x निर्देशांक में, एक बिंदु पर 1-जेट को वास्तविक संख्याओं <math>(v^i,v^i_j)</math> की सूची से पहचाना जा सकता है। जिस प्रकार किसी बिंदु पर एक स्पर्शरेखा सदिश को सूची (''v<sup>i</sup>'') से पहचाना जा सकता है, समन्वय परिवर्तन के अंतर्गत एक निश्चित परिवर्तन नियम के अधीन, हमें यह जानना होगा कि सूची <math>(v^i,v^i_j)</math> कैसी है, एक परिवर्तन से प्रभावित होता है। | ||
:तो किसी अन्य समन्वय प्रणाली y को पारित करने में परिवर्तन | :तो किसी अन्य समन्वय प्रणाली ''y<sup>i</sup>'' प्रणाली को पारित करने में परिवर्तन कानून पर विचार करें। मान लीजिए कि y निर्देशांक में ''w<sup>k</sup>'' सदिश क्षेत्र v के गुणांक है। फिर y निर्देशांक में, v का 1-जेट वास्तविक संख्याओं की एक नई सूची <math>(w^i,w^i_j)</math> है। तब से | ||
::<math>v=w^k(y)\partial/\partial y^k=v^i(x)\partial/\partial x^i | ::<math>v=w^k(y)\partial/\partial y^k=v^i(x)\partial/\partial x^i</math> | ||
:यह इस प्रकार है कि | :यह इस प्रकार है कि | ||
::<math>w^k(y)=v^i(x)\frac{\partial y^k}{\partial x^i}(x) | ::<math>w^k(y)=v^i(x)\frac{\partial y^k}{\partial x^i}(x)</math> | ||
:इसलिए | :इसलिए | ||
::<math>w^k(0)+y^j\frac{\partial w^k}{\partial y^j}(0)=\left(v^i(0)+x^j\frac{\partial v^i}{\partial x^j}\right)\frac{\partial y^k}{\partial x^i}(x)</math> | ::<math>w^k(0)+y^j\frac{\partial w^k}{\partial y^j}(0)=\left(v^i(0)+x^j\frac{\partial v^i}{\partial x^j}\right)\frac{\partial y^k}{\partial x^i}(x)</math> | ||
:टेलर श्रृंखला द्वारा विस्तार, हमारे पास है | :टेलर श्रृंखला द्वारा विस्तार, हमारे पास है: | ||
::<math>w^k=\frac{\partial y^k}{\partial x^i}(0) v^i</math> | ::<math>w^k=\frac{\partial y^k}{\partial x^i}(0) v^i</math> | ||
::<math>w^k_j=v^i\frac{\partial^2 y^k}{\partial x^i \, \partial x^j}+v_j^i\frac{\partial y^k}{\partial x^i} | ::<math>w^k_j=v^i\frac{\partial^2 y^k}{\partial x^i \, \partial x^j}+v_j^i\frac{\partial y^k}{\partial x^i} </math> | ||
:ध्यान दें कि समन्वय | :ध्यान दें कि समन्वय परिवर्ती फलनों में परिवर्तन नियम दूसरे क्रम का है। | ||
===सदिश समूहों के मध्य विभेदक प्रचालक=== | ===सदिश समूहों के मध्य विभेदक प्रचालक=== | ||
{{further|विभेदक | {{further|विभेदक प्रचालक#समन्वय-स्वतंत्र विवरण}} | ||
{{empty section|date= | {{empty section|date=सितम्बर 2020}} | ||
==यह भी देखें== | ==यह भी देखें== | ||
*जेट | *जेट वर्ग | ||
* जेट समूह | * जेट समूह | ||
* [[लैग्रेंजियन प्रणाली]] | * [[लैग्रेंजियन प्रणाली]] |
Revision as of 14:10, 9 July 2023
गणित में, जेट एक संक्रिया है जो एक भिन्न फलन f लेता है और अपने कार्यक्षेत्र के प्रत्येक बिंदु पर एक बहुपद, f का छोटा टेलर बहुपद उत्पन्न करता है। हालाँकि यह एक जेट की परिभाषा है, जेट का सिद्धांत इन बहुपदों को बहुपद फलनों के बजाय अमूर्त बहुपद मानता है।
यह आलेख पहले एक वास्तविक चर में एक वास्तविक मूल्यवान फलन के जेट की धारणा की खोज करता है, इसके बाद कई वास्तविक चर के सामान्यीकरण की चर्चा होती है। इसके बाद यह यूक्लिडीय समष्टियों के मध्य जेट और जेट समष्टि का एक कठोर निर्माण देता है। यह बहुविध के मध्य जेट्स के विवरण के साथ समाप्त होता है और इन जेट्स को आंतरिक रूप से कैसे बनाया जा सकता है। इस अधिक सामान्य संदर्भ में, यह विभेदक ज्यामिति और विभेदक समीकरणों के सिद्धांत में जेट के कुछ अनुप्रयोगों का सारांश प्रस्तुत करता है।
यूक्लिडीय समष्टियों के मध्य फलनों के जेट
जेट की कठोर परिभाषा देने से पहले, कुछ विशेष स्थितियों की जांच करना उपयोगी है।
एक-आयामी स्थिति
मान लीजिए कि एक वास्तविक-मूल्यवान फलन है जिसमें बिंदु के प्रतिवेश U में कम-से-कम k + 1 अवकलज है फिर टेलर के प्रमेय द्वारा,
जहाँ
फिर बिंदु पर f का k-जेट को बहुपद के रूप में परिभाषित किया गया है:
जेट को सामान्यतः चर z में अमूर्त बहुपद के रूप में माना जाता है, न कि उस चर में वास्तविक बहुपद फलनों के रूप में माना जाता है। दूसरे शब्दों में, z एक अनिश्चित चर है जो जेट के मध्य विभिन्न बीजीय करने की संचालन करने की अनुमति देता है। वास्तव में यह आधार-बिंदु है, जिससे जेट अपनी कार्यात्मक निर्भरता प्राप्त करते हैं। इस प्रकार, आधार-बिंदु को अलग-अलग करके, एक जेट प्रत्येक बिंदु पर अधिकतम k क्रम का बहुपद उत्पन्न करता है। यह जेट और संक्षिप्त टेलर श्रृंखला के मध्य एक महत्वपूर्ण वैचारिक अंतर को दर्शाता है: सामान्यतः टेलर श्रृंखला को इसके आधार-बिंदु के बजाय इसके चर पर कार्यात्मक रूप से निर्भर माना जाता है। दूसरी ओर, जेट, टेलर श्रृंखला के बीजगणितीय गुणों को उनके कार्यात्मक गुणों से अलग करते हैं। हम लेख में बाद में इस विभाजन के कारणों और अनुप्रयोगों पर चर्चा करेंगे।
एक यूक्लिडीय समष्टि से दूसरे तक मानचित्रण
मान लीजिए कि एक यूक्लिडीय समष्टि से दूसरे यूक्लिडीय समष्टि में कम-से-कम (k + 1) अवकलज वाला एक फलन है। इस स्थिति में, टेलर का प्रमेय इस बात पर जोर देता है:
तब f के k-जेट को बहुपद के रूप में परिभाषित किया जाता है:
में, जहाँ है।
जेट्स के बीजगणितीय गुणधर्म
दो बुनियादी बीजगणितीय संरचनाएँ हैं जिन्हें जेट ले जा सकते हैं। पहला उत्पाद संरचना है, हालाँकि अंततः यह सबसे कम महत्वपूर्ण सिद्ध होता है। दूसरा जेटों की संरचना की संरचना है।
यदि वास्तविक-मूल्यवान फलनों का एक युग्म है, तो हम उनके जेट के उत्पाद को इसके माध्यम से परिभाषित कर सकते हैं
यहां हमने अनिश्चित z को दबा दिया है, क्योंकि यह समझा जाता है कि जेट औपचारिक बहुपद हैं। यह उत्पाद केवल z, मापांको (शब्दजाल) में सामान्य बहुपदों का उत्पाद है . दूसरे शब्दों में, यह वलय में गुणन है , जहाँ क्रम ≥ k + 1 के सजातीय बहुपदों द्वारा उत्पन्न आदर्श (वलय सिद्धांत) है।
अब हम जेटों की संरचना की ओर बढ़ते हैं। अनावश्यक तकनीकीताओं से बचने के लिए, हम फलनों के जेट पर विचार करते हैं जो मूल को मूल से मैप करते हैं। यदि और फिर f(0)=0 और g(0)=0 के साथ . जेट की संरचना को परिभाषित किया गया है श्रृंखला नियम का उपयोग करके इसे सरलता से सत्यापित किया जाता है, कि यह मूल में जेट के समष्टि पर एक सहयोगी गैर-अनुवांशिक संचालन का गठन करता है।
वास्तव में, के-जेट्स की संरचना बहुपद मापांको की संरचना से अधिक कुछ नहीं है, क्रम के सजातीय बहुपदों का आदर्श
उदाहरण:
- एक आयाम में, चलो और तब
और
यूक्लिडीय समष्टि में एक बिंदु पर जेट: कठोर परिभाषाएँ
विश्लेषणात्मक परिभाषा
निम्नलिखित परिभाषा जेट और जेट समष्टि को परिभाषित करने के लिए गणितीय विश्लेषण के विचारों का उपयोग करती है। इसे बानाच समष्टियों के मध्य सुचारू फलनों, वास्तविक या जटिल विश्लेषण के मध्य विश्लेषणात्मक फलनों, p-एडिक विश्लेषण और विश्लेषण के अन्य क्षेत्रों के लिए सामान्यीकृत किया जा सकता है।
मान लीजिए कि सुचारू फलनों का सदिश समष्टि बनें . मान लीजिए कि k एक गैर-ऋणात्मक पूर्णांक है, और मान लीजिए कि p एक बिंदु है . हम एक तुल्यता संबंध को परिभाषित करते हैं इस समष्टि पर यह घोषणा करके कि दो फलन f और g अनुक्रम के के बराबर हैं यदि f और g का p पर समान मूल्य है, और उनके सभी आंशिक अवकलज अपने k-वें-अनुक्रम अवकलज तक (और इसमें सम्मिलित) p पर सहमत हैं। संक्षेप में, आईff से k-वें क्रम तक.
का k-वें-अनुक्रम जेट समष्टि' p पर समतुल्य वर्गों के समुच्चय के रूप में परिभाषित किया गया है, और द्वारा दर्शाया गया है
एक सुचारू फलन के p पर के-वें-अनुक्रम जेट इसे f के समतुल्य वर्ग के रूप में परिभाषित किया गया है
बीजगणितीय-ज्यामितीय परिभाषा
निम्नलिखित परिभाषा जेट और जेट समष्टि की धारणा स्थापित करने के लिए बीजगणितीय ज्यामिति और क्रमविनिमेय बीजगणित के विचारों का उपयोग करती है। हालाँकि यह परिभाषा बीजगणितीय ज्यामिति में उपयोग के लिए विशेष रूप से उपयुक्त नहीं है, क्योंकि इसे सहज श्रेणी में रखा गया है, इसे सरलता से ऐसे उपयोगों के अनुरूप बनाया जा सकता है।
मान लीजिए कि सुचारू फलनों के रोगाणु (गणित) का सदिश समष्टि बनें एक बिंदु पर p में . मान लीजिए कि फलनों के रोगाणुओं से युक्त आदर्श बनें जो p पर लुप्त हो जाते हैं। (यह समष्टिीय वलय के लिए अधिकतम आदर्श है .) फिर आदर्श इसमें सभी कार्यशील रोगाणु सम्मिलित होते हैं जो p पर k क्रम में लुप्त हो जाते हैं। अब हम 'जेट समष्टि' को p द्वारा परिभाषित कर सकते हैं
यदि एक सहज फलन है, हम p पर f के k-जेट को व्यवस्थित करके तत्व के रूप में परिभाषित कर सकते हैं
यह अधिक सामान्य निर्माण है. समष्टिीय रूप से वलयित समष्टि के लिए|-समष्टि , मान लीजिए कि संरचना शीफ का आधार (शेफ) बनें और जाने समष्टिीय वलय का अधिकतम आदर्श बनें . केथ जेट समष्टि पर वलय के रूप में परिभाषित किया गया है ( आदर्श (वलय सिद्धांत)#आदर्श संचालन) है।
टेलर का प्रमेय
परिभाषा के बावजूद, टेलर का प्रमेय सदिश समष्टियों के मध्य एक विहित समरूपता और स्थापित करता है, तो यूक्लिडीय संदर्भ में, जेट को सामान्यतः इस समरूपता के अंतर्गत उनके बहुपद प्रतिनिधियों के साथ पहचाना जाता है।
एक बिंदु से एक बिंदु तक जेट समष्टि
हमने समष्टि , एक बिंदु पर जेट की को परिभाषित किया है। इसका उपसमष्टि फलन f के जेटों से युक्त है जिससे कि f(p)=q द्वारा निरूपित किया जाता है:
दो बहुविध के मध्य फलनों के जेट
यदि m और n दो भिन्न-भिन्न बहुविध हैं, तो हम किसी फलन के जेट को कैसे परिभाषित करते हैं ? हम सम्भवतः m और एन पर बहुविध का उपयोग करके ऐसे जेट को परिभाषित करने का प्रयास कर सकते हैं। इसका हानि यह है कि जेट को इस प्रकार अपरिवर्तनीय तरीके से परिभाषित नहीं किया जा सकता है। जेट टेंसर के रूप में परिवर्तित नहीं होते हैं। इसके बजाय, दो बहुविध के मध्य फलनों के जेट एक जेट समूह से संबंधित होते हैं।
वास्तविक रेखा से बहुविध तक फलनों के जेट
मान लीजिए कि m एक सहज बहुविध है जिसमें एक बिंदु p है। हम p के माध्यम से वक्रों के जेट को परिभाषित करेंगे, जिसके द्वारा अब हमारा तात्पर्य सुचारू फलनों से है ऐसा कि f(0)=p. तुल्यता संबंध को परिभाषित करें निम्नलिखित नुसार। मान लीजिए कि f और g, p से होकर गुजरने वाले वक्रों का एक युग्म हैं। हम तब कहेंगे कि f और जी p पर अनुक्रम के के बराबर हैं यदि p का कुछ प्रतिवेश (गणित) यू है, जैसे कि, हर सुचारू कार्य के लिए , . ध्यान दें कि ये जेट समग्र फलनों के बाद से अच्छी तरह से परिभाषित हैं और वास्तविक लाइन से स्वयं तक केवल मैपिंग हैं। इस तुल्यता संबंध को कभी-कभी p पर वक्रों के मध्य के-वें-क्रम संपर्क (गणित) कहा जाता है।
अब हम p से p तक वक्र के 'k-जेट' को f के समतुल्य वर्ग के रूप में परिभाषित करते हैं , निरूपित या . के-वें-अनुक्रम जेट समष्टि फिर p पर के-जेट्स का सेट है।
चूँकि p, M से भिन्न होता है, m के ऊपर एक फाइबर समूह बनाता है: के-वें-क्रम स्पर्शरेखा समूह, जिसे प्रायः साहित्य में टी द्वारा दर्शाया जाता हैकM (हालाँकि यह संकेतन कभी-कभी भ्रम उत्पन्न कर सकता है)। स्थिति में k=1, तो प्रथम-क्रम स्पर्शरेखा समूह सामान्य स्पर्शरेखा समूह है: T1M=TM.
यह सिद्ध करने के लिए कि टीकेm वास्तव में एक फाइबर समूह है, इसके गुणों की जांच करना शिक्षाप्रद है समष्टिीय निर्देशांक में. चलो (xi)= (x1,...,xn) p के प्रतिवेश यू में m के लिए एक समष्टिीय समन्वय प्रणाली बनें। अंकन का थोड़ा दुरुपयोग, हम (x) पर विचार कर सकते हैंi) एक समष्टिीय भिन्नता के रूप में .
दावा करना। p से होकर गुजरने वाले दो वक्र f और जी समतुल्य मॉड्यूल हैं यदि और केवल यदि .
- दरअसल, केवल तभी भाग स्पष्ट है, क्योंकि प्रत्येक n कार्य x करता है1,...,xnM से एक सुचारु कार्य है . तो तुल्यता संबंध की परिभाषा के अनुसार , दो समतुल्य वक्र होने चाहिए .
- इसके विपरीत, मान लीजिए ; p के प्रतिवेश में m पर एक सहज वास्तविक-मूल्यवान फलन है। चूँकि प्रत्येक सुचारु कार्य की एक समष्टिीय समन्वय अभिव्यक्ति होती है, हम व्यक्त कर सकते हैं ; निर्देशांक में एक फलन के रूप में। विशेष रूप से, यदि q, p के निकट M का एक बिंदु है, तो
- एन वास्तविक चर के कुछ सहज वास्तविक-मूल्यवान फलन ψ के लिए। इसलिए, p से होकर गुजरने वाले दो वक्रों f और जी के लिए, हमारे पास है
- श्रृंखला नियम अब दावे के if भाग को स्थापित करता है। उदाहरण के लिए, यदि f और g वास्तविक चर t के फलन हैं, तो
- जो f के बजाय g के विरुद्ध मूल्यांकन करने पर समान अभिव्यक्ति के बराबर है, यह याद करते हुए कि f(0)=g(0)=p और f और g समन्वय प्रणाली में k-वें-क्रम संपर्क में हैं (x)मैं).
इसलिए प्रत्यक्ष फाइबर समूह टीकेm प्रत्येक समन्वयित प्रतिवेश में समष्टिीय तुच्छीकरण को स्वीकार करता है। इस बिंदु पर, यह सिद्ध करने के लिए कि यह प्रत्यक्ष फाइबर समूह वास्तव में एक फाइबर समूह है, यह स्थापित करना पर्याप्त है कि इसमें निर्देशांक के परिवर्तन के अंतर्गत गैर-एकवचन परिवर्ती कार्य हैं। मान लीजिए कि एक अलग समन्वय प्रणाली बनें और चलो यूक्लिडीय समष्टि के निर्देशांक भिन्नता के संबंधित परिवर्तन स्वयं से संबंधित हों। के एक f़िन परिवर्तन के माध्यम से , हम व्यापकता खोए बिना यह मान सकते हैं कि ρ(0)=0. इस धारणा के साथ, यह सिद्ध करने के लिए पर्याप्त है जेट संरचना के अंतर्गत एक व्युत्क्रम परिवर्तन है। (जेट समूह भी देखें।) लेकिन चूँकि ρ एक भिन्नरूपता है, यह एक सहज मानचित्रण भी है। इस तरह,
जो यह सिद्ध करता है गैर-एकवचन है. इसके अतिरिक्त, यह सहज है, हालाँकि हम यहाँ उस तथ्य को सिद्ध नहीं करते हैं।
सहज रूप से, इसका अर्थ यह है कि हम m पर समष्टिीय निर्देशांक में टेलर श्रृंखला के संदर्भ में p के माध्यम से एक वक्र के जेट को व्यक्त कर सकते हैं।
समष्टिीय निर्देशांक में उदाहरण:
- जैसा कि पहले संकेत दिया गया है, p के माध्यम से वक्र का 1-जेट एक स्पर्शरेखा सदिश है। p पर एक स्पर्शरेखा सदिश एक प्रथम-क्रम अंतर प्रचालक है जो p पर सुचारू वास्तविक-मूल्य वाले फलनों पर कार्य करता है। समष्टिीय निर्देशांक में, प्रत्येक स्पर्शरेखा सदिश का रूप होता है
- ऐसे स्पर्शरेखा सदिश v को देखते हुए, मान लीजिए कि x में दिया गया वक्र f हैमैंद्वारा समन्वय प्रणाली . यदि φ(p)=0 के साथ p के प्रतिवेश में एक सुचारू फलन है, तो
- एक वेरिएबल का एक सहज वास्तविक-मूल्यवान फलन है जिसका 1-जेट द्वारा दिया गया है
- जो यह सिद्ध करता है कि कोई व्यक्ति स्वाभाविक रूप से उस बिंदु से गुजरने वाले वक्रों के 1-जेट के साथ एक बिंदु पर स्पर्शरेखा सदिश की पहचान कर सकता है।
- एक बिंदु से होकर गुजरने वाले वक्रों के 2-जेटों का समष्टि।
- एक समष्टिीय समन्वय प्रणाली में xi एक बिंदु p पर केन्द्रित, हम वक्र f(t) से p तक के दूसरे क्रम के टेलर बहुपद को व्यक्त कर सकते हैं
- तो x समन्वय प्रणाली में, p के माध्यम से वक्र के 2-जेट को वास्तविक संख्याओं की सूची से पहचाना जाता है . एक बिंदु पर स्पर्शरेखा सदिशों (वक्रों के 1-जेट्स) की तरह, वक्रों के 2-जेट्स समन्वय परिवर्ती फलनों के अनुप्रयोग पर एक परिवर्तन नियम का पालन करते हैं।
- चलो (यi) एक और समन्वय प्रणाली बनें। शृंखला नियम से,
- इसलिए, परिवर्तन नियम इन दो अभिव्यक्तियों का t = 0 पर मूल्यांकन करके दिया गया है।
- ध्यान दें कि 2-जेट के लिए परिवर्तन नियम समन्वय परिवर्ती फलनों में दूसरे क्रम का है।
बहुविध से बहुविध तक फलनों के जेट
अब हम किसी फलन के जेट को बहुविध से बहुविध तक परिभाषित करने के लिए तैयार हैं।
मान लीजिए कि m और एन दो चिकने बहुविध हैं। मान लीजिए p, M का एक बिंदु है। समष्टि पर विचार करें चिकने मानचित्रों से युक्त p के कुछ प्रतिवेश में परिभाषित। हम एक तुल्यता संबंध को परिभाषित करते हैं पर निम्नलिखित नुसार। दो मानचित्र f और g को समतुल्य कहा जाता है यदि, प्रत्येक वक्र γ से p के लिए (याद रखें कि हमारे सम्मेलनों के अनुसार यह एक मानचित्रण है) ऐसा है कि ), अपने पास 0 के कुछ प्रतिवेश पर.
जेट समष्टि फिर इसे समतुल्य वर्गों के समुच्चय के रूप में परिभाषित किया गया है तुल्यता संबंध मापांको . ध्यान दें कि क्योंकि लक्ष्य समष्टि N में कोई बीजगणितीय संरचना होनी आवश्यक नहीं है, ऐसी संरचना की भी आवश्यकता नहीं है। वास्तव में, यह यूक्लिडीय समष्टि के स्थिति से एकदम विपरीत है।
यदि , p के पास परिभाषित एक सहज फलन है, तो हम p पर f के k-जेट को परिभाषित करते हैं, , f मापांको का समतुल्य वर्ग है।
मल्टीजेट्स
जॉन माथेर (गणितज्ञ) ने मल्टीजेट की धारणा प्रस्तुत की। संक्षेप में कहें तो, मल्टीजेट विभिन्न आधार-बिंदुओं पर जेटों की एक सीमित सूची है। माथेर ने मल्टीजेट अनुप्रस्थता प्रमेय को सिद्ध किया, जिसका उपयोग उन्होंने स्थिर प्रतिचित्रण के अपने अध्ययन में किया।
खंडों के जेट
मान लीजिए कि E प्रक्षेपण के साथ बहुविध m पर एक परिमित-आयामी सहज सदिश समूह है। फिर E के अनुभाग सहज फलन , ऐसा है कि , m की पहचान स्वसमाकृतिकता है। एक बिंदु p के प्रतिवेश पर एक खंड s का जेट, p पर M से E तक इस सहज फलन का जेट है।
p पर अनुभागों के जेट की समष्टियों को निरूपित किया जाता है। यद्यपि यह संकेतन दो बहुविधों के मध्य फलनों के अधिक सामान्य जेट समष्टियों के साथ भ्रम उत्पन्न कर सकता है, संदर्भ सामान्यतः ऐसी किसी भी अस्पष्टता को समाप्त कर देता है।
एक बहुविध से दूसरे बहुविध में फलनों के जेट के विपरीत, p पर अनुभागों के जेट का समष्टि स्वयं अनुभागों पर सदिश समष्टि संरचना से विरासत में मिली सदिश समष्टि की संरचना का वहन करता है। चूंकि p, m पर भिन्न होता है, जेट समष्टि , m के ऊपर एक सदिश समूह बनाता है, जो कि E का k-वें-अनुक्रम जेट समूह है, जिसे Jk(E) द्वारा दर्शाया जाता है।
- उदाहरण: स्पर्शरेखा समूह का प्रथम-क्रम जेट समूह है।
- हम एक बिंदु पर समष्टिीय निर्देशांक में कार्य करते हैं और आइंस्टीन संकेतन का उपयोग करते हैं। एक सदिश क्षेत्र पर विचार करें:
- m में p के प्रतिवेश में है। v का 1-जेट सदिश क्षेत्र के गुणांक के पहले क्रम के टेलर बहुपद को लेकर प्राप्त किया जाता है:
- x निर्देशांक में, एक बिंदु पर 1-जेट को वास्तविक संख्याओं की सूची से पहचाना जा सकता है। जिस प्रकार किसी बिंदु पर एक स्पर्शरेखा सदिश को सूची (vi) से पहचाना जा सकता है, समन्वय परिवर्तन के अंतर्गत एक निश्चित परिवर्तन नियम के अधीन, हमें यह जानना होगा कि सूची कैसी है, एक परिवर्तन से प्रभावित होता है।
- तो किसी अन्य समन्वय प्रणाली yi प्रणाली को पारित करने में परिवर्तन कानून पर विचार करें। मान लीजिए कि y निर्देशांक में wk सदिश क्षेत्र v के गुणांक है। फिर y निर्देशांक में, v का 1-जेट वास्तविक संख्याओं की एक नई सूची है। तब से
- यह इस प्रकार है कि
- इसलिए
- टेलर श्रृंखला द्वारा विस्तार, हमारे पास है:
- ध्यान दें कि समन्वय परिवर्ती फलनों में परिवर्तन नियम दूसरे क्रम का है।
सदिश समूहों के मध्य विभेदक प्रचालक
This section is empty. You can help by adding to it. (सितम्बर 2020) |
यह भी देखें
- जेट वर्ग
- जेट समूह
- लैग्रेंजियन प्रणाली
संदर्भ
- Krasil'shchik, I. S., Vinogradov, A. M., [et al.], Symmetries and conservation laws for differential equations of mathematical physics, American Mathematical Society, Providence, RI, 1999, ISBN 0-8218-0958-X.
- Kolář, I., Michor, P., Slovák, J., Natural operations in differential geometry. Springer-Verlag: Berlin Heidelberg, 1993. ISBN 3-540-56235-4, ISBN 0-387-56235-4.
- Saunders, D. J., The Geometry of Jet Bundles, Cambridge University Press, 1989, ISBN 0-521-36948-7
- Olver, P. J., Equivalence, Invariants and Symmetry, Cambridge University Press, 1995, ISBN 0-521-47811-1
- Sardanashvily, G., Advanced Differential Geometry for Theoreticians: Fiber bundles, jet manifolds and Lagrangian theory, Lambert Academic Publishing, 2013, ISBN 978-3-659-37815-7; arXiv:0908.1886